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to transmit motion and power between intersecting axes. 
Orthogonal curve-face gear transmission has some unique 
advantages and transmission characteristics. It has the vari-
able transmission ratio characteristics of noncircular gear 
[2], can also transmit motion between orthogonal axes and 
has the characteristics of face gear such as better uniform 
load performance, larger coincidence ratio and no anti-
dislocation design [3–5]. The major characteristic of curve-
face gear is variable transmission ratio and the specific 
transmission ratio can be designed to meet the demands of 
practical application. When the transmission ratio changes, 
the geometry of the gear also changes. It has potentially 
broad application prospects in agricultural machinery, tex-
tile machinery and other fields. Its design principle and 
processing method are easier than noncircular bevel gear.

The dynamic characteristics of the gear transmission 
system will directly affect the stability and reliability of the 
transmission system. Scholars have done a lot of research 
on this topic and the dynamic model considering time-var-
ying mesh stiffness, gear backlash and static transmission 
error was established [6–10]. With regard to intersecting 
axis gear transmission, the study on bevel gear and orthog-
onal face gear transmission dynamics is more extensive and 
in-depth. However, existing related literature about orthog-
onal curve-face gear dynamics has not yet been found. 
Research on the orthogonal curve-face gear currently con-
centrates on tooth profile, measurement, error, strength, 
kinematic properties, manufacturing and other fields [1, 
11]. This paper uses the lumped parameter theory to estab-
lish a twisting vibration model of orthogonal curve-face 
gear pair. In the model, internal excitation, such as time-
varying mesh stiffness of the face gear pair, statics trans-
mission error and backlash, and external excitation, such 
as input rotational speed and load torque, are considered. 
Twisting vibration was converted to displacement vibration 
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1  Introduction

Orthogonal curve-face gear transmission is a new type of 
variable transmission ratio gear pair between the intersect-
ing axes based on the noncircular bevel gear pair, which 
combines the common transmission characteristics of non-
circular gears, bevel gears and face gears [1]. It can be used 
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on the meshing line. Using fourth-order Runge–Kutta 
numerical integration method to solve the dynamics differ-
ential equation, the dynamics response of the system was 
obtained. The research also provides a theoretical basis for 
the engineering applications of orthogonal curve-face gear.

2 � Dynamics model of the transmission system

2.1 � Transmission system model

The transmission model of orthogonal curve-face gear 
transmission system is shown in Fig. 1.

The pitch curve of a noncircular gear is high-order ellip-
tic. The pitch curve of a curve-face gear is conjugated with 
the pitch curve of a noncircular gear, so it can be calculated 
according to the principle of gear engagement [1]. When 
the orthogonal curve-face gear transmission system works, 
the center distance remains constant, the pitch curves main-
tain pure rolling and the transmission ratio changes with 
time.

According to the relationships of noncircular gear and 
curve-face gear, the coordinate of the gear system was 
established. As shown in Fig. 1, the coordinate o1x1y1z1 is 
fixed to the frame and the coordinate o1x

′

1y
′

1z
′

1 is fixed to 
the noncircular gear. In the initial state, the two coordinates 
are coincident when the system works, and the noncircu-
lar gear rotates counterclockwise about the o1y1. The coor-
dinate o2x2y2z2 is fixed to the frame, and the coordinate 
o2x

′

2y
′

2z
′

2 is fixed to the curve-face gear. In the initial state, 
the two coordinates are coincident when the system works, 
and the curve-face gear rotates clockwise about o2z2. When 
the noncircular gear turns an angle θ1, the curve-face gear 
turns an angle θ2. Point P and point Q are the meshing point 
on a noncircular gear and a curve-face gear when the non-
circular gear turns an angle θ1.

The pitch curve of a noncircular gear is expressed in 
polar coordinates as Eq. (1):

where a represents the semi-major axis, k is the eccentricity 
ratio, and n1 and θ1 are the order and the rotation angle of 
the noncircular gear.

According to the coordinate transformation theory, the 
pitch curve of the curve-face gear was obtained:

The transmission ratio of the gear pair i12 is expressed 
as:

where R is the radius of the curve-face gear pitch curve.

2.2 � Dynamics model of the transmission system

The dynamics model of the orthogonal curve-face gear 
transmission system is shown in Fig. 2.

