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Abstract In this paper, based on the high-order theory
(HOT) of sandwich structures, the response of sandwich
cylindrical shells with flexible core and any sort of
boundary conditions under a general distributed static
loading is investigated. The faces and the core are made of
isotropic materials. The faces are modeled as thin cylin-
drical shells obeying the Kirchhoff-Love assumptions. For
the core material, it is assumed to be thick and the in-plane
stresses are negligible. The governing equations are
derived using the principle of the stationary potential
energy. Using harmonic differential quadrature method
(HDQM), the equations are solved for deformation com-
ponents. The obtained results are compared with finite
element results for different sandwich shell configurations.
Then, the effects of changing different parameters on the
stress and displacement components of sandwich cylin-
drical shells are investigated. A comparison between HOT-
HDQM and finite element results is presented for different
sandwich shell configurations.

Keywords Sandwich cylindrical shells - Harmonic
differential quadrature method - Flexible core -
High-order theory - General lateral loading

1 Introduction
Sandwich shells are widely used in many engineering

applications, especially in aerospace and marine industries.
They commonly consist of two load carrying faces
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connected by usually soft inner layer (core). The faces are
made of materials with high stiffnesses, as steel, aluminum
alloys, reinforced plastics and the core can be made of
corrugated sheet, wood, foam, rubber, etc. Generally, the
sandwich shells are lightweight structures with very high
stiffness to weight and strength to weight ratios and they
also have very good thermal and acoustic isolation
properties.

To date the study on the shell behavior is well developed
and historically is back-dated to early 1940s. A summary of
early works can be found in some textbooks written by
Plantema [1], Allen [2], and Zenkert [3]. Some newer
comprehensive reviews can be found in [4-7] in which
various analytical and computational models for sandwich
structures are presented. In overview of these works, it can
be concluded that when the overall or global response of a
sandwich shell is under consideration, there is no need to
use complicated or high-order theories (HOTs). That is an
accurate prediction of the shell response can be achieved
using the classical sandwich shell theory assumptions. For
a rather complicated case, for example study of the local
buckling, wrinkling of the sandwich shells or in sandwich
shells with more flexible cores, a high-order theory (HOT)
of sandwich structures is required to reach better predic-
tions. The HOT is developed by Frostig and coworkers [8—
12] and either is challenged or implemented by many other
researches in the last two decades. Generally, in most
HOTSs some prior assumptions are made with respect to the
displacement field in the core. However, there are few
HOTs that the displacements and the stresses of the core
are determined through a 3D elasticity solution, see
[13-16].

Generalized differential quadrature method (GDQM) is
a rather new numerical method which has been widely used
in solving problems in different engineering fields. The
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GDQM was developed by Shu and coworkers [18, 19]
based on the DQ technique [20]. On the other hand, the
harmonic differential quadrature method (HDQM) is a
fast converging version of the GDQM [17]. In general, in
all different versions of the DQ method, the partial
derivative of a function, with respect to a spatial variable
at a given discrete point, will be approximated by a linear
summation of weighted function values at all discrete
points chosen in the solution domain of the spatial vari-
able [18, 19]. Some advantages of the DQ method in
comparison with the finite element method (FEM) are the
ease of its implementation on the governing equations and
spending less computational efforts in solving any prob-
lem. The reason lies in the fact that in the DQ method the
natural and essential boundary conditions must be satis-
fied simultaneously, while in FEM the natural boundary
conditions are included in the weak form solution of the
governing equations, and the approximate displacement
functions must satisfy only the essential boundary con-
ditions of the problem. In other words, the DQM and
FEM deal with strong and weak forms of governing dif-
ferential equations, respectively.

There are some works in the literatures in which the
DQM has been used in static analysis of the laminated
cylindrical shell panel. For example, Maleki et al. [21] used
GDQM in static and transient analysis of thin/moderately
thick laminated shell panels subjected to different loadings
and boundary conditions. Tornabene et al. [22] applied the
GDQM in the static analysis of laminated composite shell
panel of revolution with various lamination schemes and
different layers. Malekzadeh [23] used the DQM in the in-
plane static analysis of laminated composite arches with
any type of boundary conditions.

