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1  Introduction

Membranes and thin films are important systems in modern 
engineering. They are observed in a number of applications 
and at varying length scales, such as roofing of large-span 
buildings, nautical sails, ballistic shields, airbags, solar 
panels, biosensors and biological membranes, to name just 
a few. Some of these surface entities (we mean “surface” 
in the sense that they are inherently two-dimensional struc-
tures) exhibit, below the (homogenized) continuum scale, 
a microstructure that consists of a network of either woven 
yarns or oriented fibers, as for example in structural fabrics 
or in thin, fibrous biological tissues. Some others are essen-
tially a bi-dimensional assembly of macromolecules held 
together by short-range forces arising from weaker van der 
Waals, hydrophobic and hydrogen-bonding interactions, as 
in lipid membranes forming thin biofilms like Langmuir–
Blodgett films and cell membranes. In all cases, although 
through different mechanisms, the underlying microstruc-
ture leads often to a strong anisotropic behavior at the meso 
or macro-scale, which is in turn difficult to describe math-
ematically—especially if one is interested in the prediction 
of damage and rupture of such entities.

In this context, the purpose of this work is to present 
a relatively simple, yet robust, computational model for 
the simulation of rupture on structural fabrics, biological 
tissues and lipid membranes. Remarkably, it can be used 
to model such different types of surface entities under 
the same general framework, the only requirement being 
that its parameters be taken according to the problem at 
hand. It can be numerically implemented with small effort 
by researchers interested in these fields, and may be tai-
lored to specific applications very straightforwardly. We 
follow a purely mechanistic description (in the sense that 
chemical and biological aspects, if present, are not directly 
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addressed), keeping our focus only on the mechanical 
forces that dictate the response of the surface entity. This 
latter is treated as a collection of particles forming a dis-
crete dynamical system, wherein each particle interacts 
with the others and the surrounding media via a complex 
combination of membrane forces due to weaving yarns/
fibers or adhesive in-plane interactions, pressure and drag 
forces due to surrounding fluids, and contact and fric-
tion forces due to touching and collision. The presence 
of external bodies (e.g., indenters or incoming objects or 
projectiles) is taken into account by treating them also as 
particles or collections of particles, which then take part 
into the overall particle interactions. Classical Newtonian 
dynamics is adopted to describe the time evolution of the 
system, the (strongly coupled) equations of which are 
solved via an implicit time-stepping integration scheme. 
The overall framework falls in the class of particle-based 
methods (PBM) or discrete element methods (DEM), see 
e.g., [1–3]. (These methods originated from the seminal 
work of Cundall and Strack [4] in the late 1970s, in an 
attempt to study granular materials like soils and rocks, 
and have evolved since then into powerful numerical 
approaches to the modeling of a myriad of discrete sys-
tems such as powders [5], granular flows [6], polymers [7], 
colloids [8], crystals [9], swarms [10] and many others, to 
cite just a few; for an early history and nice overview, the 
reader is referred to [11–13].) Examples of numerical sim-
ulations are provided to show how the model works from a 
general perspective.

The proposed approach has origins in the ideas of Zohdi 
and co-workers [14–17], but differs from these in the sense 
that a PBM description is envisioned for the surface entity 
instead of the so-called “network representation” devel-
oped therein. To the author’s knowledge, there are no pre-
vious works in the literature that attempted to devise a uni-
fied model for the simulation of rupture of surface entities 
by means of particle-based or DEM approaches. This is 
found to be the main contribution of this work and its key 
advantages are that (1) self-contact of the surface entity is 
made possible (this can be an important feature in many 
applications); (2) multi-layered surface entities with con-
sistent inter-layer interaction are possible to be represented 
(in this case, contiguous layers may interact with each 
other via a combination of contact, friction and/or adhe-
sion forces that follow naturally from the PBM descrip-
tion); (3) no closest-point projection algorithm needs 
to be invoked to resolve the contact of incoming objects 
with the surface entity (since the corresponding contact/
collision forces follow from simple overlap-based contact 
solutions or from simple impulse–momentum balance cal-
culations for each colliding pair); and (4) the presence of a 
matrix or coating material that is part of the surface entity 
can be easily considered, allowing for an in-plane shear 

stiffness within the entity’s overall mechanical response. 
This approach, however, is not free from limitations or 
disadvantages. As a main drawback, we can stress that a 
robust contact search and detection algorithm is neces-
sary (and indeed of crucial importance), since the parti-
cle-based description assumes by default that all particles 
in the system may potentially interact and get in contact 
with each other, thereby requiring an intensive contact 
check (this operation is of the order of Np

2, with Np being 
the total number of particles in the system). Many schemes 
are available to speed up this check, as for example sorting 
and binning algorithms [18], domain decomposition algo-
rithms [2], use of Verlet lists [2], etc.

There exists a number of other theoretical and/or com-
putational approaches that may be used to study the 
mechanical response of structural fabrics [19–28], fibrous 
biological tissues [15, 29–32] and lipid membranes [33–42] 
(to cite just a few). Yet, to properly represent anisotropic 
deformation and rupture at the meso- or macro-scales, we 
believe that particle-based models (and, to some extent, 
models based on the network representation of [14–17]) are 
among the most suited. They allow for a simple representa-
tion of the surface entity and external objects. Also, multi-
ple contact/impact with the opening of localized holes on 
the surface (localized rupture) and material segregation are 
straightforward to characterize. They offer a good picture 
of the structure and dynamics of the rupture, yet requiring 
only simple descriptions of the entity’s underlying micro-
structure. They render rapid, reliable simulation tools with 
which both rate-dependent (e.g., impact-induced) and 
quasistatic rupturing are possible to be simulated. With 
such tools, membrane and thin film systems can be more 
thoroughly studied or tested without the need to resort to 
a great number of physical experiments. Physical experi-
ments can be expensive and time consuming, and the num-
ber of parameters that can be adjusted within feasible cost 
and time is very limited when compared to computational 
investigations.

The paper is organized as follows: in Sect. 2, we present 
a brief description of the equations that govern the dynam-
ics of particulate systems (with emphasis on the several 
types of mechanical forces that are needed to our model, 
and their possible representations); in Sect.  3 we explain 
how we model surface entities with a PBM description (this 
was done separately from Sect. 2 such that specific aspects 
could be addressed in more details); in Sect. 4 we introduce 
our numerical solution scheme to the system’s equations; 
in Sect. 5 we show examples of numerical simulations that 
were carried out in three model problems; and in Sect. 6 we 
conclude the paper with some remarks and ideas for future 
work.

Throughout the text, for the ease of expression, 
the generic term “membrane” will be used to refer 



1795J Braz. Soc. Mech. Sci. Eng. (2015) 37:1793–1809	

1 3

indistinguishably to structural fabrics, fibrous biological 
tissues or lipid membranes. Difference between these sur-
face entities will be made only where necessary.

