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practical applications in industrial and engineering. The 
Burgers’ fluid model is the class of rate type fluids. The 
Burgers’ fluid model was proposed to predict the prop-
erties of relaxation and retardation time. Hayat et  al. 
[1] analyzed the influence of Hall current on the rotat-
ing flow of a Burgers’ fluid through a porous space. The 
accelerated flow of a viscoelastic fluid with the fractional 
Burgers’ model was investigated by Khan et al. [2]. Khan 
et  al. [3] presented the exact solutions for some oscil-
lating motions of a fractional Burgers’ fluid. Fetecau 
et al. [4] investigated a note on longitudinal oscillations 
of a generalized Burgers fluid in cylindrical domains. 
Exact solutions for the unsteady flow of a Burgers’ fluid 
between two sidewalls perpendicular to the plate was 
studied by Khan et al. [5]. The helical flow of a Burgers’ 
fluid with fractional derivative was examined by Shah 
[6]. The exact solution for rotating flows of a generalized 
Burgers’ fluid in cylindrical domains was investigated by 
Jamil and fetecau [7].

Recently, the researchers have been focusing on the 
study of nanofluids because nanofluids attract with their 
enormous potential to provide enhancement perfor-
mance properties, especially with respect to heat trans-
fer rate. Choi [8] investigated convection heat transfer 
fluids as nanofluid having substantially higher thermal 
conductivities to study the enhancement in heat trans-
fer phenomenon. Chamkha and Aly [9] performed MHD 
free convective boundary layer flow of a nanofluid 
along a permeable isothermal vertical plate in the pres-
ence of heat source or sink. Meatin et  al. [10] investi-
gated the MHD mixed convective flow of a nanofluid 
over a stretching sheet. Aziz et  al. [11] analyzed MHD 
flow over an inclined radiating plate with temperature-
dependent thermal conductivity, variable reactive index, 
and heat generation. Aziz and Khan [12] investigated 
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1  Introduction

The study of the boundary layer flow of non-Newtonian 
fluids over a continuously moving surface is a topic of 
great interest to the researchers due to its wide range of 
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natural convective flow of a nanofluid over a convec-
tively heated vertical plate. Kuznetsov and Nield [13] 
elaborated the natural convective flow of a nanofluid 
past a vertical plate. Khan and Pop [14] studied the lam-
inar flow of nanofluid past a stretching sheet. Nadeem 
et  al. [15] analyzed the optimized analytical solution 
for oblique flow of Casson-nanofluid with convective 
boundary conditions. Narayana and Sibanda [16] inves-
tigated the effects of laminar flow of a nanofluid over an 
unsteady stretching sheet. Hamad and Ferdows [17] pre-
sented the similarity solutions to viscous flow and heat 
transfer of a nanofluid over a nonlinear stretching sheet. 
Studies on heat generation/absorption effects for bound-
ary layer flow of nanofluids are very limited. Alsaedi 
et  al. [18] investigated the effects of heat generation/
absorption on a stagnation-point flow of nanofluid over 
a surface with convective boundary conditions. Chemi-
cal reaction and uniform heat generation/absorption 
effects on MHD stagnation-point flow of a nanofluid 
over a porous sheet were presented by Anwar et al. [19]. 
Nandy and Mahapatra [20] examined the effects of slip 
and heat generation/absorption on MHD stagnation-
point flow nanofluid past a stretching/shrinking surface 
with convective boundary conditions. Khan et  al. [21] 
analyzed three-dimensional flow of an Oldroyd-B nano-
fluid toward a stretching sheet with heat generation/
absorption.

The basic theme of this paper is to discuss the steady 
two-dimensional flow of Burgers’ nanofluid over a 
stretching sheet in the presence of heat generation/
absorption effects. To our knowledge, no studies have 
been made to analyze the simultaneous effects of heat 
generation/absorption on heat and mass transfer of Burg-
ers’ nanofluid over a linear stretching sheet. The gov-
erning coupled nonlinear partial differential equations 
are reduced to a system of coupled ordinary differential 
equations using appropriate transformations, and then 
the resulting equations are solved analytically by the 
homotopy analysis method (HAM). A parametric study is 
conducted to investigate the influence of various physical 
parameters on the velocity, temperature, and concentra-
tion profile.

