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List of symbols
a	� Radius of cylinder
c	� Positive constant
Cf	� Skin friction coefficient
f	� Dimensionless stream function
k	� Thermal conductivity
Nu	� Nusselt number
P	� Pressure
Pr 	� Prandtl number
qw	� Surface heat flux
Re	� Reynolds number
T	� Fluid temperature
Tw	� Temperature of the cylinder surface
T∞	� Ambient temperature
(u, w)	� Velocity components in the) r, z) directions, 

respectively
(r, z)	� Cylindrical coordinates in the radial and axial 

directions, respectively
ww	� Velocity of the stretching cylinder

Greek symbols
α	� Thermal diffusivity
η	� Similarity variable
θ	� Dimensionless temperature
μ	� Dynamic viscosity
υ	� Kinematic viscosity
ρ	� Fluid density
τw	� Surface shear stress
ψ	� Stream function
γ	� Suction parameter

Subscripts
w	� Condition at the surface
∞	� Condition at infinity
nf	� Nanofluid

Abstract  The aim of the present paper is to study the 
nanofluid flow and heat transfer over a stretching porous 
cylinder. The effective thermal conductivity and viscos-
ity of the nanofluid are calculated by KKL (Koo–Klein-
streuer–Li) correlation. In KKL model, the effect of 
Brownian motion on the effective thermal conductivity is 
considered. The governing partial differential equations 
with the corresponding boundary conditions are reduced 
to a set of ordinary differential equations with the appro-
priate boundary conditions using similarity transforma-
tion, which is then solved numerically by the fourth-order 
Runge–Kutta integration scheme featuring a shooting 
technique. Numerical results for flow and heat transfer 
characteristics are obtained for various values of the nan-
oparticle volume fraction, suction parameter, Reynolds 
number and different kinds of nanofluids. Results show 
that inclusion of a nanoparticle into the base fluid of this 
problem is capable to change the flow pattern. It is found 
that Nusselt number is an increasing function of nanopar-
ticle volume fraction, suction parameter and Reynolds 
number.
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f	� Base fluid
s	� Nanosolid particles

1  Introduction

In recent decade, because of rising demands of modern 
technology, including chemical production, power sta-
tion, and microelectronics, there is a need to develop 
new types of fluids that will be more effective in terms 
of heat exchange performance. Nanofluids are produced 
by dispersing the nanometer-scale solid particles into 
base liquids with low thermal conductivity such as water, 
ethylene glycol (EG) and oils. [1]. The term “nanofluid” 
was first coined by Choi [2] to describe this new class of 
fluids. The materials with sizes of nanometers possess 
unique physical and chemical properties [3]. Using nano-
fluid instead of base fluid increases the effective thermal 
conductivity of the fluid and consequently enhances the 
heat transfer characteristics. Sheikholeslami et  al. [4] 
studied the magnetic field effect on CuO–water nanofluid 
flow and heat transfer in an enclosure which is heated 
from below. They found that effect of Hartmann number 
and heat source length is more pronounced at high Ray-
leigh number. Rashidi et al. [5] considered the analysis of 
the second law of thermodynamics applied to an electri-
cally conducting incompressible nanofluid fluid flowing 
over a porous rotating disk. They concluded that mag-
netic rotating disk drives have important applications in 
heat transfer enhancement in renewable energy systems. 
Sheikholeslami et  al. [6] studied the problem of MHD 
free convection in an eccentric semi-annulus filled with 
nanofluid. They showed that Nusselt number decreases 
with increase of position of inner cylinder at high Ray-
leigh number. Hatami et al. [7] investigated the magneto-
hydrodynamic Jeffery–Hamel nanofluid flow in non-par-
allel walls. They found that skin friction coefficient is an 
increasing function of Reynolds number, opening angle 
and nanoparticle volume friction but decrease function 
of Hartmann number. Therefore, numerous methods have 
been taken to improve the thermal conductivity of these 
fluids by suspending nano/micro-sized particle materials 
in liquids. Several numerical studies have been published 
recently on the modeling of natural convection heat trans-
fer in nanofluids such as [8–39].