2 � Dynamics of particulate systems

In this and the following sections, plain italic letters 
(a, b, …, α, β, …, A, B, …) will represent scalar quantities, 
whereas boldface italic ones (a, b, . . . ,α,β, . . . ,A,B, . . .) 
will denote vectors in a three-dimensional Euclidean space. 
The (standard) inner product of two such vectors u and  
v will be indicated by u · v, and the norm of a vector by 
�u� = √

u · u.
We assume that all particles are spherical and that they 

are small enough so that the effect of their rotations with 
respect to their center of mass is unimportant to their over-
all motion. Moreover, they are considered to be elastic and 
quasi-rigid, in the sense that they neither undergo perma-
nent nor large deformations when in contact with other par-
ticles. This means that they remain spherical and with con-
stant radius at all times. Effects of temperature changes and 
associated heat transfer are also considered to be irrelevant, 
although these can be easily incorporated, following for 
example the coupled, multifield scheme proposed in [43].

Let our system comprise Np particles, each one with 
known mass mi and known radius Ri. We denote the posi-
tion vector of particle i by ri, the velocity vector by vi and 
the acceleration vector by ai. According to Newton’s sec-
ond law, at every time instant t the following equation must 
hold for each particle:

where f toti  is the total force vector acting on the particle. 
This vector is made up of the sum of four force contribu-
tions as follows:

in which f envi  comprises the forces due to the environment 
acting on the particle (it represents the effects of the sur-
rounding media on the particle), fmemb

i  the forces due to 
membrane “in-plane” connections or interactions with 
other membrane particles (in case i is a particle of the 
membrane) (it represents the effects of weaving yarns in a 
structural fabric, or tissue fibers in a biological tissue, or 
intermolecular binding interactions in a lipid membrane), 
f coni  the forces due to mechanical contact or collisions with 
other particles (and/or with obstacles), and f frici  the forces 
due to friction that arise from these contacts or collisions.

For the forces due to the environment, we write

(1)miai = f toti ,

(2)f toti = f envi + fmemb
i + f coni + f frici ,

(3)f envi = mig+ f
pres
i + f

drag
i ,

where g is the external gravity field, and f presi  and f dragi  are 
the pressure and drag forces due to the surrounding fluid 
(e.g., air, water, aqueous solution, etc.). The pressure force 
is a given value or follows a given distribution, whereas 
the drag force is usually dependent on the particle’s veloc-
ity relative to the fluid (several expressions are possible 
depending on the characteristics of the flow, see e.g., [44]. 
Here, we adopt the following simple model, which consti-
tutes a source of damping for the system:

in which cenv is a damping parameter and venv is the (local) 
velocity of the surrounding fluid. This is a one-way kind 
of coupling between the fluid and the particle, in the sense 
that the fluid affects the particle but the particle does not 
affect the fluid. More elaborately, fully coupled models 
can be constructed if necessary (although this increases the 
complexity of the solution scheme, since it introduces the 
fluid velocity and pressure fields as additional variables). 
Other environmental forces may be considered in (3), such 
as electric forces due to external electric fields, magnetic 
forces due to external magnetic fields, etc. We will com-
ment briefly on this in Sect. 6.

For the forces due to membrane connections or interac-
tions with other membrane particles, we write

where Nconnec is the number of particles that are connected to 
particle i and fmemb

ij  is the (binary) connecting force that acts 
between particle i and particle j. This force has the general form

in which Kij is a scalar quantity dictating the intensity of 
the connection for the pair {i, j} and nij is the unit vector 
that points from the center of particle i to the center of par-
ticle j, i.e.,

(this vector will be from now on be referred to as the pair’s 
central direction). Scalar Kij can be modeled in a number 
of ways, depending on the characteristics of the membrane, 
such as by using one-dimensional constitutive equations, 
or by using a combination of attractive and repulsive force 
coefficients that are functions of the distance between the 
particles [43] (this can be understood as derived from a 
generalized Mie’s potential, of which the classical Len-
nard-Jones potential [45] is a type), by using surface energy 
arguments [46, 47], direct van de Waals effects, etc. In 

(4)f
drag
i = −cenv(vi − venv),

(5)fmemb
i =

Nconnec
∑

j=1

fmemb
ij ,

(6)fmemb
ij = Kijnij,

(7)nij =
rj − ri

∥

∥rj − ri
∥

∥
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Sect. 3, we present the model that we have devised for the 
purpose of this work, which is based on the presence of a 
spring–dashpot device connecting particles i and j.

For the forces due to contact and collisions with other 
particles, there exist two classes of models that may 
be invoked, namely the overlap-based model and the 
impulse-based model. The adoption of one or the other 
must be dictated by the type of contact/collision that is 
expected to happen between the particles in the system. 
The overlap-based model is better suited when the con-
tact involves relatively soft particles (yet rigid enough as 
to guarantee small contact deformations) and/or situations 
of enduring contact. In these cases, it is assumed that the 
contact force is a function of the amount of penetration 
(i.e., deformation) of the particles in contact, with the 
overlap between these particles considered as the mag-
nitude of the penetration. This means that the deforma-
tion has to be resolved, and some constitutive equation 
is thereby necessary. The assumption of no permanent 
deformations due to collisions, stated at the beginning 
of this section, enables us to use the Hertz’s elastic con-
tact theory (see [48]) to this end. Accordingly, based on 
Hertz’s solution, here we adopt the following expression 
for f conij :

where Nc is the number of particles that are in contact 
with particle i, f conij  is the (binary) contact force that acts 
between the contacting pair {i, j},

are the effective radius and the effective elasticity modulus 
of the contacting pair (in which Ei, Ej and νi, νj are the elas-
ticity modulus and the Poisson coefficient of particles i and 
j, respectively),

is the penetration (or overlap) between the pair in the pair’s 
central direction, δ̇ is the rate of this penetration (the super-
posed dot denotes differentiation with respect to time), and 
d is a damping constant that is introduced to allow for some 
energy dissipation. Figure  1 provides an illustration of a 
colliding pair.

The impulse-based model, on its turn, is better suited 
when the contact involves relatively stiff spheres that do 
not remain in contact after the collision has come to an end. 
In this case, the collision is an almost instantaneous (i.e., of 

(8)

f coni =
Nc
∑

j=1

f conij ,

f conij = 4

3

√
R∗E∗δ3/2nij + dδ̇nij (overlap-based model),

(9)R∗ = RiRj

Ri + Rj

and E∗ = EiEj

Ej(1− ν2i )+ Ei(1− ν2j )

(10)δ =
∥

∥ri − rj
∥

∥−
(

Ri + Rj

)

very small duration) event, and a simple balance of linear 
momentum before and after it is sufficient to compute the 
forces involved. Accordingly, we adopt here the following 
expression for these cases:

where Īn is the (averaged) impulsive force exerted by the 
colliding pair over each other in the pair’s central direction 
during the collision, obtained as shown in the “Appendix” 
and given by

Here, t* is the time instant at the beginning of the colli-
sion, δt is the duration of the collision,

are the components of particle i’s velocity in the pair’s cen-
tral direction immediately before and after the collision, 
and

is the (averaged) resultant force that act on particle i dur-
ing the collision in the pair’s central direction as a result 

(11)
f coni =

Nc
∑

j=1

f conij ,

f conij = Īnnij (impulse-based model),

(12)

Īn =
1

δt

∫ t∗+δt

t∗
In dt =

mi(vin(t
∗ + δt)− vin(t

∗))

δt
− f̄in.