2 � Governing equations

The equations governing the steady flow of an incompress-
ible Burgers’ nanofluid in the presence of heat generation/
absorption

(1)div V = 0,

(2)ρai = −∇p+ div S,

In the above equations, V is the velocity vector, T  the 
temperature of the fluid, C the concentration of the fluid, 
ρ the fluid density, p the pressure, α the thermal diffusiv-
ity, Q0 the heat generation/absorption parameter, T∞ the 
ambient fluid temperature, cp the specific heat of fluid at 
constant temperature, τ =(ρc)p

ρcp
 the ratio of effective heat 

capacity of the nanoparticle material to the heat capacity 
of the fluid, DB the Brownian diffusion coefficient, and DT 
the thermophoresis diffusion coefficient. Moreover, S is the 
extra stress tensor, A1 = (∇V)+ (∇V)∗ the first Rivlin–
Ericksen tensor, µ the dynamic viscosity, �1, and �3(≤ �1) 
the relaxation and retardation times, respectively, �2 the 
material parameter of the Burgers’ fluid and D

Dt
 denotes the 

upper convected derivative defined by.

For a two-dimensional flow in Cartesian coordinates, we 
assume the velocity, temperature, concentration, and stress 
fields of the form

By inserting Eq.  (7) into Eqs.  (1)–(5), having in mind 
Eq.  (6), a lengthy but straight forward calculation results 
in the relevant governing equations for the steady flow of 
Burgers’ nanofluid, as follows:

(3)
(V · ∇)T = α∇2T +

Q0

ρcp
(T − T∞)

+ τ

(

DB∇C · ∇T +
DT

T∞
∇T · ∇T

)

,

(4)(V · ∇)C = DB∇2C +
DT

T∞
∇2T .

(5)

(

1+ �1
D

Dt
+ �2

D2

Dt2

)

S = µ

(

1+ �3
D

Dt

)

A1.

(6)
Dai

Dt
=

∂ai

∂t
+ urai, r − ui, rai,

(7)
V = [u(x, y), v(x, y), 0], T = T(x, y),

C = C(x, y), S = S(x, y).
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(10)
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is confined to the region y > 0 and is generated due to the 
stretching of the sheet along the x-axis with velocity ax, 
where a is a positive constant. It is also assumed that the 
temperature and concentration at the surface of the sheet 
are Tw and Cw, respectively, which are greater than the 
ambient fluid temperature T∞ and concentration C∞. The 
governing equations for the steady conservation of mass, 
momentum, thermal energy, and concentration are (8), 
(13), (14), and (15) subject to the boundary conditions

The above governing problem can be expressed in a sim-
pler form by introducing the following transformation.

where η is the similarity variable and ψ(x, y) is the Stokes 
stream function.

By employing the similarity variables (18), the above 
problem reduces to

in which prime denotes differentiation with respect to η. Fur-
ther, the non-Newtonian parameters β1, β2, and β3, the gen-
eralized Prandtl number Pr, the heat source (� > 0), and the 

(16)u = Uw = ax, v = 0, T = Tw, C = Cw at y = 0,

(17)u → 0, v → 0, T → T∞, C → C∞ as y → ∞.

(18)

ψ = x
√
aνf (η), η = y

√

a

ν
,

θ(η) =
T − T∞

Tw − T∞
, ϕ(η) =

C − C∞

Cw − C∞
,

,

(19)

f ′′′ + ff ′′ − f ′2 + β1

[

2ff ′f ′′ − f 2f ′′′
]

+ β2

[

f 3f iv − 2ff ′2f ′′ − 3f 2f ′′2
]

+ β3

[

f ′′2 − ff iv
]

= 0,

(20)θ ′′ + Pr f θ ′ + PrNbϕ
′θ ′ + PrNtθ

′2 + Pr �θ = 0,

(21)ϕ′′ + Pr Lef ϕ′ +
Nt

Nb

θ ′′ = 0,

(22)f = 0, f ′ = 1, θ = 1, ϕ = 1 at η = 0,

(23)f ′ → 0, θ → 0, ϕ → 0 as η → ∞,

where ν = µ
ρ
 is the kinematic viscosity. Under the usual 

boundary layer approximations [22], the above governing 
equations become

3 � Mathematical formulation

Consider a steady, two-dimensional (x, y) boundary layer 
flow of an incompressible Burgers’ nanofluid over a 
stretching sheet coinciding with the plane y > 0. The flow 

(11)
u
∂T

∂x
+ v

∂T

∂y
= α

(

∂2T

∂x2
+

∂2T

∂y2

)

+
Q0

ρc
(T − T∞)

+ τ

[

DB

(

∂C

∂x

∂T

∂x
+

∂C

∂y

∂T

∂y

)

+
DT

T∞

(

(

∂T

∂x

)2

+
(

∂T

∂y

)2
)]

,
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heat sink (� < 0) parameter, the Brownian motion parameter 
Nb, the thermophoresis parameter Nt and the Lewis number 
Le are defined by

When Nb = Nt = 0, the present problem reduces to 
a regular Burgers’ fluid and the concentration Eq.  (21) 
becomes ill-posed and is of no physical significance.

