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accuracy level achieved, depending on the parameters 
chosen for the snapshots generation and the execution 
time reduction obtained.

Keywords  Reduced order · Galerkin projection · POD · 
CFD

1  Introduction

Computational methods have become a common practice 
in engineering design. Despite this notably widespread 
utilization, complex models, which require more compu-
tational power than is available, will probably ever exist, 
even with the strong increase of processors speed. Com-
putational fluid dynamics (CFD) usually requires mil-
lions of degrees of freedom to obtain an accurate answer, 
which, as a result, restricts the technique for selected cases, 
also meaning it cannot be used in optimization studies or 
even for analyzes that require several evaluations in differ-
ent situations. In this context, the Reduced Order Model 
(ROM) can play a crucial role, allowing a drastic reduc-
tion of the computational effort to evaluate new scenarios 
based on a selected group of pre-evaluated conditions. The 
ROM consists of the construction of a simpler model that 
can describe a complex one with the required accuracy. 
Mathematically speaking, this implies reducing the num-
ber of variables to be solved, and consequently the com-
putational demands as well. Such reduced models may be 
based either on physical simplifications or on “black-box” 
models in which the relation between input and output data 
is established (e.g. neural networks). The ROM proposed 
herein relies on a sophisticated fashion of the physical sim-
plification, based on a flow modal analysis. The develop-
ment of this framework starts with the flow modes being 
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found through proper orthogonal decomposition (POD) 
[1] extracted from a selected group of Full Order Model 
(FOM) solutions. After that, the Navier–Stokes equations 
are projected on the most energetic modes, resulting on an 
ordinary differential equation for the modes temporal coef-
ficients as a substitute for the original partial differential 
equations system [1–3]. In general, the number of modes 
required to represent a significant amount of the energy for 
many fluid flows is dramatically lower than the number of 
degrees of freedom (mesh nodes) in a CFD analysis. This 
results on a system of equations that can be solved with 
reasonable accuracy and orders of magnitude faster than 
a full order model. The construction of such model still 
requires significant computational effort during an offline 
stage for snapshots collection.

The principle of the method is rather simple, but there 
are serious consequences in leaving the less energetic 
modes behind. Despite their lower energy, they often have 
an important role in terms of energy dissipation and this 
may cause the ROM model to become unstable, requiring 
stabilization strategies [4–7] that, in the case of fluid flows, 
would often act like turbulence closure modes [8]. As for 
strong nonlinear problems, another important aspect to be 
considered is that the internal products from the projec-
tions operations must be frequently updated, which entails 
significant computational costs and reduces the ROM gain 
with respect to the FOM [12]. Several techniques have been 
developed to overcome this limitation, such as DEIM [9] 
(Discrete Empirical Interpolation Method), DBPIM [10] 
(Discrete Best Point Interpolation Method), MPE [11] 
(Missing Point Estimation), GNAT [12] (Gauss–Newton 
Approximated Tensor quantities) and some combinations 
between these methods [13].

The utilization of ROM with different strategies has been 
already investigated for several classes of flow problems. 
The method is rather popular for aerodynamics [14–16], 
including aeroelasticity [17] and rigid body motion [18] 
problems. Considering the potential development of much 
faster fluid flow simulations, the flow control applications 
are also a common drive for ROM development [19–21]. 
Some basic flows were also investigated using ROM such 
as the flow around a 2D squared [22] or circular [23] cylin-
der, the flow in lid-driven cavities [23, 24] and around a 3D 
circular cylinder [25]. More specific applications such as 
shallow water flows can also be found in the literature [26].

This paper illustrates the application of the classical 
Galerkin-ROM technique combined with POD, and presents, 
firstly, the snapshot matrix structure adopted for POD, then 
the Galerkin projection and its application in three exam-
ples of increasing complexity: beginning with the linear heat 
equation in a one-dimensional domain, then the one-dimen-
sional Burgers’ equation and, finally, the incompressible 

Navier–Stokes equation in a two-dimensional domain for a 
backward-facing step flow. The last example is analyzed for 
different Reynolds numbers and the influence of the snap-
shots choice on the ROM’s numerical errors. The remain-
der of the paper is organized as follows. The second section 
of this paper reviews the main POD ideas and includes an 
image compression example. Section  3 presents the Galer-
kin-ROM construction and examples and the last section 
offers a summary of main conclusions.