To the best knowledge of the authors, no work
related to the static analysis of the sandwich cylindrical
shell panels with general type of boundary conditions
and subjected to any arbitrary lateral loading is reported
in the literature. Only for the case of fully simply
supported sandwich shells, an exact closed-form solution
is presented using Fourier series [14]. In addition, to the
best knowledge of the authors, there is no reported study
in the open literature in which any version of the DQ
methods is employed on the sandwich cylindrical shell
panels.

The aim of the present work is to study the behavior of
cylindrical sandwich shells with flexible core and any sort
of boundary conditions under a generally distributed static
loading using HDQM. The obtained results are compared
with finite element results. Then, the effects of different
parameters, including core flexibility, the core to the face
thickness ratio and the ratio of shell curvature to thickness,
on the stress and displacement components of sandwich
cylindrical shells are investigated.
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2 Problem definition and assumptions

Figure 1 shows an open sandwich cylindrical shell with
general boundary conditions subjected to arbitrary lateral
loadings (as a function of x and 6) imposed simultaneously
at inner and outer surfaces. It is assumed that the loads are
exerted in a rather quasi-static manner. The displacement
components corresponding to the x (longitudinal), 0 (cir-
cumferential) and z (radial) directions are represented by u,
v and w, respectively. According to Fig. 1, f§ represents the
subtended angle, R is the radii of curvature, L is the length
of the shell, and 4 is the thickness. The sub/super scripts of ¢,
¢, and b denote the top face, the core, and the bottom face,
respectively. Following main assumptions are considered;

e The faces and the core are assumed to be made of
isotropic materials.

e Small deformation theory is considered for the analysis
of elastic deformations.

e The faces are modeled as thin cylindrical shells and
analyzed based on the classical Love’s shell theory.

e The core is assumed to be thick and its thickness is
much greater than the thicknesses of faces [i.e., (A,
hy) < hl.

e The core and the faces are perfectly bonded that is no
delamination will occur in the core/face interfaces.

e The core consists of a weak low density material
compared to the faces, thus the in-plane stresses in the
core, i.e., gy, 0y, and 7,9, are assumed to be negligible
[13-16]. Based on these assumptions and HOT, the
displacements and the stresses in the core are deter-
mined through a 3D elasticity solution.

3 Formulation
3.1 Strain displacement relations
Based on the classical shell theory, the displacement field

components u, v, and w of an arbitrary point located in the
domain of the faces are assumed as follows [24] (see Fig. 1):

Owoi(x, 0)
(. 0.7) = uni(x. 0) — 7, 0T
ul(x7 7Zl) MOI(x7 ) Zl ax
i a i ;6 .
(. 0,5) = s 0) = 2 (2550 x,0))s 7= n
wi(x, 0, z;) = woi(x, 0) (1)

where ug,;, vo; and wy; are the displacements of a point
located on mid-surface of the faces in x, 6 and z directions,
respectively. Based on HOT, there are no assumptions on
the displacement field of the core, and the displacement
components of an arbitrary point located on the core are
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defined as u.(x, 0, z.), v.(x, 0, z.) and w.(x, 0, z.) and will be
determined through a 3D elasticity solution.

Based on Eq. (1) and Kirchhoff-Love shell theory, the
strain components in the upper and lower faces of the
considered shell are as follows [25]:

i auOi(x, 9) _ ‘62w0i(x, 9)
T 4T
i L ovoi(x,0)  woilx, 0)
““R o0 TR
Zi 6v0i (x, 9) aZWOi (X, 9) . -
+Ri2< o0 20 ; i=t,b
i Ovoi(x,0) 1 Bugi(x, 0)
T TR, o0 i
Zi aVOi(X, 0) 0 wWoi (X, 0)
R ( ax 2 oxdl @)

Also, the kinematic relations used for the core are as
follows:

. Owe(x,0,2.)