(13)
vin(t

∗) = vi(t
∗) · nij and vin(t

∗ + δt) = vi(t
∗ + δt) · nij

(14)

f̄in =
1

δt

∫ t∗+δt

t∗
(f envi + fmemb

i +
∑

k �=j

f conik + f frici ) · nij dt

Fig. 1   Contact/collision between two particles
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of all other forces that act on i except for the pair’s con-
tact force itself. The post-collision velocity vin (t

* + δt) is 
computed from the coefficient of restitution of the colliding 
pair (see the “Appendix”), which must be known a priori. 
One important aspect in this model is that, when solving 
the system’s dynamics by a time discretization/integration 
scheme, one finds that the adopted time steps Δt are typi-
cally much larger than the collision duration. This requires 
one to “smear out” the contact forces over the whole time 
step, by multiplying them by a factor δt/Δt. Additionally, 
the value of δt is usually not known and must be arbitrarily 
chosen for the forces to be computed. A typical choice is 
δt = γΔt, with γ = 0.01 (normally, the model is insensitive 
to γ below 0.01, as demonstrated in [43]).

For the forces due to friction, which arise from the con-
tacts/collisions, we assume that the friction coefficients are 
small enough so that a continuous slide, with an opposing 
dynamic friction force, is to be expected during the entire 
contact/collision (see Fig.  1). By “continuous slide” we 
mean that there is no stick between the contacting pair. 
Although a stick–slip model can also be considered, it is 
unnecessary for the types of problems that we are con-
cerned with in this work. Thereby, here we write

(15)

f frici =
Nc
∑

j=1

f fricij ,

f fricij = µd

∥

∥

∥
f conij

∥

∥

∥
τ ij (continuous slide model),

where f fricij  is the (binary) friction force that acts between 
particle i and particle j, μd is the coefficient of dynamic 
friction for the colliding pair, and

is the tangential direction of the contact/collision, which is 
the direction of the tangential relative velocity, computed as 
above with

3 � Particle‑based membrane model

We idealize the membrane as a collection of particles form-
ing a bi-dimensional “sheet” or “layer”, in which each 
particle is connected to its immediate neighboring ones by 
means of fictitious spring–dashpots (SDs), as indicated in 
Fig. 2. Each SD provides an “in-plane” or “in-layer” mem-
brane force fmemb

ij  between particles i and j of the sheet, 
with fmemb

ij = −fmemb
ji , and is characterized by a stiffness 

constant kij, a damping constant cij and an initial length Lij
0.

If the membrane is a structural fabric, the SDs may 
be understood as elements representing the weft and 
warp yarns of the weave network, with the particles 
being lumped masses that provide thickness and inertia 
to the sheet. The diameter of the particles can be taken 
as the sheet’s thickness, and their masses as following a 

(16)τ ij =
vjt − vit

∥

∥vjt − vit
∥

∥

(17)
vit = vi − (vi · nij)nij
vjt = vj − (vj · nij)nij .

Fig. 2   Membrane model: 
the membrane is idealized as 
a “sheet” of interconnected 
particles

membrane 
(surface entity)

sheet of particles spring-dashpots (SDs) connecting 
neighboring particles
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consistent lumping from the sheet’s (known) total mass. 
If the membrane is a biological tissue, the SDs can be 
thought of as representing the fibers of the tissue. In this 
case, the arrangement of the particles within the layer may 
be constructed so as to reproduce any preferential orien-
tation of the tissue. The SDs’ stiffnesses may be consid-
ered with different values for each direction, according to 
this preferential orientation, whereas the diameter and the 
mass of the particles can be taken similarly as to structural 
fabrics. If the membrane is a lipid membrane, the SDs can 
be understood as fictitious entities representing the over-
all (average) effects of the intermolecular forces that are 
observed at the “micro”-scale between two neighboring 
lipid molecules. In this case, kij and cij are “homogenized” 
properties representing the short-range attractive/repulsive 
interactions between the polar headgroups and the hydro-
carbon chains of the neighboring lipids. This idealization 
was introduced by the author in the context of cell mem-
branes in a recent contribution [36, 37], and proved to 
work very well in capturing the overall dynamical behav-
ior of bi-lipid layers. In fact, the author believes that many 
of the physical properties of lipid membranes can be quali-
tatively described without the need to resort to detailed 
representations of the complex intermolecular interactions 
that are involved. In an analogy with gas–liquid phase 
interactions in thermodynamics, for example, the classical 
van der Waals equation of state contains no information on 
the characteristics and range of intermolecular forces, and 
yet renders a very satisfactory representation of the phase 
behavior.

With such a scheme, on each particle i of the membrane 
there act Nconnec in-layer membrane forces, corresponding 
to the Nconnec SDs that are connected to it. This allows us to 
write, for each of these particles:

where

is the elongation of the spring that connects the pair {i, j} 
and

are the central components of the pair’s velocities vi and vj, 
respectively. To allow for the connections to break (rupture) 
if the particles are pulled apart strongly enough, we provide 
each SD with a critical strain εcritij , that leads to a critical 
elongation ∆Lcritij . Once this critical value is reached, the 

(18)
fmemb
i =

Nconnec
∑

j=1

fmemb
ij ,

fmemb
ij = kij∆Lijnij − cij(vin − vjn)nij ,

(19)∆Lij =
∥

∥ri − rj
∥

∥− L0ij

(20)vin = vi · nij and vjn = vj · nij

corresponding SD is turned off, that is, it does not enter the 
summation in Eq. (18).

Multi-layered membranes can be constructed straight-
forwardly by piling single layers on top of each other, and 
then placing transverse (or “through-the-thickness”) addi-
tional SDs connecting each layer with its adjacent one(s). 
Also, in-layer shear-resistant membranes (e.g., membranes 
to which a matrix or a coating material provides an in-layer 
shear stiffness) can be modeled, by introducing in-plane 
cross-wise SDs. The cross-wise arrangement is simple yet 
consisted a way to enable the membrane an in-layer shear 
stiffness. This is of paramount importance in problems 
involving membrane shearing.