2 � Proper orthogonal decomposition (POD)

Proper orthogonal decomposition [1] is essentially a linear 
procedure that takes a given collection of input data and 
creates an orthogonal basis constituted by functions esti-
mated as the solutions of an integral eigenvalue problem 
called a Fredholm equation. By definition, these eigenfunc-
tions are characteristic of the most probable realizations 
of the input data, being also possible to show that they are 
optimal in terms of the energy representation within the 
data [27]. With the primary purpose of investigating the 
so-called Coherent Structures, Lumley introduced the POD 
method for turbulence in 1967 [28]. The POD can be con-
sidered as a natural idea to replace the usual Fourier decom-
position in nonhomogeneous directions [1]. The POD 
method was independently presented for different purposes 
by several scientists, in particular by Kosambi [29], Loève 
[30], Karhunen [31], Pougashev [32] and Obukhov [33]. 
For this reason, the technique is known by a wide variety of 
names such as Karhunen-Loève decomposition or expan-
sion, Principal Component Analysis [34] and Hotelling 
Analysis [35]. With respect to the field of application, POD 
was used not only for fluid flow, but also for several appli-
cations such as random variables, image processing, signal 
analysis and data compression. More recently, certain strat-
egies, such as PGD [36] (proper general decomposition), 
aimed at enabling faster mode extraction have been devel-
oped, but this paper will focus on the classical POD. Even 
without the generation of a POD-based ROM, the informa-
tion obtained by POD may be helpful to investigate some 
fluid flows [37].

2.1 � Description of the POD derivation

As described in several references [1] [38] [23] and herein 
reproduced, the POD can be interpreted as a procedure for 
extracting spatial basis functions from data that are depend-
ent on both time and space. Consider a set of discrete 
snapshots of a transient function fluctuation u(x, t), where 
x are the spatial coordinates and t is time, represented by 
u(x, ti) for i =  1,…, M. The observations are assumed to 
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form a linear, finite-dimensional Hilbert space L2 in a spa-
tial domain D. The basis functions (or modes) 

{

ψk(x)
}

 are 
computed such that the reconstruction,

where
 

is optimum in the sense that the average least-square 
truncation error,

is a minimum for any given number m  ≤  M. Herein 
� · � denotes the L2—norm given by �f � = �f , f �1/ 2,  
where 〈 , 〉 denotes the Euclidean inner product and 

f =
∑M

j=1 f
(

x, tj
)/

M is the ensemble average. This optimi-

zation problem is equivalent to the eigenvalue problem [1]

which is a homogeneous Fredholm integral equation of the 
second kind. Then, the optimal basis functions can be cal-
culated as the eigenfunctions of the previous equation ker-
nel. In the finite dimensional case the modes 

{

ψk(x)
}

 and 
their eigenvalues �i = σ 2

i  can be computed from the singu-
lar value decomposition (SVD) or eigenvalue decomposi-
tion (EVD) [39] from the snapshots matrix

(2.1)u(x, ti) =

M
∑

k=1

αk(ti)ψk(x), i = 1 , . . . , M;

(2.2)U(x, ti) = U+ u(x, ti)

(2.3)εm =

∥

∥

∥

∥

∥

u(x, ti)−

m
∑

k=1

αk(ti)ψk(x)

∥

∥

∥

∥

∥

2

(2.4)

∫

D

u(x)u∗(y)ψ(y)dy = �ψ(x)

The last option is especially suitable for CFD data, 
where the spatial resolution is usually much higher than the 
temporal resolution, leading to a low cost eigenvalue prob-
lem when compared to the CFD nonlinear solver. However, 
the method is not restricted to simulation data and may 
be used for experimental measurements as well, includ-
ing images from an experiment [41]. This approach is also 
known as Method of Snapshots [42–44]. In order to quan-
tify the number of modes necessary to represent the infor-
mation stored in a dataset, it is worth defining the relative 
information content (RIC) by

When the snapshots consist of fluid flow velocities, it is 
possible to show that the RIC has a direct relationship with 
the fluid kinetic energy [1].