In the model, only considering the twisting vibration, 
cabinet bearing seat is regarded as a rigid support. Point P 
is the meshing point on the noncircular gear, point Q the 
meshing point on the curve-face gear, PQ the meshing line, 
θ1 the rotation angle of noncircular gear, θ2 the rotation 
angle of curve-face gear, Cm the meshing damping, km(t) 
the time-varying meshing stiffness and e(t) the static trans-
mission error of normal direction. In this paper, the model 
of the vibration on the meshing line is represented by the 
M − C − K system.

2.3 � Analysis of excitation

Excitation of the vibration of the gear transmission includes 
external excitation and internal excitation [9]. External 

(1)r(θ1) =
a(1− k2)

1− k cos(n1θ1)
,

(2)







x = −R cos(θ2)

y = −R sin(θ2)

z = r(0)− r(θ1)

.

(3)i12 =
R(1− k cos(n1θ1))

a(1− k2)
,

Fig. 1   Orthogonal curve-face 
gear transmission model
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excitation includes input speed and load torque; internal 
excitation includes time-varying meshing stiffness of the 
gear, static transmission error and backlash. For the orthog-
onal curve-face gear transmission, excitation also includes 
the change of input shaft torque caused by the change of 
output shaft angular acceleration.

The load of the orthogonal curve-face gear T2 is con-
stant, and the angular velocity of the drive shaft ω1 is 
also constant. The transmission ratio of the system i12 is 
time varying, so the angular acceleration of the driven 
shaft β2 is time varying and the drive shaft torque T1 is 
also time varying. The relationship between the drive 
shaft torque and the driven shaft torque is expressed as 
Eq. (4),

where β2 is the angular acceleration of the driven shaft.
The drive shaft torque can be obtained by solving Eq. 4 

with 5. The torque variation is expressed in the upper right 
corner of Fig. 2. In the figure, the driven gear torque T2 was 
taken as 20 N m.

In the actual transmission, because of the error in pro-
cessing and installation, backlash must exist to ensure 
smooth engagement, which leads to the existence of shock 
of mesh in, mesh out and mesh apart. This is an important 
nonlinear factor of gear dynamics. Gear backlash function 
can be expressed as:

where b is the half of the total backlash. The backlash func-
tion is shown in Fig. 3 [12].

(4)T1 =
T2 − I2β2

i12

(5)β2 =
dω2

dt
=

d(ω1/i12)

dt
=

n1aω
2
1k(1− k2) sin(n1ω1t)

R(1− k cos(n1ω1t))2
,

(6)f (x) =







xn − b xn > b

0 |xn| ≤ b

xn + b xn < −b

Because of the processing and installation errors, there 
must exist static transmission errors in the meshing process. 
Static transmission errors can be approximately expressed 
by harmonic function as:

where e0 is the constant of gear static transmission error, 
e1 the magnitude of gear static transmission error, ω1 the 
meshing angular frequency of the transmission system and 
φ1 the initial phase of static transmission error.

In the gear’s meshing process, when the coincidence degree 
1 < ε < 2, there are single-tooth meshing zones and double-
tooth meshing zones. A meshing cycle experiences three 
processes of double-tooth meshing, single-tooth meshing 
and double-tooth meshing. When the gear meshes between 
the single-tooth meshing zone and double-tooth meshing 
zone, meshing stiffness steps, which lead to the time-varying 
of meshing stiffness. Time-varying meshing stiffness is an 
important internal excitation of the gear system dynamics.

(7)e(t) = e0 + e1 cos(ωet + φ1),

Fig. 2   Orthogonal curve-face 
gear transmission twisting 
vibration dynamics model
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For curve-face gear, each tooth shape varies in a cycle 
and single-tooth stiffness also varies, which also have an 
impact on the time-varying meshing stiffness of the orthog-
onal curve-face gear transmission system. In this paper, the 
tooth stiffness formula is used in the ISO formula draft to 
approximate the solving tooth stiffness of the curve-face 
gear [13]. The approximation of tooth stiffness of unit tooth 
width is:

where α is the pressure angle of the gear transmission sys-
tem, βg is the helix angle of helical gears which is taken 
as 0, zv1 and zv2 are the number of teeth in the noncircular 
gear and curve-face gear, and x1 and x2 are the modification 
coefficients of the noncircular gear and curve-face gear, 
taken as 0.