One important issue in such model is how to come up 
with proper values for the springs’ stiffnesses. In case of 
structural fabrics and biological tissues, they can be taken 
with minor difficulties from physical experimental tests. In 
case of lipid membranes, however, these tests are usually 
more intricate and time consuming (although possible, see 
e.g., [49, 50], and references therein). We suggest then that 
they be estimated from surface tension or surface energy 
arguments, since the value of the surface tension (or inter-
facial free energy per unit area) for lipid–aqueous inter-
faces is well documented in the literature. This is reported 
as being around 50  mJ/m2 for phospholipid monolayers. 
The interested reader on the physics of this topic is referred 
to [51] and the many works that followed, and also to the 
comprehensive work of [47].

One should notice that the approach proposed in this 
section, i.e., the use of spring–dashpots to represent mem-
brane connecting forces (i.e., “bonding”) between par-
ticles, can be used in a number of other problems when-
ever a pair-wise connection is to be established. The only 
requirement is that the SDs be judiciously placed according 
to the problem at hand, so as to capture the desired con-
nected or “bonded” motion of the corresponding particles. 
Also, since in the approach each individual connection is 
assumed to behave according to a one-dimensional con-
stitutive relation, more complex laws such as nonlin-
ear hyperelasticity with progressive damage and rupture 
(allowing for non-abrupt breaking), or elastoplasticity, can 
be straightforwardly incorporated. The approach also con-
stitutes a very simple way to implement pair-wise interac-
tions, since every connecting/bonding pair has to be explic-
itly declared.

Remark 1  The use of dashpots in this idealization allows 
us to capture “in-plane” or “in-layer” viscous effects in a 
very simple way. This is a very important feature in some 
applications, as for example in the impact of high-speed 
incoming objects, or in dynamic tearing. Also, the behav-
ior of extremely viscous materials such as lipid membranes 
becomes possible to be represented in a simple way.
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Remark 2  For the modeling of initially curved membranes, 
description of the initial geometry can be pursued in a num-
ber of ways, as for example: (1) by using analytical surface 
equations to assign positions to particles’ centers; (2) by 
using CAD tools to generate a (spline or related) surface and 
then points belonging to this surface which would be parti-
cles’ centers; (3) by using FEM surface meshes whose nodes 
would be taken as particles’ centers, etc. This latter strategy, 
in particular, is very appealing due to its versatility and to 
the fact that FEM mesh generators are within easy reach to 
almost anyone in the computational mechanics community.

Remark 3  It could be argued that the compressive 
response of membranes on its in-layer directions should be 
enforced to zero, as in the relaxed theory of perfectly elastic 
solids (see Pipkin [52] for early mathematical accounts on 
this theory). This is suggested by many authors when deal-
ing with continuum mechanics models for thin elastic mem-
branes. In these cases, Steigmann and co-workers [53, 54] 
have demonstrated that a necessary condition for the exist-
ence of energy minimizers is that the structural members 
carry no load in compression. While this assumption could 
be readily incorporated into our model [by enforcing kij = 0 
whenever ΔLij < 0 in Eq. (18)], here instead we have no rea-
sons nor need to neglect such effects. Indeed, one could go 
even further in our model and improve it by adopting differ-
ent values for the compressive and tensile stiffnesses of the 
connections. This can be useful for example in the modeling 
of some types of biological tissues, wherein a very dissimi-
lar response to tension and compression is known to exist 
and is believed to be the key to understanding their dynamic 
loading. Similarly, if cross-wise springs are used, differ-
ent values for their stiffnesses (when compared to the non-
cross-wise ones) can be considered.

4 � Time integration scheme for solution of the system’s 
dynamics

To resolve the system dynamics, we start by considering 
the acceleration vector of each particle, which may be com-
puted from Eq.  (1). This vector is related to the particle’s 
velocity by the time-continuous differential equation

Integration of this equation between time instants t and 
t + Δt, together with (1), furnishes

(21)
dvi

dt
= ai.

(22)vi(t +∆t) = vi(t)+
1

mi

∫ t+∆t

t

f toti dt .

The integral in (22) is difficult (if not impossible) to be 
evaluated analytically because of the intricate variation of 
f toti  with time. A numerical approximation is thus neces-
sary and here we adopt the following scheme, which cor-
responds to the use of a generalized trapezoidal rule:

with 0 ≤ φ ≤ 1. If φ = 0, the integration corresponds to an 
(explicit) forward Euler scheme; if φ = 1, to an (implicit) 
backward Euler one; and if φ = 0.5, to the (implicit) clas-
sical trapezoidal rule. By inserting (23) into (22), one has

On the other hand, the velocity vector of each particle is 
related to the particle’s position by the time-continuous dif-
ferential equation

This equation can also be integrated between t and 
t + Δt, yielding

The integral on the right side of (26) is also difficult to 
be evaluated analytically, and then we adopt the following 
approximation, similarly to what was done in (23):

By introducing (27) into (26), one arrives at

Expressions (24) and (28) constitute a set of equations 
for i = 1, …, Np particles, with which the velocity and posi-
tion vectors of each particle at t + Δt may be computed once 
vi(t) and ri(t) are known. This computation, however, cannot 
be performed directly, since (24) requires the evaluation of 
f toti (t +�t), which is in turn a function of all (!) unknown 
position and velocity vectors rj(t +�t) and vj(t +�t):

This fact means that all equations are strongly coupled, 
and a recursive solution is thereby necessary. We adopt 
here a fixed-point iterative scheme, whose main steps are 
as summarized in (30). The scheme is relatively easy to be 

(23)

∫ t+∆t

t

f toti dt ≈
[

φ f toti (t +∆t)+ (1− φ)f toti (t)
]

∆t ,

(24)

vi(t +�t) = vi(t)+
�t

mi

[

φ f toti (t +�t)+ (1− φ)f toti (t)
]

.

(25)
dri

dt
= vi.

(26)ri(t +�t) = ri(t)+
∫ t+�t

t

vidt.

(27)

∫ t+�t

t

vidt ≈ [φ vi(t +�t)+ (1− φ)vi(t)]�t.

(28)ri(t +�t) = ri(t)+ [φ vi(t +�t)+ (1− φ)vi(t)]�t.

(29)

f toti (t +�t) = f̂
tot

i

(

r1(t +�t), r2(t +�t), . . . , rNp (t +�t),

v1(t +�t), v2(t +�t), . . . , vNp (t +�t)
)

= f̂
tot

i

(

rj(t +�t), vj(t +�t)
)

, j = 1, 2, . . . ,Np.
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implemented and it is noteworthy that no system matrix is 
required. Moreover, adaptivity of the time step size can be 
straightforwardly incorporated. One can prove that such 
kinds of schemes are convergent by realizing that they 
involve a contraction mapping for all rK+1

i (t +�t) (K 
being the iteration counter). Details on this aspect can be 
found in [43, 55].