T

c awc (xa Oa ZC) auc (x7 07 ZC)
e = Ox + 0z

ove(x,0,z.) 1 owe(x,0,7.)
9, = — Ve 393 c
yﬂz az +Rc + 2. < o0 v (X Z )
(3)

Assuming perfect bond between the two faces and the core,
the continuity conditions of interface displacements of the
top and bottom interfaces are as follows:

U, (x, 0, %) = up (x, 0) + %W (4a)
h, (0 0
Ve (x 0, > = vor(x, 0) + 2121 < Woé(g ) — vor(x, 9)>
(4b)
h.
We (X, 07 ?) = Wot(x7 0) (40)
. hy 0 ,0
U, (x7 0, — 7) = ugp(x, 0) — Eb% (5a)
he hy, (O ,0
Ve (x, 0, —5> = vou(x, 0) — 21?}) (% — vop (x, 9))
(5b)
he
We (x, 0, — 7) = wop(x, 0) (5¢)

3.2 Stress—strain relations
Both faces and core isotropic materials will undergo an

elastic deformation. For an isotropic material in the linear
elastic range, the relation between in-plane stresses and

@ Springer



328

J Braz. Soc. Mech. Sci. Eng. (2015) 37:325-337

strains (in the two faces) and out-plane stresses and strains
(in the core) is as follows:

) Ei ) )
o, = -2 (‘5; + Vigi)) Oy, x -+ Claép
l
i
oy = 11— 2 (e + viey) = Chaey + Copeg i =1,b
1
. E ) o
Ty = mﬁ-o = Ci370 (6)
and.
o; = E.e
1, =Gy i=x,0 (7)

where E' and v, I = t, bare, the Young’s modulus and Poisson’s
ratio of the top and bottom faces and E. and G, are, respec-
tively, the Young’s modulus and shear modulus of the core.

4 Governing equations and solution procedure

To obtain the governing differential equations, the princi-
ple of minimum total potential energy is employed [26]:

S = (U —W) =0 (8)

where I1, U, and W are the total potential energy, strain energy,
and the work done by the external loadings, respectively.

The strain energy of the considered shell is the sum-
mation of strain energy of each part, that is, top and bottom
faces and the core section as:

U=U+U.+U, )

Moreover, the variation of strain energy can be
expressed in terms of stress and strain components as [26],

SU = /(aiési + 6}0ep) + Tyl )dV,

Vi

1 C S AC c C C Sa,C
+3 / (05065 + 15,075, + ,075,)dV,
Vr
1
+3 / (a26e> + ahoel + 15)8y%,) AV (10)
Vi
Also the variation of the work done by the external loads

is:

B
oW = / q:(x, 0)owg, (x, 0)R,dxd0
0

+

[
/

L
/qb X, 0 5w0b(x 0)Rbdxd9 (11)
0
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where g,(x, 0) and g;(x, 0) are the applied loads on the inner
and outer surfaces of the shell.

Upon substitution of Egs. 2 and 3 into 10, three sets of
equations including the equilibrium equations and
boundary conditions for the two faces and the core are
obtained which are presented and discussed in the next
two sections.

4.1 Stress and displacement components in the core

The equilibrium equations for the core obtained in Sect. 4
as a result of implementing the principle of minimum total
potential energy are as follows:

015 (x, 0, 2c)

(RC + Zc) T + T;Z(X, 6, Zc) =0

a CV 707 C
(R + 2.) %Z) + 265 (x,0,20) = 0

06<(x, 0, 7, 01¢.(x, 0, 2,
@fmgfﬁlfl+mfmdi¢i¥ﬂ

oz Ox (12)
a 9 707 C
T 02 | ey g2 = 0

o0

The expressions for the core stresses and displacements
are determined by solving Eq. 12 along with Egs. 3, 7 and
using continuity of the transverse displacements (w) at the
top and bottom interfaces, Egs. 4c, 5c, and in-plane dis-
placements (u, v) at the top interface, Eqgs. 4a, b. The core
stresses are obtained as follows:

c RC C
sz(x’ 0, Zc) - R. + z. sz(x’ 6);
2
e 030) = G T O
c EC
o5 (x,0,z.) = — (wor(x, 0) — wop(x, 0))
(Re + z.)In (R;)
R, h. oT¢ (x, 0
+ - R(; - Zc + XZ(x )
Rc + Zc In (&) 6x
Ripe
. R 1 & r | 0T (x,0)
Rc + Ze R(; + Ze ln (Ri) 60
Rpe