The pressure angle of the orthogonal curve-face gear 
transmission is shown in Eq. (10) [2]:

where αu is the pressure angle of the tool, µ is the angle 
between the radius vector of the noncircular gear pitch 
curve and the tangent of the noncircular gear pitch curve.

Therefore, the tooth stiffness of the curve-face gear is 
also time varying. Considering the factor of tooth width, 
tooth stiffness of the curve-face gear is:

Because the coincidence degree of orthogonal curve-
face gear transmission ε is larger than normal gears, the 
meshing stiffness can be approximated as meshing stiffness 
of the double-tooth meshing zone. Meshing stiffness can be 
expressed as:

where k1 is the tooth stiffness of the noncircular gear, k2 
is the tooth stiffness of the curve-face gear and k1 = k2,  
k
′
 is the meshing stiffness of the single-tooth meshing 

zone. Taking into account the problem of uneven load 

(8)C
′

≈
1

q
cosα cosβgN/(mm µm),

(9)

q = 0.04723+
0.15551

zv1
+

0.25791

zv2
− 0.00635x1

− 0.11654
x1

zv1
− 0.00193x2

− 0.24188
x2

zv2
+ 0.00529x21 + 0.00182x22,

(10)αm = αu +
π

2
− µ

(11)µ = arctan
r(θ1)

r
′
(θ1)

= arctan
−(1− k cos(n1ω1t))

n1k sin(n1ω1t)
,

(12)k2 =
1

q
B cosαm.

(13)km(t) = 1.5k
′

= 1.5
k1k2

k1 + k2
,

distribution, generally we take 1.5 times the meshing stiff-
ness of single-tooth meshing zone as the meshing stiffness 
of the double-tooth meshing zone.

3 � Solving and analysis of dynamics equation

3.1 � Solving the differential equations

According to Newton’s law of motion, the dynamics equa-
tions of two degrees of twisting vibration are listed as follows:

where I1 and I2 are the moment of inertia of the drive gear 
and driven gear, and rb1 and rb2 are the distance between the 
meshing point and the center of rotation of the drive gear 
and driven gear.

Let A1 be the result of Eq. (14) multiplied by I2rb1 and 
A2 be the result of Eq. (15) multiplied by I1rb2; subtract 
the A1 and A2 and then divided by I1r2b2 + I2r

2
b1. The com-

bined results of the two equations are:

where me =
I1I2

I1r
2
b2+I2r

2
b1

 is the equivalent mass, and 

Fm(t) =
T1I2rb1+I1rb2(T2−I2β2)

I1r
2
b2+I2r

2
b1

 is the equivalent excitation 
force.

Let x = rb1θ1 − rb2θ2 − e(t), then the above Eq.  (16) 
can be written as:

On nondimensionalization of Eq.  (17), l = 10−6; let 
τ = ω0t, x(t) = lu(τ ), then

where ζ is the damping coefficient, ζ = C
2meω0

 and km is the 
average meshing stiffness.

Substitute the parameters of Table  1 for the calcula-
tions. The above dynamics equation has nonlinear factors 
and analytical solutions cannot be solved; therefore, we 
use the numerical method. Solving the equation requires 
the introduction of state variables ν(τ). Using the fourth-
order Runge–Kutta method and solving by MATLAB pro-
gramming, we get the vibration response of the orthogonal 
curve-face gear transmission system.

(14)
I1θ̈1 + Crb1[rb1θ̇1 − rb2θ̇2 − ė(t)]

+ rb1k(t)f (rb1θ1 − rb2θ2 − e(t)) = T1,

(15)
I2θ̈2 − Crb2[rb1θ̇1 − rb2θ̇2 − ė(t)] − rb2k(t)f (rb1θ1

− rb2θ2 − e(t)) = −(T2 − I2β2),

(16)
me(rb1θ̈1 − rb2θ̈2)+ C[rb1θ̇1 − rb2θ̇2

− ė(t)] + k(t)f (rb1θ1 − rb2θ2 − e(t)) = Fm(t),

(17)meẍ(t)+ Cẋ(t)+ k(t)f (x) = Fm(t)− meë(t).