Steady flow in a viscous and incompressible fluid outside 
of a stretching hollow cylinder in an ambient fluid at rest has 
been performed by Wang [40]. The problem is governed by 
a third-order nonlinear ordinary differential equation that 
leads to exact similarity solutions of the Navier–Stokes equa-
tions. The flow over a cylinder can be considered as two-
dimensional flow if the body radius is large compared to 

the boundary layer thickness. On the other hand for a thin 
or slender cylinder, the radius of the cylinder may be of the 
same order as that of the boundary layer thickness. The study 
of convective heat transfer in fluid-saturated porous media 
has many important applications in technology of geother-
mal energy recovery such as oil recovery, food processing, 
fiber and granular insulation, porous burner and heater, com-
bustion of low-calorific fuels to diesel engines and design of 
packed bed reactors. In general, suction tends to increase the 
skin friction and heat transfer coefficients, whereas injec-
tion acts in the opposite manner [41]. The effects of suction/
injection on the flow and heat transfer over a slender cylinder 
have attracted many researchers to make further investiga-
tions. The effect of slot suction/injection over a thin cylinder 
was studied by Datta et al. [42] and Kumari and Nath [43]. 
These papers may be useful in the cooling of nuclear reac-
tors during emergency shutdown, where a part of the surface 
can be cooled by injecting a coolant. Ishak et al. [44] studied 
uniform suction/blowing effect on flow and heat transfer due 
to a stretching cylinder which is useful as a simple model in 
understanding more complicated applications to practical 
problems, such as cooling of nuclear reactors.

The objective of the present paper is to study the nano-
fluid flow and heat transfer due to a stretching cylinder with 
uniform suction. The effective thermal conductivity and vis-
cosity of the nanofluid are calculated by KKL (Koo–Klein-
streuer–Li) correlation. In this model, the effect of Brownian 
motion on the effective thermal conductivity is considered. 
The reduced ordinary differential equations are solved 
numerically using the fourth-order Runge–Kutta integration 
scheme featuring a shooting technique. The effects of the 
parameters governing the problem are studied and discussed.

2 � Problem formulation and equations

Consider the steady laminar nanofluid flow caused by a 
stretching tube with radius a in the axial direction in a fluid 
(Fig. 1), where the z-axis is measured along the axis of the 
tube and the r-axis is measured in the radial direction. It is 
assumed that the surface of the tube has constant tempera-
ture Tw and the ambient fluid temperature is T∞ (Tw > T∞). 
The viscous dissipation is neglected as it is assumed to be 
small. It is assumed that the base fluid and the nanoparti-
cles are in thermal equilibrium and no slip occurs between 
them. Under these assumptions the governing equations 
are:

Vector form:

(1)
→
∇ .

→
V = 0

(2)
ρnf

(

∂
→
V

∂t
+

(→
V .

→
∇
) →
V

)

= −
→
∇ P + µnf∇2

→
V
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where 
−→
V = (u, v,w) is velocity vector, Tis temperature, 

Pis pressure, ρnf,µnf,
(

Cp

)

nf
, knf are density, viscosity, heat 

capacitance, thermal conductivity of nanofluid. Also the 
operation of 

→
∇ can be defined as

→
∇ =

(

∂
∂x
, ∂
∂y
, ∂
∂z

)

.
Scalar form:

subject to the boundary conditions

where Uw = −caγ ,ww = 2cz and c is a positive constant. 
γ is a constant in which γ > 0 and γ < 0 corresponding to 
mass suction and mass injection, respectively.

The effective density(ρn f) and the heat capacitance 
(

ρCp

)

n f
 of the nanofluid are given as: 

(3)
(

ρCp

)

nf

(

∂T

∂t
+

(→
V .

→
∇
)

T

)

= knf∇2T

(4)
∂(rw)

∂z
+

∂(ru)

∂r
= 0,

(5)ρn f

(

w
∂w

∂z
+ u

∂w

∂r

)

= µn f

(

∂2w

∂r2
+

1

r

∂w

∂r

)

,

(6)ρn f

(

w
∂u

∂z
+ u

∂u

∂r

)

= −
∂P

∂r
+ µn f

(

∂2u

∂r2
+

1

r

∂u

∂r
−

u

r2

)

,

(7)

(

w
∂T

∂z
+ u

∂T

∂r

)

=
kn f

(

ρCp

)

n f

(

∂2T

∂r2
+

1

r

∂T

∂r

)

,

(8)
r = a : u = Uw, w = ww , T = Tw

r → ∞ : w → 0, T → T∞

(9)ρn f = ρf(1− φ)+ ρsφ

(10)
(

ρCp

)

n f
=

(

ρCp

)

f
(1− φ)+

(

ρCp

)

s
φ

Here, φ is the solid volume fraction.
The Brownian motion has a significant impact on the 

effective thermal conductivity. Koo and Kleinstreuer 
[45] proposed that the effective thermal conductivity is 
composed of the particle’s conventional static part and a 
Brownian motion part. This 2-component thermal conduc-
tivity model takes into account the effects of particle size, 
particle volume fraction and temperature dependence as 
well as types of particle and base fluid combinations. 