The local Nusselt number Nux and local Sherwood num-
bers Shx are given by

In terms of dimensionless quantities, we obtain

in which Re = Uwx/ν is local Reynolds number.

4 � Convergence of the homotopy solutions

The solutions of nonlinear coupled ordinary differential 
Eqs. (19)–(22) subjected to boundary conditions (22)–(23) 
are obtained with the help of well-known homotopy analy-
sis technique (HAM). The homotopy analysis technique 
(HAM) provides a way to check and adjust the conver-
gence of the obtained solution with the help of the auxiliary 
parameters ħf, ħθ, and ħφ and the base functions. These aux-
iliary parameters ħf, ħθ, and ħφ have a key role to control the 
convergence of the series solutions. The appropriate values 

(24)

β1 =�1a, β2 = �2a
2
, β3 = �3a, � =

Q0

ρacp
, Pr =

ν

α
,

Nb =
τDB(Cw − C∞)

ν
, Nt =

τDT (Tw − T∞)

T∞ν
, Le =

α

DB

.

.

(25)

Nux = −
x

(T − T∞)

(

∂T

∂y

)∣

∣

∣

∣

y=0

,

Shx = −
x

(Cw − C∞)

(

∂C

∂y

)∣

∣

∣

∣

y=0

.

(26)Re
− 1
2Nux = −θ ′(0), Re

− 1
2 Shx = −ϕ′(0),

of ħf, ħθ, and ħφ are determined by considering minimum 
square which is defined as

Table  1 ensures the convergence of the series solution 
which shows that convergent solution for the velocity is 
obtained at 15th-order of approximation; whereas, such a 
convergence for temperature and concentration is achieved 
at 30th-order of approximation.

5 � Numerical results and discussion

This section is focused to analyze the influence of various 
physical parameters on the temperature and concentration 

(27)Ff ,m =
1

N + 1

N
∑

j=0

[

Nf

m
∑

i=0

FJ(i∆η)

]2

.
Table 1   Convergence of homotopy solutions when β1 = β2 =

β3 = 0.2, Pr = 1.4, Nb = Nt = 0.1, λ = 0.2 and Le = 1.0 are fixed

Order of approximation −f′′(0) −θ′(0) −φ′(0)

1 0.972461 0.377585 0.0456303

5 0.973283 0.386163 0.497787

10 0.973324 0.383310 0.520282

15 0.973323 0.382695 0.520219

20 0.973323 0.382631 0.520261

26 0.973323 0.382623 0.520267

30 0.973323 0.382622 0.520267

35 0.973323 0.382622 0.520267

Fig. 1   Influence of the Deborah number β1 on θ(η) when 
β2 = β2 = 0.2, Pr = 1.2, λ = 0.2, Nt = Nb = 0.1, and Le = 1.0 are 
fixed

Fig. 2   Influence of the Deborah number β2 on θ(η) when 
β1 = β2 = 0.2, Pr = 1.2, λ = 0.2, Nt = Nb = 0.1, and Le = 1.0 are 
fixed
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field, respectively. The coupled set of Eqs.  (19)–(21) with 
boundary conditions (22) and (23) are solved analytically 
by means of the homotopy analysis technique (HAM). The 
results for the skin-friction coefficient, reduced Nusselt, 
and sherwood numbers are tabulated.

Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 
are plotted to see the variation of the Deborah numbers 
β1, β2, and β3, Prandtl number Pr, heat source (� > 0) or 
sink (� < 0), Lewis number Le, Brownian motion param-
eter Nb, and thermophoresis parameter Nt on the fluid tem-
perature and concentration profile. The effect of the Debo-
rah numbers β1 and β2 on the temperature profile is shown 
in Figs.  1 and 2. It is found that with the increase in the 
Deborah numbers β1 and β2, the temperature profile and the 
associated thermal boundary layer thickness increase. Fig-
ure 3 provides the analysis for the variation of the Deborah 

number β3 on the temperature profile. It is noticed that 
the temperature and the thermal boundary layer become 
smaller for the large value of the Deborah number β3. Fig-
ure 4 shows the behavior of the Prandtl number Pr on the 
temperature profile. It is noticed that a decrease in the tem-
perature profile and the associated thermal boundary layer 
thickness is observed as the Prandtl number Pr is increased. 
Obviously, from the definition of the Prandtl number 
Pr

(

= ν
α

)

, it is clear that when the value of the Prandtl num-
ber Pr increases, the thermal conductivity decreases and so 
the temperature profile decreases. Higher the value of the 
Prandtl number Pr implies the slow rate of the thermal dif-
fusion. Figure 5 presents the effects of the thermophoresis 
parameter Nt on the temperature profile θ(η). The tem-
perature profile and the associated thermal boundary layer 

Fig. 3   Influence of the Deborah numbers β2 on θ(η) when 
β1 = β2 = 0.2, Pr = 1.2, λ = 0.2, Nt = Nb = 0.1m and Le = 1.0 are 
fixed

Fig. 4   Influence of the Prandtl numbers Pr on θ(η) when 
β1 = β2 = β2 = 0.2, λ = 0.2, Nt = Nb = 0.1, and Le = 1.0 are fixed

Fig. 5   Influence of the thermophoresis parameter Nt on θ(η) when 
β1 = β2 = β2 = 0.2, Pr = 1.2, λ = 0.2, Nb = 0.1, and Le = 1.0 are 
fixed

Fig. 6   Influence of the Brownian motion parameter Nb on θ(η) when 
β1 = β2 = β2 = 0.2, Pr = 1.2, λ = 0.2, Nt = 0.1, and Le = 1.0 are 
fixed
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thickness are detected to increase with an increase in the 
thermophoresis parameter Nt. In fact with an increase of 
the thermophoresis parameter Nt, difference between the 
wall temperature and the reference temperature increases 
which increases the temperature profile. Figure  6 depicts 
the variations of the Brownian motion parameter Nb on the 
temperature profile θ(η). Increase in the Brownian motion 
parameter Nb has an increasing behavior on the tempera-
ture profile and the thermal boundary thickness. It occurs 
because with the increase of the Brownian motion param-
eter Nb random motion of the particles increases which 
results in an enhancement in the temperature profile. Fig-
ure 7 indicates the effect of the heat generation phenome-
non (� > 0) on the temperature profile. It is noticed that the 
increase in the heat generation phenomenon (� > 0), the 

temperature profile and the thermal boundary layer thick-
ness increase. Because the heat generation phenomenon 
(� > 0) gives more heat to the fluid that corresponds to an 
increase in the temperature profile and the thermal bound-
ary layer thickness. Figure 8 describes the effect of the heat 
absorption phenomenon (� < 0) on the temperature profile. 
We can see that the fluid temperature and thermal boundary 
layer thickness reduce with an increase in the heat absorp-
tion phenomenon (� < 0).

Figures  9 and 10 are plotted to see the effects of the 
Deborah numbers β1 and β2 on the concentration profile 
ϕ(η). It shows that the concentration profile and concen-
tration boundary layer thickness are increasing functions 
of the Deborah numbers β1 and β2. Figure  11 elucidates 
that an increase in Deborah number β3 corresponds to the 

Fig. 7   Influence of the heat generation parameter λ(>0) on θ(η) 
when β1 = β2 = β2 = 0.2, Pr = 1.2, Nt = Nb = 0.1, and Le = 1.0 are 
fixed

Fig. 8   Influence of the heat absorption parameter λ(<0) on θ(η) 
when β1 = β2 = β2 = 0.2, Pr = 1.2, Nt = Nb = 0.1, and Le = 1.0 are 
fixed

Fig. 9   Influence of the Deborah numbers β1 on ϕ(η) when 
β2 = β2 = 0.2, Pr = 1.2, λ = 0.2, Nt = Nb = 0.1, and Le = 1.0 are 
fixed