2.2 � Example of image processing by SVD

The use of SVD for image processing is an example com-
monly explored in ROM presentations. Consider an image 
stored in the RGB format, where each pixel has values 
of Red, Green and Blue scales, which are going to be the 
data to be reduced. The RGB data will be treated like three 
velocity components u, v and w. Appling the SVD to the 
image data (through a Matlab® routine), it is possible to 
evaluate the singular values σi and the RIC. The results 
are shown in Fig.  1, where it is possible to identify the 
decay of the singular values together with the accumulated 

(2.9)
RIC(m) =

m
∑

i=1

σi

M
∑

i=1

σi

(2.5)S =











u(x, t1)

u(x, t2)
...

u(x, tM)











=











u(x1, t1) v(x1, t1) u(x2, t1) v(x2, t1)

u(x1, t2) v(x1, t2) u(x2, t2) v(x2, t2)
...

...
...

...

u(x1, tM) v(x1, tM) u(x2, tM) v(x2, tM)

· · · u(xN , t1) v(xN , t1)

· · · u(xN , t2) v(xN , t2)

. . .
...

...

· · · u(xN , tM) v(xN , tM)











using three alternatives, depending on the spatial resolution 
(number of nodes N) and the temporal resolution (number 
of snapshots M) [40]:

•	

•	

•	

(2.6)SVD for S ∈ RNxM : Sφi = σi ψi

(2.7)

EVD for S ST ∈ RNxN : SSTψi = �i ψi if N ≪ M

(2.8)

EVD for S
T
S ∈ R

MxM :

S
T
Sφi = �i φi and ψi = σ−1

i
Sφi ifM ≪ N

information stored depending on the number of modes 
considered.

The information extracted from the SVD can then be 
used to build a representation of the same image with 
reduced data, as presented in Fig. 2. The figure shows the 
representation of 50, 75 and 99 % of RIC, which requires 
3, 15 and 255 modes respectively. This analysis encour-
ages the investigation of fluid flows in order to verify 
whether these can be represented by a reduced amount 
of data, as described in the next section. After that, the 
governing equations can be solved only for the dominant 
modes.
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3 � Reduced order model (ROM)

The POD has the ability to reveal the most relevant modes 
taking into account a group of FOM solutions and a desired 
level of information (energy) representation. In order to 
derive a ROM with this information, different strategies 
may be used [16]. The Galerkin projection is a common 
approach [1] and can be carried out either directly on the 
discretized system, which has to be solved by the numerical 

Fig. 1   Singular values (σ) and 
relative information content 
(RIC) for an image
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Fig. 2   Representation of a 
little beautiful girl image with 
reduced set of data

ORIGINAL

100 200 300 400

50

100

150

200

250

300

RIC= 0.5 ; 3 MODES

100 200 300 400

50

100

150

200

250

300

RIC= 0.75 ; 15 MODES

100 200 300 400

50

100

150

200

250

300

RIC= 0.99 ; 255 MODES

100 200 300 400

50

100

150

200

250

300

Table 1   Parameters for the linear heat transfer analysis

Parameter Value

Velocity (v) 1.00

Number of nodes (N) 120

Number of Snapshots (M) 50

Time step (dt) 0.04

Initial condition (U0) Step (U = 1 if x ≤ 0.5 and 
U = 0 if x > 0.5)
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scheme, or the model can be reduced through a projection 
of the original equations to be solved on the selected modes. 
In the first case, it is necessary to have access to the matrices 
from the numerical scheme and to develop criteria to update 
the ROM for nonlinear problems. For the purposes of the 
present research, the second one was chosen, since the 
ROM can be derived independently of the snapshots source, 
which can even come from commercial CFD codes.

3.1 � Galerkin projection of the Navier–Stokes equations

First, by describing the Galerkin projection of the viscous 
incompressible Navier–Stokes equations, which may be 
written in their non-dimensional form as

(3.1)
∂U

∂t
+U · ∇U= −∇P +

1

Re
∇2U

Fig. 3   Snapshots from the heat 
conduction equation
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Fig. 4   RIC and modes from the snapshots
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with an initial condition

and assuming a homogeneous boundary condition

in the above equations, U is the velocity, P the dynamic 
pressure and Re the Reynolds number. This system of 

(3.2)∇ · U = 0

(3.3)U(x, 0) = U0(x)

(3.4)U(xB, t) = 0

equations may be numerically solved by a Galerkin pro-
jection on classical basis functions, which results on tra-
ditional numerical methods such as the Finite Element 
Method. Another possible choice is to use as basis func-
tions the more energetic modes obtained by POD [20], 
leading to

(3.5)
〈

∂U

∂t
+ U · ∇U,ψi

〉

+
1

Re

〈

∇U,∇ψi

〉

= 0

Fig. 5   FOM × ROM com-
parison with 5 modes and RMS 
error for each time step with 
Pe = 1. (The basis was built by 
Pe = 1 snapshot)
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parison with 5 modes and RMS 
error for each time step with 
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where the pressure gradient term vanishes and, in this 
particular case of homogeneous boundary conditions, the 
boundary term also vanishes. Some references indicate 
that there are advantages in considering the pressure term 
explicitly for some flow problems [49, 50], but this particu-
lar aspect has not been taken into consideration.