Remark 6  The imposition of “boundary conditions” is 
very straightforward in this sort of particle model. Actu-
ally, the terminology “boundary conditions” is employed 
indistinguishably to refer two types of constraints within 
the DEM context: (1) geometrical boundaries or limits on 
the spatial domain and (2) constraints on positions and/or 
velocities of some particles, i.e., fixed (a priori-imposed) 

(30)

GIVEN QUANTITIES: t = 0, �t = known, φ = known, ri(t), vi(t) = known;
(1) INITIALIZE TIME - STEP :

K = 0 (iteration counter)

rKi (t +�t) = ri(t), v
K
i (t +�t) = vi(t) (predictor)

(2) FOR i = 1,Np :


























f
tot,K+1
i (t +�t) = f toti

�

rKj (t +�t), vKj (t +�t)
�

vK+1
i (t +�t) = vi(t)+

�t

mi

�

φ f
tot,K+1
i (t +�t)+ (1− φ)f toti (t)

�

rK+1
i (t +�t) = ri(t)+

�

φ vK+1
i (t +�t)+ (1− φ)vi(t)

�

�t

(3) CHECK FOR CONVERGENCE:

compute error(r) and error(v)

IF (error(r) OR error(v) > TOL) ⇒ K = K + 1, GOTO (2) (iterate)

IF (error(r) AND error(v) ≤ TOL) ⇒ t = t +�t, GOTO (1) (move to next timestep)

Remark 4  According to (30), all velocities and posi-
tions seem to be updated only after one complete iteration. 
This would correspond to a Jacobi-type of scheme and is 
presented like so only for the sake of algebraic simplic-
ity. What we actually do in step (2) of the algorithm is: 
for each particle i, we compute f tot,K+1

i (t +�t) using the 
velocities and positions of the previous particles that have 
just been updated within the current iteration, that is, using 
vK+1
j (t +�t) and rK+1

j (t +�t), j =  1,  2,  …,  i −  1. For 
j ≥  i, the values of the previous iteration, i.e., vKj (t +�t) 
and rKj (t +�t), are used. This resembles a Gauss–Seidel 
scheme, which (as it is well known) converges at a faster 
rate than the Jacobi method, if the Jacobi method con-
verges, or diverges at a faster rate, if the Jacobi method 
diverges. For details on this subject, the reader is referred 
to [56].

Remark 5  The two error measures in step (3) of (30) are 
taken as normalized (nondimensional) measures, given, 
respectively, by

(31)

error(r) =
∑Np

i=1

∥

∥

∥
rK+1
i (t +�t)− rKi (t +�t)

∥

∥

∥

∑Np

i=1

∥

∥

∥
rK+1
i (t +�t)− ri(t)

∥

∥

∥

and

error(v) =
∑Np

i=1

∥

∥

∥
vK+1
i (t +�t)− vKi (t +�t)

∥

∥

∥

∑Np

i=1

∥

∥

∥
vK+1
i (t +�t)− vi(t)

∥

∥

∥

.

values of positions and/or velocities of particles through-
out the system dynamics. To enforce the first type, rigid 
walls can be defined on the domain boundaries. Accord-
ingly, any particle that shall approach these boundaries 
will eventually make contact with them and be bounced 
back to the interior of the domain. These contacts are 
resolved through either the overlap-based or the impulse-
based model of Sect.  2, with desired contact parameters. 
To enforce the second type, a list of particles whose posi-
tions and/or velocities are to remain fixed throughout the 
solution must be given as input data in the beginning of a 
simulation. In such case, whenever the loop over the par-
ticles [step (2) of (30)] reaches a particle with imposed 
conditions, the update of the corresponding component of 
position and/or velocity is bypassed and the loop moves 
to the next component or the next particle. Alternatively, 
fictitious springs with very high stiffnesses can be attached 
to the particles whose positions and/or velocities are to 
remain fixed. In this case, the springs must be provided 
in the direction(s) that the particles are to be constrained. 
For the imposition of velocities, the springs have to be 
connected to fictitious walls and then the desired veloc-
ity is applied to the wall. The two strategies are equivalent 
provided that the fictitious springs of the second are stiff 
enough (the first, however, is clearly computationally more 
efficient). In this work, both have been implemented and 
utilized in the examples of the next section. The results are 
nearly indistinguishable.
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5 � Numerical simulations

In this section, we provide examples of numerical simula-
tions to show how the presented framework can be used 
to study the deformation and rupture of membranes. We 
remark that it is not our intention here to provide “well-
tuned” (calibrated) values for the parameters of our model, 
but instead just to show how the model works from a gen-
eral perspective (calibration is left as a matter of separate 
research). We consider three different model problems 
for this purpose: (1) a projectile impacting a square piece 
of structural fabric; (2) the dynamic shearing of a square 
membrane; and (3) a jet of nanoparticles being shot at a 
lipid bi-layer. In the first problem, all particles are assumed 
to be relatively stiff so that the impulse-based collision 
scheme (Eqs. 11–14) is used; in the second and third prob-
lems, softer particles are present and thus the overlap-based 
collision scheme (Eqs. 8–10) is adopted.

A few comments are needed w.r.t. the parameters used 
in both collision models. For the overlap-based scheme, the 
damping constant d of Eq.  (8) is taken here following the 
ideas of [57], which means

wherein ξ is the damping rate of the collision, which must 
be specified, and m* is the effective mass of the colliding 
pair, i.e.,

The damping rate ξ enables one to enforce the type of 
energy dissipation that shall occur during the collision in 
the pair’s central direction. If the colliding pair is seen as 
one-dimensional spring–dashpot system (SDS) of mass m* 
and damping rate ξ, its dynamics can be fully controlled 
by specifying appropriate ξs. Recalling the solution to a 
vibration problem of a 1-D SDS, it follows that: (1) when 
ξ =  0, no damping exists and the collision is a perfectly 
elastic, energy-conserving one (undamped SDS); (2) when 
0  <  ξ  <  1, small-to-moderate damping exists and conse-
quently energy dissipation occurs at small-to-moderate 
rates (underdamped SDS); (3) when ξ = 1, strong damping 
exists and thus rapid energy dissipation is observed (criti-
cally damped SDS); and (4) when ξ > 1, very strong damp-
ing with rapid dissipation is observed (overdamped SDS). 
Equation (32) is a generalization of the ideas proposed by 
Cundall and Strack [4], wherein only critically damped col-
lisions were considered.