Fig. 10   Influence of the Deborah number β2 on ϕ(η) when 
β1 = β2 = 0.2, Pr = 1.2, λ = 0.2, Nt = Nb = 0.1, and Le = 1.0 are 
fixed
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decrease in the concentration profile and concentration 
boundary layer thickness. Figure  12 depicts the varia-
tion of the Lewis number Le on the concentration profile. 
Decrease in the concentration profile and the concentration 
boundary layer thickness take place with the increase in 
the Lewis number Le. Obviously from the definition of the 
Lewis number Le

(

= α
DB

)

, it is clear that a large value of 
the Lewis number Le has relatively lower Brownian diffu-
sion coefficient. Thus, there is a reduction in the concen-
tration profile, and concentration boundary layer thickness 
takes place for large value of the Lewis numberLe. The 
effect of the thermophoresis parameter Nt on the concen-
tration profile is described in Fig. 13. We explore that the 
increase in the thermophoresis parameter Nt results in an 
increase in the concentration profile and the associated 

concentration boundary layer thickness. Figure 14 reveals 
the variation of the Brownian motion parameter Nb on the 
concentration profile. It is seen that the increase in the 
Brownian motion parameter Nb causes the concentration 
profile and the concentration boundary layer thickness to 
reduce.

Table  2 presents the numerical values of the skin fric-
tion coefficient, local Nusselt number, and local Sherwood 
number for different values of Pr, �, Nb, Nt, and Le..

6 � Concluding remarks

In this paper, an analysis is presented for the two-dimen-
sional boundary layer flow of Burgers’ nanofluid over 
a stretching surface. The governing coupled nonlinear 

Fig. 11   Influence of the Deborah number β2 on ϕ(η) when 
β1 = β2 = 0.2, Pr = 1.2, λ = 0.2, Nt = Nb = 0.1, and Le = 1.0 are 
fixed

Fig. 12   Influence of the Lewis number Le on ϕ(η) when 
β1 = β2 = β2 = 0.2, Pr = 1.2, λ = 0.2, Nt = 0.1, and Nb = 0.1 are 
fixed

Fig. 13   Influence of the thermophoresis parameter Nt on ϕ(η) when 
β1 = β 2 = β2 = 0.2, Pr = 1.2, λ = 0.2, Nb = 0.1, and Le = 1.0 are 
fixed

Fig. 14   Influence of the Brownian motion parameter Nb on ϕ(η) 
when β1 = β2 = β2 = 0.2, Pr = 1.2, λ = 0.2, Nt = 0.1, and Le = 1.0 
are fixed
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ordinary differential equations are solved analytically using 
homotopy analysis technique (HAM). The important obser-
vations of the paper are as follows:

•	 Effects of the Deborah numbers β1 and β3 on the tem-
perature and mass fraction function ϕ(η) are quite oppo-
site.

•	 Effects of � on the temperature profile is quite opposite 
for � > 0 and � < 0.

•	 Effects of Brownian motion and thermophoresis param-
eters correspond to an increase in the temperature pro-
file.

•	 Effects of Brownian motion and thermophoresis param-
eters for mass fraction function are opposite.
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structive suggestions.

References

	 1.	 Hayat T, Khan SB, Khan M (2008) Influence of Hall current on 
the rotating flow of a Burgers’ fluid through a porous space. J 
Porous Med. 11:277–287

	 2.	 Khan M, Ali SH, Qi H (2009) On accelerated flows of a viscoe-
lastic fluid with the fractional Burgers’ model. Non-linear Anal 
Real World Appl 10:2286–2296

	 3.	 Khan M, Anjum A, Fetecau C, Qi H (2010) Exact solutions for 
some oscillating motions of a fractional Burgers’ fluid. Math 
Comput Model 51:682–692

	 4.	 Fetecau C, Hayat T, Khan M, Fetecau C (2010) A note on longi-
tudinal oscillations of a generalized Burgers fluid in cylindrical 
domains. J Non-Newton Fluid Mech 165:350–361

	 5.	 Khan M, Malik R, Fetecau C, Fetecau C (2010) Exact solu-
tions for the unsteady flow of a Burgers’ fluid between two 
sidewalls perpendicular to the plate. Chem Eng Commun 
197:1367–1386

	 6.	 Shah SHAM (2010) Some helical flows of a Burgers’ fluid with 
fractional derivative. Meccanica 45:143–151

	 7.	 Jamil M, Fetecau C (2010) Some exact solutions for rotating 
flows of a generalized Burgers’ fluid in cylindrical domains. J 
Non-Newton Fluid Mech 165:1700–1712