(18)ü(τ )+ 2ξ u̇(τ )+ f (u(τ ))
km(t)

km
=

Fm

kml
−

ë(t)

lω2
0

,
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3.2 � Vibration analysis

Analysis of the impact of different meshing frequencies 
on the dynamics of orthogonal curve-face gear system 

is performed by changing the frequency ratio Ω = ωe
ω0

 to 
observe the vibration response of the system.

As seen in Fig. 4, when Ω = 0.1, the system shows cha-
otic response. When the value of Ω is in the range of 0.01–
0.38, the vibration response of the system is similar to that 
in Fig.  4. On enlarging the displacement response graph, 
there are small oscillations of high frequency in each of the 
peaks and troughs. Phase plane graph is a complex closed 
curve, which corresponds to the high-frequency oscillation 
of the displacement response.

As seen in Fig.  5, when Ω = 0.8, the system shows 
vibration response of nine cycles. When the value of Ω is in 
the range of 0.38–0.96, the vibration response of the system 
is similar to that in Fig.  5. After dimensionless time 100, 
the vibration response of the system tends to be stabilized. 
After being stabilized, the displacement response graph 
presents a high-frequency wave superimposed on a low-
frequency wave. There are nine peaks in a cycle which cor-
respond to nine teeth of half cycle of the noncircular gear. 
The phase plane graph is a closed curve consisting of nine 
approximate ellipses, which also correspond to the nine 
peaks of each cycle in the displacement response graph.

Table 1   Parameters of gear transmission

Parameters and symbols Value

Order of noncircular gear, n1 2

Order of curve-face gear, n2 2

Tooth number of noncircular gear, z1 18

Tooth number of curve-face gear, z2 36

Mass of noncircular gear, m1/(kg) 3.16

Mass of curve-face gear, m2/(kg) 16.73

Moment of inertia of noncircular gear, I1/(kg m2) 1.3 × 10−3

Moment of inertia of curve-face gear, I2/(kg m2) 0.83

Modulus, m/(mm) 4

Tooth width, B/(mm) 13

Average meshing stiffness, km/(N m−1) 1.5 × 108

Gear backlash, 2b/(µm) 40

Damping coefficient, ζ 0.06
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Fig. 4   Dynamic response when Ω = 0.1. a Displacement response graph, b phase graph
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Fig. 5   Dynamic response when Ω = 0.8. a Displacement response graph, b phase graph
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As seen in Fig. 6, when Ω = 1, the system shows vibra-
tion response of nine cycles, but it is significantly differ-
ent from the vibration response of the nine cycles in Fig. 5. 
When the value of Ω is in the range of 0.96–3, the vibration 
response of the system is similar to that in Fig. 6. Its phase 
graph is a closed curve consisting of nine approximately 
elliptical, so the system response is vibration response of 
nine cycles. Its displacement response graph presents peri-
odicity, but the vibration characteristics in each cycle are 
quite complex and there is no regularity in each cycle.

As seen in Fig. 7, when Ω = 5, the system shows sin-
gle-cycle vibration response. When the value of Ω is in 
the range of 3–5, the vibration response of the system is 
similar to that in Fig. 7. Greater meshing frequency has no 
practical significance, so it will not be discussed. After the 
vibration is stabilized, the displacement response graph is 
significantly cyclical, like simple harmonic. Its phase graph 
is a irregular closed curve, which means that the system 
response is a single-cycle vibration.

The impact of different gear backlashes on the orthogo-
nal curve-face gear transmission system is analyzed, keep-
ing the meshing frequency ratio Ω = 0.8 unchanged, to 
observe the vibration response of the system.

Figure 8a, b shows the displacement response graphs of 
the system when the backlash 2b values are 20 and 100 μm. 
As we can see, the larger the backlash, the greater is the 
amplitude of the displacement response and the longer the 
time needed to be stabilized. When the total backlash is 
large enough to exceed a certain range, the system presents 
chaotic response.

4 � Conclusion

In this paper, the nonlinear dynamics model of an orthogo-
nal curve-face gear system considering time-varying mesh-
ing stiffness, statics transmission error and backlash was 
established, approximate time-varying meshing stiffness of 
the orthogonal curve-face gear pair was obtained and vibra-
tion characteristics of the gear system at different mesh fre-
quencies were also obtained.