The overlap-based model requires that the collisions be 
resolved with small time-steps, such that both δ and δ̇ be 
accurately computed. Here, we select Δt so as to ensure at 
least ten time steps per collision, estimating the duration of 

(32)d = 2ξ

√

2
√
R∗E∗m∗δ1/4,

(33)m∗ = mimj

mi + mj

.

a typical collision by means of the Hertz’s formula for elas-
tic collisions [48], which means

where vrel is the relative velocity of the colliding pair in the 
pair’s central direction at the beginning of the collision. 
The natural frequencies of the membrane springs, given 
approximately by 

√

kij/m∗, must also be checked against 
(34), in order to avoid poor capturing of the springs vibra-
tions. These considerations lead invariably to small time-
step sizes, which implies that the explicit version (φ = 0) 
of our time integration scheme is preferred for this cases 
(an implicit integration would be highly inefficient since it 
would perform iterations no matter how small or big Δt is).

For the impulse-based scheme, in its turn, we adopt 
δt  =  0.01Δt for the collisions’ durations, and use the 
implicit version of the integration scheme, with φ =  0.5 
and Δt dictated solely by the natural frequencies of the 
membrane springs.

5.1 � Projectile impacting a structural fabric

A spherical projectile of radius Rproj = 1.25 mm is shot at 
a flat, mono-layer piece of structural fabric of side dimen-
sions 1.5  ×  1.5  cm2 and thickness 0.8  mm, as depicted 
in Fig. 3. The fabric is held fixed at its four edges and is 
pre-stretched on both directions before the projectile is 
shot, with initial strains ε0x = ε0y =  11 %. It is idealized 
as a single layer of particles arranged in a regular pattern 
with no cross-wise springs, similar to what was shown in 
Fig.  2. Two different shots are considered: one for which 
vproj =  100  m/s, and another for which vproj =  300  m/s. 
Other data are as follows:

•	 Mass density of the projectile: ρproj = 2,500 kg/m3;
•	 Mass density of the fabric: ρfabr = 2,000 kg/m3

(34)duration ∼= 2.87

(

m
∗

R∗(E∗)2vrel

)1/5

⇒ �t ≤ duration

10
,

1.5 cm

1.5 cm

vproj

0.8 mm

Fig. 3   Projectile impacting a structural fabric
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•	 Radius of the fabric particles: Rfabr = 0.4 mm;
•	 Initial distance between centers of neighboring fabric 

particles on both x and y directions: 1 mm;
•	 Stiffness constant for the fabric springs: 

kij = 2.5 × 104 N/m;
•	 Dashpot constant for the fabric dashpots: 

cij = 0.00015 Ns/m;
•	 Critical strain for fabric rupture: εcritij   = 15 %;
•	 Coefficient of restitution for impulse-based collisions: 

e = 0.9;
•	 Coefficient of dynamic friction: μd = 0.1;
•	 Environment drag force parameters: 

cenv = 0.00005 Ns/m and venv = o;
•	 Gravity and fluid pressure forces are neglected (g = o 

and f presi = o);
•	 Time step size: Δt = 5 × 10−8 s;
•	 Final time at the end of the simulation: tfinal = 0.001 s.

Figures  4 and 5 depict a sequence of snapshots, 
at selected time instants, of deformed configurations 
obtained in the simulations for the cases of vproj = 100 and 
300 m/s, respectively. Therein one can see the progression 
of the fabric deformation with the impact of the projec-
tile. Notice that the fabric was able to endure the impact 
without experiencing any damage in the case where 
vproj =  100  m/s. Moreover, after the projectile’s energy 
was absorbed (and partly dissipated), the fabric recovered 
its initial shape while the projectile rebounded backwards 
with a lower velocity (~48 m/s) as compared to its origi-
nal shooting speed. For the case in which vproj = 300 m/s, 
the projectile broke the SDs and fully penetrated the fab-
ric, emerging at its opposite face with vproj  =  238  m/s 
(some energy is thus absorbed by the fabric in this case). 

It should be noticed how the proposed framework is capa-
ble of handling multiple contact/impact with the opening 
of localized “holes” on the fabric, through which incom-
ing objects are occasionally able to pass. This would be 
very difficult to resolve using other approaches, e.g., con-
tinuum (instead of discrete) theories and their accompa-
nying spatial discretizations. Parametric studies, varying 
the projectile’s velocity, mass and diameter, and also the 
fabric’s thickness and stiffnesses, could be readily con-
ducted with these types of computational simulation. This 
can be very useful in the optimum design of fabrics and 
projectiles.

5.2 � Dynamic shearing of a square membrane

A squared flat membrane of side dimensions 4.0 × 4.0 cm2 
and thickness 0.8  mm has two of its opposite edges 
mounted into rigid walls, the other two being fully unre-
strained as indicated in Fig.  6. One of the walls is held 
still while the other is given a lateral constant velocity 
vwall = 50.0 m/s, causing the membrane to undergo an in-
plane (dynamic) shearing deformation. Before motion is set 
forth, the membrane is pre-stretched in the direction per-
pendicular to vwall, with an initial strain of ε0y = 2.0 %. A 
regular pattern of particles is adopted to represent the mem-
brane, using both rectangular-gridded and cross-wised SDs 
to connect the particles.

Other data are as follows:

•	 Mass density of the membrane: ρmembr = 2,000 kg/m3;
•	 Radius of the membrane particles: Rmembr = 0.4 mm;
•	 Distance between centers of neighboring particles on 

both x and y directions: 1 mm;

100 m/st = 0.00012 s t = 0.00015 s t = 0.00018 s

t = 0.00026 s t = 0.00033 s t = 0.00040 s
48 m/s

Fig. 4   Projectile impacting a structural fabric. Simulations results for shot of 100 m/s
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•	 SD constants (rectangular grid): krecij  = 20 N/m and 
crecij  = 0.00002 Ns/m;

•	 SD constants (cross-wise): kcwij  = 0.5 N/m and 
ccwij  = 0.00012 Ns/m;

•	 Critical strain for membrane rupture (for all SDs): 
εcritij  = 25 %;

•	 Elastic properties of membrane particles (needed for 
overlap-based collisions): E = 1.0 × 106 N/m2 and 
ν = 0.25;

•	 Damping rate for overlap-based collisions: ξ = 0.1;

•	 Coefficient of dynamic friction: μd = 0.1;
•	 Environment drag force parameters: 

cenv = 0.00002 Ns/m and venv = o;
•	 Gravity and fluid pressure forces are neglected (g = o 

and f presi = o);
•	 Time step size: Δt = 5 × 10−6 s;
•	 Final time at the end of the simulation: tfinal = 0.0004 s.

Figure 7 depicts snapshots of deformed configurations (at 
arbitrary time instants) that were obtained in the simulation. 
One can notice the severe shearing experienced by the mem-
brane, which (as expected) is accompanied by tensile and 
compressive strains in the directions of the membrane’s diag-
onals. At the end of the simulation, the total lateral displace-
ment imposed by the moving wall was ΔLx = 2.0 cm. No 
rupture was observed in this case. Also, no out-of-plane dis-
placements (corresponding to the formation of wrinkles due 
to localized compressive stresses) were seen. This is because 
transverse loadings or imperfections were not introduced in 
the problem. The modeling of wrinkles within the frame-
work that is proposed here is a matter of current research by 
the author and will be presented in a forthcoming work.