where kstatic is the static thermal conductivity based on 
Maxwell classical correlation. The enhanced thermal con-
ductivity component generated by micro-scale convective 
heat transfer of a particle’s Brownian motion and affected 
by ambient fluid motion is obtained via simulating Stokes’ 
flow around a sphere (nanoparticle). By introducing two 
empirical functions (β and f) Koo [46] combined the inter-
action between nanoparticles in addition to the temperature 
effect in the model, leading to: 

(11)keff = kstatic + kBrownian

(12)
kstatic

kf
= 1+

3
(

kp
kf
− 1

)

φ
(

kp
kf
+ 2

)

−
(

kp
kf
− 1

)

φ
,

(13)kBrownian = 5× 104βφρfcp,f

√

κbT

ρpdp
f (T ,φ) .

Fig. 1   Geometry of the problem

Table 1   Thermo-physical properties of water and nanoparticles [45]

ρ (kg/m3) Cp (j/kgk) k (W/mk) dp (nm) σ (Ω m)−1

Pure water 997.1 4179 0.613 – 0.05

Al2O3 3970 765 25 47 10−12

CuO 6500 540 18 29 10−10

Table 2   The coefficient values of Al2O3–water nanofluids and CuO–
water nanofluids [45]

Coefficient values Al2O3–Water CuO–Water

a1 52.813488759 −26.593310846

a2 6.115637295 −0.403818333

a3 0.6955745084 −33.3516805

a4 4.17455552786E−02 −1.915825591

a5 0.176919300241 6.42185846658E−02

a6 −298.19819084 48.40336955

a7 −34.532716906 −9.787756683

a8 −3.9225289283 190.245610009

a9 −0.2354329626 10.9285386565

a10 −0.999063481 −0.72009983664
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In recent years, there has been an increasing trend 
to emphasize the importance of the interfacial thermal 
resistance between nanoparticles and base fluids (see for 

example, Prasher et  al. [47] and Jang and Choi, [48] ). 
The thermal interfacial resistance (Kapitza resistance) is 
believed to exist in the adjacent layers of the two different 
materials; the thin barrier layer plays a key role in weaken-
ing the effective thermal conductivity of the nanoparticle.

Li [49] revisited the model of Koo and Kleinstreuer [50] 
and combined β and f functions to develop a new g′-func-
tion which captures the influences of particle diameter, 
temperature and volume fraction. The empirical g′-function 
depends on the type of nanofluid [50]. Also, by introduc-
ing a thermal interfacial resistanceRf = 4× 10−8km2/W 
the original kp in Eq. (9) was replaced by a new kp, eff in the 
form: 

(14)Rf +
dp

kp
=

dp

kp,eff
.

Fig. 2   Velocity profile and temperature distribution for different types of nanofluids when φ = 0.04, Re = 1 and Pr = 6.8

Table 3   Effects of different kind of nanoparticles on skin friction 
coefficient when φ = 0.04

γ Re Nanoparticles

CuO Al2O3

0 0.1 0.679741 0.703897

0 1 1.194617 1.224377

0 2 1.579317 1.615502

1 0.1 0.730548 0.754673

1 1 1.765922 1.793399

1 2 2.82033 2.850088
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For different base fluids and different nanoparticles, the 
function should be different. Only water-based nanofluids 
are considered in the current study. For Al2O3–water and 
CuO–water nanofluids, this function follows the format: 

Koo and Kleinstreuer [45] further investigated laminar 
nanofluid flow in micro heat-sinks using the effective nano-
fluid thermal conductivity model they had established (Koo 
and Kleistreuer [45] ). For the effective viscosity due to 
micro mixing in suspensions, they proposed: 

where µstatic = µf

(1−φ)2.5
 is viscosity of the nanofluid, as 

given originally by Brinkman.
Following Wang [40] we take the similarity 

transformation: 

where prime denotes differentiation with respect to η.