Considering the POD modes, the variable U may be 
written as

The substitution of this equation on the projected 
Navier–Stokes equations results on the following nonlinear 
evolution equation for the temporal coefficients 

 where

(3.6)U(x, t) = U(x)+ u(x, t) = U(x)+

m
∑

i=1

αi(t)ψi(x)

(3.7)
dα

dt
= Aα+ αTNα+ e with α(0) = α0

(3.8)

Aij = −
〈

ψj · ∇U , ψi

〉

−
〈

U · ∇ψj , ψi

〉

−
1

Re

〈

∇ψj,∇ψi

〉

, i, j = 1, . . . ,M

(3.9)Nijk = −
〈

ψj · ∇ψk , ψi

〉

, i, j, k = 1, . . . ,M

(3.10)ei = −
〈

U · ∇U , ψi

〉

−
1

Re

〈

∇U,∇ψi

〉

, i = 1, . . . , M

Therefore, taking into account a group of snapshots, the 
fields U, ∇U, ψi and ∇ψi must be determined to enable 
the ROM formation [20].

3.2 � ROM for the linear 1‑D heat transfer

Owing to its simplicity, the one-dimensional linear heat 
equation is an appropriate simpler starting point to apply a 
ROM methodology [1] [11]. For this example, the variable U 
and the coefficient v will be scalars and their transport equa-
tion for a domain in the interval x = [0 1] may be written as

where Pe represents the Peclet number. In this case the 
resulting temporal evolution of the POD modes coefficients 
are

where

(3.11)α0i =
〈

U0 − U,ψi

〉

, i = 1, . . . , M

(3.12)
∂U

∂t
+ v

∂U

∂x
=

1

Pe

∂2U

∂x2

U(x, 0) = U0(x),
∂U

∂x
(0, t) = 0 and

∂U

∂x
(1, t) = 0

(3.13)
dα

dt
= Aα+ e withα(0) = α0

(3.14)Aij = −v

〈

∂ψj

∂x
, ψi

〉

−
1

Pe

〈

∂ψj

∂x
,
∂ψi

∂x

〉

, i, j = 1, . . . ,M

Fig. 7   FOM × ROM compari-
son with 12 modes and RMS 
error for each time step with 
Pe = 5. (The basis was built by 
Pe = 1 and Pe = 10 snapshots)
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The FOM results were obtained by the implementation 
of a Finite Volume Method with the transport equation 
written for the boundary elements [46] and regular spac-
ing between grid points. The numerical model parameters 
adopted are presented in Table 1. The Peclet number will 
be varied depending on the analysis.

The evolution of the U-profile for those conditions and 
Pe = 1 is presented in Fig. 3. Taking a snapshot for each 
individual time step, the POD modes and the RIC are cal-
culated and presented in Fig. 4. It is possible to verify that 

(3.15)ei = −v
〈

U, ψi

〉

−
1

Pe

〈

U,
∂ψi

∂x

〉

, i = 1, . . . , M

(3.16)α0i =
〈

U0 − U,ψi

〉

, i = 1, . . . , M

only five modes are already enough to practically capture 
all the system information.

Once creating the ROM based on the five most rel-
evant modes found, a very useful check is to reproduce 
the system behavior for the same case as the one used 
to build the ROM basis. Figure  5 illustrates the com-
parison between FOM and ROM, showing an excellent 
agreement, as expected. Together with the U-profile, 
the Root Mean Square (RMS) error for each time step 
is also presented. The same analysis was repeated for 
Pe = 10 leading to similar conclusions, as can be seen 
in Fig. 6.

Using the snapshots from Pe =  1 and Pe =  10 runs, a 
ROM with 12 modes was tested for an intermediate Pe 
value, which is not originally in the snapshots. The results 
for this case are presented in Fig. 7, showing again a good 
agreement. The RMS error for this case does not decrease 
monotonically as the results for the cases contained in the 
snapshots, however the error is stabilized and reaches an 
acceptable range.