	 8.	 Choi SUS (1995) Enhancing thermal conductivity of fluids with 
nanoparticles. ASME Int Mech Eng 66:99–105

	 9.	 Chamkha AJ, Aly AM (2011) MHD free convection flow of a 
nanofluid past a vertical plate in the presence of heat generation 
or absorption effects. Chem Eng Commun 198:425–441

	10.	 Matin MH, Heirani MR (2012) Nobari and P. Jahangiri, 
Entropy analysis in mixed convection MHD flow of nano-
fluid over a non-linear stretching sheet. J Therm Sci Technol 
7:104–119

	11.	 Aziz A, Uddin MJ, Hamad MAA, Ismail AIM (2012) MHD flow 
over an inclined radiating plate with the temperature-dependent 
thermal conductivity, variable reactive index, and heat generation. 
Heat Transf-Asian Res 41(3):241–259

	12.	 Aziz A, Khan WA (2012) Natural convective boundary layer 
flow of a nanofluid past a convectively heated vertical plate. Int J 
Therm Sci 52:83–90

	13.	 Kuznetsov AV, Nield DA (2010) Natural convective boundary- 
layer flow of a nanofluid past a vertical plate. Int J Therm Sci 
49:243–247

	14.	 Khan WA, Pop I (2010) Boundary-layer flow of a nanofluid past a 
stretching sheet. Int J Heat Mass Transf 53:2477–2483

	15.	 Nadeem S, Mehmood R, Akbar NS (2014) Optimized analytical 
solution for oblique flow of Casson-nanofluid with convective 
boundary conditions. Int J Therm Sci 78:90–100

	16.	 Narayana M, Sibanda P (2012) Laminar flow of a nanoliquid 
film over an unsteady stretching sheet. Int J Heat Mass Transf 
55:7552–7560

	17.	 Hamad MAA, Ferdows M (2012) Similarity solutions to viscous 
flow and heat transfer of nanofluid over nonlinearly stretching 
sheet. Appl Math Mech 33:923–930

	18.	 Alsaedi A, Awais M, Hayat T (2012) Effects of heat generation/
absorption on a stagnation point flow of nanofluid over a surface 
with convective boundary conditions. Commun Nonlinear Sci 
Numer Simulat 17:4210–4223

	19.	 Anwar I, Kasim ARM, Ismail Z, Salleh M, Shafie S (2013) 
Chemical reaction and uniform heat generation/absorption effects 

Table 2   Values of Local 
Nusselt number and Sherwood 
number for different 
values of the parameters 
Pr, �, Nb, Nt, and Le when 
β1 = β2 = β3 = 0.2

Pr λ Nt Nb Le −θ′(0) −φ′(0)

1.4 0.2 0.1 0.1 1.0 0.382622 0.520267

1.6 0.430023 0.567626

1.7 0.450711 0.591845

1.5 0.0 0.668390 0.335028

0.1 0.553222 0.428434

0.3 0.172336 0.721386

0.2 0.374922 0.380974

0.3 0.343763 0.262409

0.4 0.313862 0.184418

0.2 0.358295 0.668851

0.3 0.312513 0.709515

0.4 0.270043 0.729081

1.1 0.405471 0.601278

1.2 0.403769 0.655788

1.3 0.402293 0.707634



2367J Braz. Soc. Mech. Sci. Eng. (2016) 38:2359–2367	

1 3

on MHD stagination-point flow of a nanofluid over a porous 
sheet. World Appl Sci J 24(10):1390–1398

	20.	 Nandy SK, Mahapatra TR (2013) Effects of slip and heat gen-
eration/absorption on MHD stagnation point flow nanofluid past 
a stretching/shrinking surface with convective boundary condi-
tions. Int Heat Mass Transf 64:1091–1100

	21.	 Khan WA, Khan M, Malik R (2014) Three-dimensional flow of 
an Oldroyd-B nanofluid towards stretching surface with heat gen-
eration/absorption. PLoS One 9(8):e105107

	22.	 Schichting H (1964) Boundary layer theory, 6th edn. McGraw-
Hill, New York


	Steady flow of Burgers’ nanofluid over a stretching surface with heat generationabsorption
	Abstract 
	1 Introduction
	2 Governing equations
	3 Mathematical formulation
	4 Convergence of the homotopy solutions
	5 Numerical results and discussion
	6 Concluding remarks
	Acknowledgments 
	References