(17)µeff = µstatic + µBrownian = µstatic +
kBrownian

kf
×

µf

Prf

(18)

η = (r/a)2, u = −ca[f (η) /
√
η],

w = 2cf ′(η)z, θ(η) = (T − T∞)/(Tw − T∞),

Table 4   Effects of different kind of nanoparticles on Nusselt number 
when φ = 0.04

γ Re Nanoparticles

CuO Al2O3

0 0.1 1.846686 1.70097

0 1 4.324278 4.113995

0 2 5.996721 5.711652

1 0.1 2.676284 2.540234

1 1 15.23057 15.03967

1 2 28.85855 28.59338

Fig. 3   Effect of nanoparticle volume fraction (φ) on velocity profile and temperature distribution when Re = 1, γ = 1 and Pr = 6.8(CuO–water)

(15)
g′
(

T ,φ, dp
)

=
(

a1 + a2 ln
(

dp
)

+ a3 ln (φ)+ a4 ln (φ) ln
(

dp
)

+ a5 ln
(

dp
)2
)

ln (T)

+
(

a6 + a7 ln
(

dp
)

+ a8 ln (φ)+ a9 ln (φ) ln
(

dp
)

+ a10 ln
(

dp
)2
)

where the coefficients ai (i  =  0, 1,…, 10) are based on 
the type of nanoparticles and also with these coefficients, 
Al2O3–water and CuO–water nanofluids have an R2 of 96 
and 98 %, respectively [50] (Tables 1 and 2). Finally, the 
KKL (Koo–Kleinstreuer–Li) correlation is written as: 

(16)kBrownian = 5× 104φρfcp,f

√

κbT

ρpdp
g′(T ,φ, dp) .

Substituting Eq.  (18) into Eqs.  (5) and (7), we get the 
following ordinary differential equations: 

where Re = ca2/2υf is the Reynolds number, υf = µf/ρf 
the kinematic viscosity, Pr = µf

(

ρCp

)

f
/(ρf kf) is the 

(19)Re.A1.(1− φ)2.5(f ′2 − ff ′′) = ηf ′′′ + f ′′,

(20)ηθ ′′ + (1+ Re Pr f .A2/A3)θ
′ = 0,
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Prandtl number and A1,A2,A3,A4 are parameters having 
the following forms:

The boundary conditions (8) become

(21)A1 = (1− φ)+
ρs

ρf
φ

(22)A2 = (1− φ)+
(ρCp )s

(ρCp )f
φ

(23)A3 =
knf

kf
=

ks + 2kf − 2φ(kf − ks)

ks + 2kf + φ(kf − ks)

(24)
f (1) = γ , f ′(1) = 1, θ(1) = 1,

f ′(∞) → 0, θ(∞) → 0.

The pressure (P) can now be determined from Eq. (6) in 
the form 

i.e.,

Physical quantities of interest are the skin friction coef-
ficient (Cf) and the Nusselt number(Nu), which are defined 
as 

(25)
P

ρn f
=

P∞

ρn f
−

c2a2

2η
f 2(η)− 2c υn ff

′
(η),

(26)
P − P∞

ρn fc υn f
= −

Re

η
.A1.(1− φ)2.5f 2(η)− 2f ′(η).

(27)Cf =
τw

ρw2
w/2

, Nu =
a qw

kf(Tw − T∞)
,

Fig. 4   Effect of Reynolds number on velocity profile, pressure distribution and temperature distribution when φ  =  0.04,  γ  =  0 and 
Pr = 6.8(CuO–water)
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with kf being the thermal conductivity of the base fluid. 
Further, τw and qw are the surface shear stress and the sur-
face heat flux, respectively, and they are given by 

i.e., 

Using variables (27), we have: 

(28)τw = µn f

(

∂w

∂r

)

r=a

, qw = −kn f

(

∂T

∂r

)

r=a

,

(29)τw =
4µn f c z

a
f ′′(1) , qw = −

2kn f(Tw − T∞)

a
θ ′(1).

3 � Numerical method

Before employing the Runge–Kutta integration scheme, 
first we reduce the governing differential equations into a 
set of first-order ODEs.

Let x1 = η, x2 = f , x3 = f ′, x4 = f ′′, x5 = θ , x6 = θ ′. We 
obtain the following system: 

(30)Cf ≡
∣

∣

∣

∣

1

A1(1− φ)2.5
f ′′(1)

∣

∣

∣

∣

, Nu ≡ −2
kn f

kf
θ ′(1).