The finite volume FOM as well as the Galerkin ROM 
were both implemented in Matlab® and for the cases pre-
sented in this section the ROM was approximately 50 times 
faster than the FOM.

Table 2   Parameters for the Burgers’ equation analysis

Parameter Value

Number of nodes (N) 120

Number of snapshots (M) 100

Time step (dt) 0.04

Initial condition (U0) 0.0

0 5 10
0.6

0.8

1

Number of Modes

R
IC

0 0.5 1
-0.2

-0.15

-0.1

-0.05

0
Mode 1

x

ψ

0 0.5 1
-0.2

-0.1

0

0.1

0.2
Mode 2

x

ψ

0 0.5 1
-0.3

-0.2

-0.1

0

0.1
Mode 3

x

ψ

0 0.5 1
-0.4

-0.2

0

0.2

0.4
Mode 4

x

ψ

0 0.5 1
-0.2

0

0.2

0.4

0.6
Mode 5

x

ψ

0 0.5 1
-0.2

0

0.2

0.4

0.6
Mode 6

x

ψ

0 0.5 1
-0.2

0

0.2

0.4

0.6
Mode 7

x

ψ

0 0.5 1
-0.2

0

0.2

0.4

0.6
Mode 8

x

ψ

Fig. 8   RIC and modes from the snapshots for Pe = 1
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3.3 � ROM for the nonlinear 1‑D Burgers’ equation

The Burgers’ equation represents some features of the 
Navier–Stokes equation, mainly a similar nonlinearity that 
is analogous to the advection terms. The equation may be 
written as follows

(3.17)
∂U

∂t
+ U

∂U

∂x
=

1

Pe

∂2U

∂x2

and it will be solved in a domain in the interval x = [0 1] 
and for the following boundary and initial conditions,

In this case the resulting temporal evolution of the POD 
modes coefficients are

U(x, 0) = 0, U(0, t) = 1 and U(1, t) = 0.

(3.18)
dα

dt
= Aα+ αTNα+ e with α(0) = α0

Fig. 9   FOM × ROM com-
parison with 7 modes and RMS 
error for each time step with 
Pe = 10. The basis was built by 
Pe = 10 snapshots
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where

(3.19)

Aij = −

〈

ψj

∂U

∂x
, ψi

〉

−

〈

U
∂ψj

∂x
, ψi

〉

−
1

Pe

〈

∂ψj

∂x
,
∂ψi

∂x

〉

, i, j = 1, . . . , M

(3.20)Nijk = −

〈

ψj

∂ψl

∂x
, ψi

〉

, i, j, k = 1, . . . , M

(3.21)

ei = −

〈

U
∂U

∂x
, ψi

〉

−
1

Pe

〈

∂U

∂x
,
∂ψi

∂x

〉

, i = 1, . . . , M

(3.22)α0i =
〈

U0 − U,ψi

〉

, i = 1, . . . , M

With respect to the FOM for this equation, once more 
the Finite Volume Method was employed using a central 
difference scheme for advective and diffusive terms, since 
the tests will be done only for moderate mesh Peclet num-
bers [46]. The results were generated with the parameters 
presented in Table  2. The POD modes and RIC found 
using a Pe = 10 are presented in Fig. 8. In this case, it was 
decided to use seven modes to build the ROM. Once more 
the ROM was tested against the same conditions used to 
generate the basis. The results are shown in Fig. 9. In order 
to cover a range of Reynolds numbers, the ROM for Pe = 1 
was also built and verified against the FOM results, as pre-
sented in Fig. 10.

In order to test the predictive capability of the generated 
ROM, an intermediate condition (Pe =  5) is tested using 
the previous results to build the ROM. The results for the 

Fig. 11   FOM × ROM com-
parison with 7 modes and RMS 
error for each time step with 
Pe = 5. The basis was built by 
Pe = 1 and Pe = 10 snapshots
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intermediate condition in Fig.  11 demonstrate that the 
ROM for the intermediate condition has a good match with 
the reference FOM solution. Once again the Finite Volume 
FOM as well as the Galerkin ROM were both implemented 
in Matlab® and, for the cases presented in this section, the 
ROM was approximately 80 times faster than the FOM.