5.3 � Jet of nanoparticles impinging a lipid bi‑layer

Lipid bi-layers consist of an assembly of lipid molecules 
organized into membrane-like (i.e., bi-dimensional) two-
layered structures due to amphiphilic effects (the phosphoric 

300 m/st = 0.000034 s t = 0.000038 s t = 0.000044 s

t = 0.000054 s t = 0.000062 s t = 0.000090 s

238 m/s

Fig. 5   Projectile impacting a structural fabric. Simulations results for shot of 300 m/s

WALL

WALL

vwall = 50 m/s

4.0 cm

4.0 cm

thickness = 0.8 mm

x

y

Fig. 6   Dynamic shearing of a square membrane
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headgroups of the lipids are hydrophilic, the hydrocarbon 
chains are hydrophobic). The forces that held these mole-
cules together arise from weaker van der Waals, hydrophobic 
and hydrogen-bonding interactions, providing the structure 
a very soft, flexible (almost fluid-like) behavior, and yet, a 
good response to both stretching and bending deformations. 
In this example, we consider the shooting of a lipid bi-layer 
by a jet of nanoparticles at a high incoming velocity. We ide-
alize each lipid of a layer as a spherical particle (correspond-
ing to the lipid phosphoric headgroup) that is bonded to its 
neighboring ones of the same layer by means of in-plane 
(rectangular-gridded) SDs. The “piled layers” scheme that 
was mentioned in Sect. 3 is then invoked to form the bi-layer, 
whereby transverse (through-the-thickness) SDs are used to 
connect the two layers together. Within this setting, a square 
bi-layer of side dimensions 39.0 × 39.0 nm2 and thickness 
5.0 nm is considered, the diameter of its lipid particles being 
taken as φlipid =  2.5  nm. Its four edges are assumed to be 
fixed. A jet of particles, each with diameter φjet = 1.25 nm 
and velocity vjet = 100 m/s, is shot at the bi-layer. The prob-
lem is as illustrated in Fig. 8 (all dimensions shown are from 
center to center of particles).

We assume that there exists a pressure gradient from the 
bottom to the top sides of the bi-layer, which leads to an 
upward pressure force f presi = f

p
i νi on each particle of the 

lower layer (here, fi
p is the intensity of the force and νi is the 

local normal direction at particle i of the lower layer, point-
ing upwards). Direction νi is computed for each particle of 
the lower layer by taking successive cross-products involving 
the particle’s position vector ri and its immediate neighboring 
ones ri−1 and ri+1 of the same layer, and then normalizing the 
result. The pressure force is a live load, in the sense that it 
changes its direction as the bi-layer deforms due to the impact 
of the jet, and therefore each local direction νi has to be rec-
omputed at every iteration and new time step. The intensity 
fi
p, however, is kept here as constant for the sake of simplicity. 
We assume that the jet particles do not experience any pres-
sure forces (but do experience drag, whose intensity is shown 
below). The other data for the problem are as follows:

•	 Mass density of the jet particles = 1,800 kg/
m3 = 1.8 × 10−6 fg/nm3;

•	 Mass density of the bi-layer = 900 kg/
m3 = 9 × 10−7 fg/nm3;

t = 0.00003 s t = 0.00007 s t = 0.00010 s

t = 0.00016 s

2.0 cm

t = 0.00040 s

Fig. 7   Dynamic shearing of a square membrane: simulation results (sequence is from left to right, top to down)
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•	 Spring constant for the SDs: kij = 4 × 10−3 nN/nm;
•	 Dashpot constant for SDs: cij = 0.00001 nN ns/nm;
•	 Critical strain for springs rupture: εcrit = 0.5;
•	 Elastic properties of jet and lipid particles (needed for 

overlap-based collisions): Ejet  =  Elipid  =  100  nN/nm2 
and νjet = νlipid = 0.25;

•	 Damping rate for overlap-based collisions: ξ = 0.1;
•	 Coefficient of dynamic friction: μd = 0.1;
•	 Pressure gradient force magnitude: fi

p = 6.5 × 10−6 nN;
•	 Drag force parameters: cenv = 0.000005 nN ns/nm and 

venv = o;
•	 Gravity is neglected (g = o);
•	 Time step size = 0.0002 ns;
•	 Final time at the end of the simulation = 5 ns.

Figure  9 depicts a sequence of deformed configura-
tions obtained in the analysis. Therein one can see the 
gradual penetration of several particles of the jet. At the 
end of the simulation, 156 jet particles (from a total of 
200) were observed to have penetrated the bi-layer. This 
lead to a “delivery” rate (defined as the ratio of the num-
ber of jet particles that penetrated to the total number of 
jet particles) of 78 %. Interestingly, a few particles ended 

trapped between the two layers, what could be a desired 
effect in some applications. Notice that the bi-layer was 
able to endure the impact of the jet without experiencing 
any damage in this case. Moreover, after the jet energy was 
absorbed (and partly dissipated), the bi-layer recovered its 
initial shape while enclosing the “delivered” particles under 
its bottom surface. Once more, it can be seen that the pro-
posed framework is able to handle multiple contact/impact 
with the opening of localized “holes” on the membrane, 
through which incoming particles are occasionally able to 
pass. We again emphasize that this would be very difficult 
to resolve using other approaches (e.g., continuum theories 
and their accompanying spatial discretization).

For more detailed aspects about lipid membranes and 
their behavior, the reader is referred to the works of [40, 
47], and the many references therein.

6 � Closing remarks and future work

The main purpose of this work was to present a sim-
ple computational framework for the simulation of rup-
ture on membranes and thin films. It is grounded on a 

39 nm
39 nm

vjet = 100 m/s

5 nm

61.25 nm

5 nm

side view:

39 nm

lipid
= 2.5 nm

jet

φ

φ

Fig. 8   Jet of nanoparticles impinging a lipid bi-layer
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Fig. 9   Jet of nanoparticles impinging a lipid bi-layer: simulation results (sequence is from left to right, top to down)
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particle-based (discrete element) method and can be 
numerically implemented with small effort by researchers 
interested in these problems. The main advantages of such 
an approach are that (1) both quasistatic and dynamic rup-
ture can be satisfactorily represented with only very simple 
descriptions of the underlying microstructure of the mem-
brane or thin film, and (2) such different systems as struc-
tural fabrics, thin biological tissues and lipid membranes 
can be modeled under the same general framework. Multi-
ple contact/impact with localized rupture is straightforward 
to characterize.