Fig. 5   Effect of Reynolds number on velocity profile, pressure distribution and temperature distribution when φ = 0.04, γ = 1 and Pr = 6.8 
(CuO–water)
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and the corresponding initial conditions are 

(31)





















x′1
x′2
x′3
x′4
x′5
x′6





















=





























1

x3

x4
�

Re.A1.(1− φ)2.5(x23 − x4x2)− x4

�

/η

x6

x7

−(1+ Re Pr x2A2/A3)x7/η





























The above nonlinear coupled ODEs along with initial con-
ditions are solved using fourth-order Runge–Kutta integration 
technique. Suitable values of the unknown initial conditions

(32)





















x1

x2

x3

x4

x5

x6





















=





















1

γ

1

u1

1

u2





















Fig. 6   Effect of suction parameter on velocity profile, pressure distribution and temperature distribution when φ = 0.04, Re = 1 and Pr = 6.8 
(CuO–water)
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u1 and u2 are approximated through Newton’s method 
until the boundary conditions at f ′(∞) → 0, θ(∞) → 0 
are satisfied. The computations have been performed using 
MAPLE. The maximum value ofη = ∞, to each group of 
parameters, is determined when the values of unknown 
boundary conditions at x = 1 do not change to a successful 
loop with error less than 10-6.

4 � Results and discussion

Nanofluid flow and heat transfer over a stretching porous 
cylinder are investigated. The governing equations and 

their boundary conditions are transformed to ordinary dif-
ferential equations which are solved numerically using the 
fourth-order Runge–Kutta integration scheme featuring a 
shooting technique.

Effects of different types of nanofluid on velocity, tem-
perature, skin friction coefficient and Nusselt number are 
shown in Fig. 2, Tables 3 and 4. It can be said that the shear 
stress and rate of heat transfer change with using differ-
ent types of nanofluid. This means that type of nanofluid 
will be important in the cooling and heating processes. By 
selecting CuO as nanoparticle we can reach higher Nus-
selt number and smaller skin friction coefficient. So we 
use CuO–water to examine the effect of active parameters. 

Fig. 7   Effects of the Reynolds number, suction parameter and nanoparticle volume fraction on skin friction coefficient when Pr = 6.8 (CuO–water)

Fig. 8   Effects of the Reynolds number, suction parameter and nanoparticle volume fraction on Nusselt number when Pr = 6.8 (CuO–water)
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Figure 3 shows the effect of nanoparticle volume fraction 
(φ) on velocity profile and temperature distribution. It has 
been found that when the volume fraction of the nanopar-
ticle increases from 0 to 0.04, the thermal boundary layer 
thickness decreases while no sensible change occurs in 
velocity profile.

Effects of Reynolds number on velocity profile, pres-
sure distribution and temperature distribution are shown 
in Figs.  4 and 5. As Reynolds number increases velocity 
and temperature profiles decrease. Pressure distribution 
increases with increase of Reynolds number near the cyl-
inder while opposite trend is observed for further distance. 
When γ = 1, effects of Reynolds number on velocity pro-
file and temperature distribution become greater while the 
effect of Reynolds number on pressure distribution has 
been changed. It means that as Reynolds number increases 
pressure decreases for all values of distant from the surface.

Figure 6 shows the effect of suction parameter on veloc-
ity profile, pressure distribution and temperature distribu-
tion. The velocity curves in this figure show that the veloc-
ity gradient at the surface increases as γ increases, which 
implies the increasing of the wall shear stress. The tempera-
ture is found to decrease as γ increases, also it decreases as 
the distance from the surface increases and finally vanishes 
in a large distance from the surface, which implies increas-
ing in the wall temperature gradient and in turn increases 
the surface heat transfer rate. Hence, the Nusselt number 
increases as γ increases. Effect of suction parameter on 
pressure distribution is similar to that of Reynolds number 
in presence of suction.

Figure 7 shows the effects of the Reynolds number, suc-
tion parameter and nanoparticle volume fraction on skin 
friction coefficient. It can be found that skin friction coef-
ficient decreases with increase of nanoparticle volume frac-
tion while it increases with increase of Reynolds number 
and suction parameter.

Figure  8 depicts the effects of the Reynolds number, 
suction parameter and nanoparticle volume fraction on 
Nusselt number. Nusselt number is an increasing function 
of Reynolds number, suction parameter and nanoparticle 
volume fraction.

5 � Conclusions

In the present study, two-dimensional nanofluid flow due 
to a stretching permeable tube has been investigated. The 
equations are solved numerically using the fourth-order 
Runge–Kutta method. Effects of nanoparticle volume frac-
tion, types of nanofluid, suction parameter and Reynolds 
number on the flow and heat transfer characteristics have 
been examined. Results show that skin friction coefficient 
has direct relationship with Reynolds number and suction 

parameter but it has reverse relationship with nanoparti-
cle volume fraction. It is observed that thermal boundary 
layer thickness decreases with increase of nanoparticle vol-
ume fraction, Reynolds number and suction parameter. The 
type of nanofluid is a key factor for heat transfer enhance-
ment. The higher values of Nusselt number are obtained by 
selecting CuO nanoparticles.
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