3.4 � ROM for a 2‑D backward‑facing step flow

The encouraging results obtained with one-dimensional 
linear and nonlinear equations have formed a solid basis 
regarding the implementation details of a Galerkin ROM, 
which now will be applied to the full two-dimensional 
Navier–Stokes equations, as presented in Sect.  3.1 and 
repeated here, for the sake of completeness.

The application will be developed based on the same 
case study from the reference paper utilized for the Galer-
kin projection [20]. This case study consists of a Backward-
Facing Step at low Reynolds numbers, a flow category that 
is extensively explored in the literature, either by experi-
mental [47] or numerical [48] methods.

The fluid domain is illustrated in Fig. 12. The step height 
is half of the channel total height (L) and the other channel 
dimensions are also based on this reference length, as indi-
cated in the same figure.

(3.23)
∂U

∂t
+U · ∇U= −∇P +

1

Re
∇2U

(3.24)∇ · U = 0
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Fig. 14   Results from the present CFD model in comparison with 
results from the literature. Recirculation length versus Reynolds num-
ber
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The flow is considered initially at rest and suddenly the 
fluid is injected with a laminar fully developed velocity 
profile at the inlet boundary, given by

The channel walls are represented with the classi-
cal solid wall condition, with zero normal and tangential 
velocities (U = 0 and V = 0). At the channel downstream 
end, the outlet condition is established with zero relative 
pressure. The Reynolds number is calculated based on the 
channel total height and the average inlet velocity 

 is the fluid kinematic viscosity.
Considering the objective to develop ROMs with the 

flexibility to use different solvers results for the snapshots 
generation, the FOM for this case is obtained by the com-
mercial code ANSYS CFX® [45] (Release 14.5). CFX has 
an Element Based Finite Volume solver [46] and the simu-
lation was done for Reynolds numbers equal 50, 100 and 
200. Using ANSYS Meshing, a regular Cartesian mesh 
was generated using 100 partitions in the vertical direction 
(y) and 250 in horizontal direction (x). The partitions were 
equally spaced in both directions and brought in as a result 
25,000 four-node quadrilateral elements. The time integra-
tion was done with a time step size of 1/200 for 2,000 steps.

This flow originates different recirculation zones, 
depending on the Reynolds number [47]. In order to verify 
the FOM, the present results are compared against numeri-
cal and experimental results from the literature in terms of 
the first main recirculation zone length (see Fig. 12). The 
steady-state horizontal velocity contours solution (t = 10) 
for each Reynolds number is presented in Fig.  13, where 
the recirculation length can be estimated. Based on these 

(3.25)U
(

x = −L, L
/

2 < y < L
)

= 24
(

y− L
/

2
)

(L − y)

(3.26)V
(

x = −L, L
/

2 < y < L
)

= 0

Re = 2UaveL
/

ν where Uave = 1 and ν

simulations the recirculation length is presented in Fig. 14, 
where a good matching until Re = 500 can be seen. A grad-
ual increase of the deviation from the numerical results and 
experiments for Re > 400 is expected because 3-D effects 
begin to play a significant role [48]. The subsequent analy-
sis is done considering only Reynolds numbers lower than 
500.

Using the FOM solutions to generate the snapshots, 
during the interval [0, 10], one hundred snapshots were 
recorded at constant time intervals. The snapshots matrix 
S was formed with aid of the ANSYS CFD-Post software, 
exporting all relevant data for the selected time steps. The 
correlation matrix was then formed inside a Matlab routine 
reading the CFD exported data. The same routine extracts 
the eigenvalues and eigenvectors of STS, which enables 
the POD basis construction. Figure 15 presents the eigen-
values in increasing order and the respective RIC. The first 
10 modes already represent 99.97  % of the flow energy. 
They are presented in Fig. 16 for Re = 100. As previously 
discussed, the eigenvalues have a direct relationship with 
the flow structures energy. Therefore, lower energies are 
associated with higher frequencies and smaller dimension 
structures, as can be seen for modes higher than 4 also in 
Fig. 16.