The main results of the study are:

1.	 With the changing of meshing frequency, the gear sys-
tem shows single-cycle harmonic response, nine-cycle 
response, quasi-periodic and chaotic response. When 
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Fig. 6   Dynamic response when Ω = 1. a Displacement response graph, b phase graph
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Fig. 7   Dynamic response when Ω = 5. a Displacement response graph, b phase graph
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the meshing frequency is in the range of 0.38–0.96, 
the twisting vibration characteristics are most suitable 
for stable operation of the gear system. Based on the 
results, the gear system must operate much above or 
below its resonance range for stable operation.

2.	 With the increase of total backlash, the vibration 
amplitude also increases and the time to be stabilized 
also increases. When the total backlash is too large, the 
system shows chaotic response.

Acknowledgments  The authors appreciate their supports from the 
National Natural Science Foundation of China (51275537).

References

	 1.	 Gong H (2012) Transmission design and characteristic analysis 
of orthogonal curve-face gear drive. Chongqing University

	 2.	 Li F (1975) Non-circular gear. China Machine Press, pp 90–95
	 3.	 Litvin FL, Zhang Y, Wang JC et al (1992) Design and geometry 

of face-gear drives. J Mech Des 114:642
	 4.	 Litvin FL, Fuentes A, Zanzi C et  al (2002) Design, generation, 

and stress analysis of two versions of geometry of face-gear 
drives. Mech Mach Theory 37:1179–1211

	 5.	 Litvin FL, Fuentes A, Zanzi C et al (2002) Face-gear drive with 
spur involute pinion: geometry generation by a worm stress anal-
ysis. Comput Methods Appl Mech Eng 191:2785–2813

	 6.	 Shen Y, Yang S, Liu X (2006) Nonlinear dynamics of a spur gear 
pair with time-varying stiffness and backlash based on incremen-
tal harmonic balance method. Int J Mech Sci 48:1256–1263

	 7.	 Litak G, Friswell MI (2005) Dynamics of a gear system with 
faults in meshing stiffness. Nonlinear Dyn 41:415–421

	 8.	 Li X, Zhu R, Li Z, Jin G (2013) Analysis of coupled vibration 
of face gear drive with non-orthogonal intersection. J Cent South 
Univ (Science and Technology) 06:2274–2280

	 9.	 Song S (2007) Analysis and modeling of nonlinear dynamics of 
gear-pair. Jilin University

	10.	 Lin TJ, Ran XT (2012) Nonlinear vibration characteristic analy-
sis of a face-gear drive. J Vib Shock 02:25–31

	11.	 Lin C, Li S, Gong H (2014) Design and 3D modeling of orthogo-
nal variable transmission ratio face gear. J Hunan Univ (Natural 
Science) 03:49–55

	12.	 Kim TC, Rook TE, Singh R (2005) Super-and sub-harmonic 
response calculations for a torsional system with clearance non-
linearity using the harmonic balance method. J Sound Vibrations 
281:965–993. doi:10.1016/j.jsv.2004.02.039

	13.	 Japan Society of Mechanical Engineering (1984) Gear strength 
design information. China Machine Press, pp 28–35

0 100 200 300 400

-150

-100

-50

0

50

100

150

Dimensionless time

D
im

en
si

on
le

ss
 d

is
pl

ac
em

en
t

0 100 200 300 400
-300

-200

-100

0

100

200

300

Dimensionless time

D
im

en
si

on
le

ss
 d

is
pl

ac
em

en
t

(a) (b) 

Fig. 8   Impact on the dynamic response of gear backlash. a Displacement response when 2b = 20 µm, b displacement response when 
2b = 100 µm

http://dx.doi.org/10.1016/j.jsv.2004.02.039

	Analysis of nonlinear twisting vibration characteristics of orthogonal curve-face gear drive
	Abstract 
	1 Introduction
	2 Dynamics model of the transmission system
	2.1 Transmission system model
	2.2 Dynamics model of the transmission system
	2.3 Analysis of excitation

	3 Solving and analysis of dynamics equation
	3.1 Solving the differential equations
	3.2 Vibration analysis

	4 Conclusion
	Acknowledgments 
	References