We remark that the purpose here was simply to show 
how the approach works from a general perspective. Evi-
dently, for specific applications, more specific features 
need to be incorporated, and better values for its numerical 
parameters need to be considered (e.g., calibrated against 
experimental data). One can render, for example, the pres-
ence of electric charges relevant to a certain problem and 
then incorporate electrostatic forces of the type of Coulom-
bic interactions, by adding the term

to the particle’s total force vector (in this case, qi and qj are 
the electric charges of particles i and j and ε is the permit-
tivity). Likewise, the presence of external electric and/or 
magnetic fields may be considered, by taking them as envi-
ronmental effects and adding the contributions qiE (E = 
electric field) and qivi × B (B = magnetic field) to the par-
ticles’ environment force vector. These fields can be used to 
temporarily modify the membrane’s mechanical response 
such that stretching and/or compressing is facilitated or 
hindered.

In general, coupled multifield approaches are neces-
sary to more realistically simulate complex membrane 
problems. For example, the deformation response of the 
membrane can be dependent on the local temperature T. 
One can take this into account within our framework by 
assuming kij = k̂(�Lij, Tij) for the springs, wherein the 
evolution of Tij is described by a corresponding differential 
equation that must also be resolved in the time integration 
scheme. Or, the rupture response can be dependent on the 
accumulated local damage (instead of the abrupt rupture 
as assumed here), what can be accounted for by coupling 
a one-dimensional damage model to the expression of the 
spring force. This can encompass the use of a scalar dam-
age variable α, 0 ≤ α ≤ 1, such that for a totally undam-
aged spring one has α = 1, whereas for a totally damaged 
one α = 0. The evolution of α with respect to the spring’s 
elongation has to be described by some given law (one 
possible simple representation is as proposed by [15] for 
fibrous biological tissues).

(35)f eleci =
Np
∑

j=1,j �=i

qiqj

4πε
∥

∥ri − rj
∥

∥

2
nij

As further steps to the use of the framework proposed 
here, one may attempt to (1) post-process detailed statis-
tical information on simulation results (define figures of 
merit for the problem at hand and compute their various 
moments); (2) develop more ad hoc constitutive laws for 
the spring forces, and (3) devise a coupled (multifield) time 
integration scheme to account for the above-mentioned 
thermal and damage effects, and also to allow for a more 
realistic representation of the surrounding fluid (fully cou-
pled fluid-particle interaction). We believe that particle-
based models can be a very useful approach to study the 
rupture of membranes and thin films.
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Appendix

For two colliding particles i and j, a balance of linear 
momentum in the particles’ central direction relating the 
states immediately before (time instant t*) and after (time 
instant t* + δt) impact renders

in which subscript n denotes component in the direction of 
nij [see Eq. (13)] and f i and f j are, respectively, the sum of 
all forces that act on particle i and particle j during the col-
lision except for the pair’s contact force itself, i.e.,

We can write such a balance for each isolated particle as 
well, what for particle i leads to

where the second integral on the left side of the equa-
tion amounts to the total impulse that particle i receives 
from particle j due to impact in the pair’s central direc-
tion. The collision event can be decomposed into a com-
pression and a recovery phase, with corresponding dura-
tions δt1 and δt2, respectively, such that δt = δt1 + δt2. In 

(36)

mivin(t
∗)+ mjvjn(t

∗)+
∫ t∗+δt

t∗
f i · nij dt +

∫ t∗+δt

t∗
f j · nij dt

= mivin(t
∗ + δt)+ mjvjn(t

∗ + δt) ,

(37)

f i = f envi + fmemb
i +

∑

k �=j

f conik + f frici and

f j = f envj + fmemb
j +

∑

k �=i

f conjk + f fricj .

(38)mivin(t
∗)+

∫ t∗+δt

t∗
f i · nij dt +

∫ t∗+δt

t∗
In dt = mivin(t

∗ + δt),
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the instant of transition from one phase to the other (i.e., 
instant t* + δt1), the relative velocity of the particles in the 
direction of nij turns to zero, meaning that the pair attains 
a common velocity vcn in this direction. Accordingly, Eq. 
(38) can be decomposed into each one of these phases, 
yielding

for the compression phase and

for the recovery phase. Similarly, for particle j one writes

and

Equations (39) and (40), or equivalently, (41) and (42), 
provide a means to compute the impulses that each parti-
cle receives from the other in the compression and recov-
ery phases in the pair’s central direction. The ratio between 
these impulses is the coefficient of restitution e of the col-
liding pair, which is a specified (given) quantity:

By inserting (39) and (40) [or equivalently, (41) and 
(42)] into (43), one arrives at

where

are the impulses due to f j and f j in the pair’s central direc-
tion during the recovery and compressive phases. Since vcn 
is present on both forms of (44), it can be eliminated, lead-
ing to

(39)
mivin(t

∗)+
∫ t∗+δt1

t∗
f i · nij dt +

∫ t∗+δt1

t∗
In dt = mivcn

(40)

mivcn +
∫ t∗+δt

t∗+δt1

f i · nij dt +
∫ t∗+δt

t∗+δt1

In dt = mivin(t
∗ + δt)

(41)
mjvjn(t

∗)+
∫ t∗+δt1

t∗
f i · nij dt −

∫ t∗+δt1

t∗
In dt = mjvcn

(42)

mjvcn +
∫ t∗+δt

t∗+δt1

f i · nij dt −
∫ t∗+δt

t∗+δt1

In dt = mjvjn(t
∗ + δt).

(43)e =
∫ t∗+δt

t∗+δt1
In dt

∫ t∗+δt1
t∗ In dt

.

(44)

e =
mi(vin(t

∗ + δt)− vcn)− I recfi

mi(vcn − vin(t∗))− I
comp

fi

=
−mj

(

vjn(t
∗ + δt)− vcv

)

+ I recfj

−mj

(

vcn − vjn(t∗)
)

+ I
comp

fj

,

(45)

I recfi
=

∫ t∗+δt

t∗+δt1

f i · nij dt , I
comp
fi

=
∫ t∗+δt1

t∗
f i · nij dt ,

I recfj
=

∫ t∗+δt

t∗+δt1

f i · nij dt and I
comp
fj

=
∫ t∗+δt1

t∗
f i · nij dt

in which

Equation (46) furnishes an expression for vjn(t
* +  δt), 

which can in turn be inserted into the pair’s Eq. (36). By 
doing so, and considering the definition of the (averaged) 
resultant force that acts on particle i during the collision 
given by Eq.  (14), and the equivalent definition for the 
(averaged) resultant force that acts on particle j, the follow-
ing result is attained

Once vin (t
* + δt) is known, one can subsequently obtain 

vjn (t
* + δt) via Eq. (46). Finally, having the post-collision 

velocities, the total impulse that particle i receives from 
particle j due to impact in the pair’s central direction can be 
computed with the aid of Eq. (38) (or its equivalent coun-
terpart for particle j), yielding

which leads to the (averaged) impulsive force given by 
Eq. (12).
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