The ROM is once more formed by the Galerkin pro-
jection of the governing equations using the first 10 POD 
modes as basis functions. The detailed expansion of each 
term from the Galerkin projection is presented in Appen-
dix A. The nonlinear ODE for the temporal coefficients αi 
is then solved through an implicit backward Euler scheme, 
using the same time step as the FOM (�t = 0.005). With 
the determined temporal coefficients, the solution may be 
reconstructed, noting that:

(3.27)U(x, t) = U(x)+

m
∑

i=1

αi(t)ψi(x)

Fig. 15   POD modes eigenval-
ues and RIC for Re = 100
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Just like it was done for the one-dimensional examples, 
first, the ROM is calculated for the same Reynolds num-
ber used to form the basis. The first five modes temporal 
coefficients evolution is presented in Fig. 17. For this case, 
the FOM solution is available. Then it is possible to cal-
culate the exact value for the temporal coefficients. This is 
obtained by taking the inner product with the POD modes 
on both sides of the previous equation, leading to

where U(x, t) is obtained directly from the snapshots. The 
αi values from the FOM are also presented in Fig. 17. From 
the figure, some deviations in the dynamical system evo-
lution can be noted; yet when the velocity field is recov-
ered with the ROM, very little difference is observed. This 
fact is also observed in the velocity magnitude contours 
presented in Fig. 18, which shows in detail the region near 
the step. Additionally, the horizontal and vertical velocities 
profiles in the last time step at various channel stations are 
presented in Fig. 19, and the ROM results have an almost 
exact match with the FOM.

In the range between 50  <  Re  <  200, the ROM with 
snapshots and execution at the same Reynolds numbers has 
small errors, as expected. Considering the same range and 
the objective to evaluate the predictive capacity of the ROM, 
the reduced system was then generated and executed with 
different Reynolds numbers. Table 3 summarizes the RMS 
error of the velocity components over the entire domain 
with different combinations of Reynolds numbers for the 
snapshots and the Reynolds number for the ROM. From 
those data, it is possible to confirm that when the ROM is 

(3.28)αi(t) =
〈

U(x)− U(x, t) ,ψi(x)
〉

run for a parameter within the snapshot range of parameters, 
the errors are smaller. This is observed for the ROM with 
Re = 100 with snapshots generated with Re = 50 and 200. 
The velocity profiles in several channel stations in the last 
time step compared against FOM are presented in Fig. 20. 
However, the ROM for Re  =  500, even considering the 
same Reynolds for snapshots generation, has shown much 
larger errors, which indicates that a stabilization technique 
may be necessary [4–7] [51]. Another important conclusion 
from this data is that the ROM execution is between 300 and 
600 times faster than the FOM.

4 � Conclusions

With the use of proper orthogonal decomposition (POD) 
and Galerkin projection, a Reduced-Order Model (ROM) 
procedure for fluid flow simulations is developed. The 
application of such procedure is illustrated with three 
examples of increasing complexity: the linear one-dimen-
sional heat transfer equation, the nonlinear one-dimen-
sional Burgers’ equation and, finally, the two-dimensional 
nonlinear Navier–Stokes equations, solved in a context of a 
backward-facing step flow.

The Full Order Model (FOM) snapshots were obtained 
either through the Finite Volume Method implemented 
in Matlab® or execution of the commercial code ANSYS 
CFX®. These tools have also generated the FOM refer-
ence solutions for errors verification. The ROM was also 
implemented with aid of Matlab® routines and it shows a 
very good agreement with the FOM solutions for the cases 

Fig. 17   First 5 POD modes 
temporal coefficients for 
Re = 100, obtained by the ROM 
and reference values from the 
FOM
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Fig. 18   Comparison between FOM and ROM with 10 modes presented as velocity magnitude contours for x < 5 and Re = 100
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Fig. 19   Comparison of ROM 
and FOM solutions; horizontal 
(U) and vertical velocities (V) 
at various channel stations with 
Re = 100. The snapshots were 
generated with the same Reyn-
olds number
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Table 3   Summary of the errors 
obtained with ROMs

RMS errors of velocity 
components and execution time

Reynolds ROM Reynolds snapshots U RMS error V RMS error FOM/ROM execution time

50 50 0.0040 0.0011 303

100 0.0320 0.0114 293

200 0.0623 0.0226 297

100 50 0.0348 0.0123 488

100 0.0048 0.0023 468

200 0.0375 0.0155 475

50, 200 0.0176 0.0070 594

200 50 0.0837 0.0291 446

100 0.0535 0.0172 435

200 0.0251 0.0217 432

500 500 0.1386 0.1331 611
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tested. The main motivation for ROM development—the 
execution time reduction—is evaluated and time measure-
ments show that the ROM is between 300 and 600 times 
faster when compared to the FOM solutions for the two-
dimensional Navier–Stokes equations. The parametric 
study indicates that, for the cases tested, the ROM accuracy 
increases for parameters inside the range used for snap-
shots generation.

The framework developed allows a fast creation of ROM 
based on transient laminar flows results. The detailed pres-
entation of the test cases and the broad list of references 
may be used as a guide for practical implementation of a 
Galerkin-ROM. Further developments are planned to allow 
the expansion of such methodology to turbulent flows.
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Appendix A: expansion of Galerkin projection of the 
Navier–Stokes equations

Considering a domain Ω and the tensors obtained from 
the Galerkin projections of the Navier–Stokes equations in 
Sect. 3.1:

(A.1)

Aij = −
〈

ψj · ∇U , ψi

〉

−
〈

U · ∇ψj , ψi

〉

−
1

Re

〈

∇ψj,∇ψi

〉

, i, j = 1, . . . ,m

Fig. 20   Comparison of ROM 
and FOM solutions; horizontal 
(U) and vertical velocities (V) 
at various channel stations with 
Re = 100. The snapshots were 
generated with the Reynolds 
number of 50 and 200
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These tensors have to be expanded in the context of two-
dimensional velocity fields to be computationally imple-
mented. For the expansion, it is worth recalling:

and the definition of inner product for two-dimensional 
functions:

Firstly, expanding the first order tensors, by starting with 
the vector which corresponds to the initial condition:

The vector e will be decomposed as ei = −e1i −
1
Re
e2i 

and the resulting expansions will be:

It is also convenient to decompose the matrix A as 
Aij = −A1ij − A2ij −

1
Re
A3ij, with each term expanded as 

follows:

(A.2)Nijk = −
〈

ψj · ∇ψk , ψi

〉

, i, j, k = 1, . . . ,m

(A.3)ei = −
〈

U · ∇U , ψi

〉

−
1

Re

〈

∇U,∇ψi

〉

, i = 1, . . . ,m

(A.4)α0i =
〈

U0 − U,ψi

〉

, i = 1, . . . ,m

(A.5)
U = (U V ) ; U =

(

U V
)

;

U0 = (U0 V0 ) and ψ = ( ψU ψV );

(A.6)�f , g� =

∫

Ω

(

fxgx + fygy
)

dxdy

(A.7)

α0i =
〈

U0 − U,ψi

〉

=

∫

Ω

[(

U0 − U
)

ψUi +
(

V0 − V
)

ψVi

]

dxdy

(A.8)

e1i =
〈

U · ∇U , ψi

〉

=

〈

(

U V
)

(

∂U
∂x

∂V
∂x

∂U
∂y

∂V
∂y

)

, ( ψU ψV )i

〉

e1i =

∫

Ω

[(

U
∂U

∂x
+ V

∂U

∂y

)

ψUi +

(

U
∂V

∂x
+ V

∂V

∂y

)

ψVi

]

dxdy

(A.9)

e2i =
〈

∇U,∇ψi

〉

=

〈(

∂U
∂x

∂V
∂x

∂U
∂y

∂V
∂y

)

,

(

∂ψU

∂x
∂ψV

∂x
∂ψU

∂y
∂ψV

∂y

)

i

〉

e2i =

∫

Ω

[

∂U

∂x

∂ψUi

∂x
+

∂U

∂y

∂ψUi

∂y
+

∂V

∂x

∂ψVi

∂x
+

∂V

∂y

∂ψVi

∂y

]

dxdy

(A.10)

A1ij =
〈

ψj · ∇U , ψi

〉

=

〈

( ψU ψV )j

(

∂U
∂x

∂V
∂x

∂U
∂y

∂V
∂y

)

, ( ψU ψV )i

〉

A1ij =

∫

Ω

[(

ψUj

∂U

∂x
+ ψVj

∂U

∂y

)

ψUi +

(

ψUj

∂V

∂x
+ ψVj

∂V

∂y

)

ψVi

]

dxdy

(A.11)

A2ij =
〈

U · ∇ψj , ψi

〉

=

〈

(

U V
)

(

∂ψU
∂x

∂ψV
∂x

∂ψU
∂y

∂ψV
∂y

)

j

, ( ψU ψV )i

〉

A2ij =

∫

Ω

[(

U
∂ψUj

∂x
+ V

∂ψUj

∂y

)

ψUi +

(

U
∂ψVj

∂x
+ V

∂ψVj

∂y

)

ψVi

]

dxdy

Finally the third order tensor may be written as:
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