(13)

where T, and Ty, which are called modified stresses at
the mid-surface of the core are two new unknown
parameters and must be obtained by solving the governing
equations. Moreover, the displacements of the core are
obtained in terms of the displacement field variables of
the faces and the two new unknown parameters Ty, and
T, as follows:
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Owo,  Owop heR? o T5, R. Rpe ? TC.
Ovor _ Owop - Relle € %0e y Re (p g (Ree) 4 ) E e
* ( o & RuRpE ox00 B \"MR,) T ) e

Rtz (, I o4 R R (R +z L\ pe
Ve = - -
Ry 2R, 2G.\ R.  R.+z) "

— 2R
+ <hz I(RC+ZC)+1) aWOI

2R.R;. 00
R (1 1 R. +z.\ O°T§,
Lt B ,
E.\R. 2(R.+z) 2R. ) 00*
R (he R +z.\\ 0°T¢
T~ | A~ <c Rc C 1 —=
+EC(2 et +Z)“< R )) %00
i 1 — (R +z:)/Ric + In((Re 4 2¢) /Ric)
ln(th/Rbc)
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4.2 Governing equations

Upon substitution of Egs. 2, 6, 13, and 14a, b, ¢ into the
equilibrium equations of the faces obtained from imple-
menting the principle of minimum total potential energy in
Sect. 4, the governing coupled partial differential equations
in terms of the displacement components are obtained as
follows:

b dwy,  Chshy Qu _ Chshy v,
R, 00 R, 30> R o0
ow, o*u

— o 2oy, S s
62\1() 621/{0
_h,(cngrc;3)a aé C! R, ale

62
— ClshiR; avgt +RT, =0

Chohy dwo,  Chyhy Pug,  Chohy [ h? vy,
R, 00 R, 00? R, \12R? 00*
C;zh? 63W0f ot aWo,
12R} 36 B ox

2
a Vot
_ t t ot
h(Cia+ Ca) 5,59 — Cosl (2 * 6R2) o0

azuo, h2 a Vor
~ CuliRi 57 C“h’(lzR +R’) o2

h3 63W0 Ct h3 63w0 RZ
Ct Cr 4 13" 4 e c :0
1ok, (C22C8) a5t Ty e TR T

Clyh? Pwy
4R? 3x06?

(17)
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R, 00 R, 0¢* R, \12R? 26?
nghz 63w0b b h aw()h
2R 00° P ax

o o
— (€l + Ch) ol (2 + —) ML

b 13 A3
C23h,)6 Wopb

0 6R2) 0x00 ' 4R} 9x00°
6 Uop h2 a Vob
— C?}thb axz nghb (ﬁ+Rb axz
B, Dwo,  Chh3 Pwy, R
3 __LTC :0
T 12k, (Cb 208 55T s ok, e

(18)

E, Ch E,
RtCIt+( ( < + - I>W01_1( < Wob

In th/Rbc) Rt n th/Rbc)
Cé?, h[ au()[ Cézh[ avO, Ctzzh? 63\/0[ Cézh? 64W0t

+ R, 00 R, 30 12R} 90> 12R} B¢t
dug 0 Ci b} o Ci.h3 o
Clohy =2y Chpy ot =230 = Y0y Zas = M
ox Ox  4R? ox00>  3R? ox00
3 6 Vor
12 (2C33+C12)a 200
h3 6 Wor C! h3 631/0 C ]’l3 64W0
2ct C 13"t t 13"% 1
Tor, Pt ) anr T e T 3 w00
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R E. N E. Ch,hp
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b 1,373 b 134
C22hb6 Vob | szhha Wop auo;, aV();,
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h3 83\/();, h a W()h
20k +-ch, —b 2c ct
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Also the corresponding boundary conditions are pre-
sented in Appendix A and B for straight edges (0 = 0, /)
and curved edges (x = 0, L), respectively.

To obtain a complete and consistent set of governing
equations, two other equations are needed. These equations
are the continuity of the in-plane displacements (u, v) at the
bottom interface, Eqgs. 5a, b, which are not implemented
yet and using the expressions for u. and v., Eqs. 14a, b, are
obtained as follows:

R.. (Rpe hyOwop hy\ Owgy
e Te (oo (G (T
Hor u0b+Gcn<Rn) oo T\ ) o

RE (Ry\O°T§, R, (h? Rpe
—<In —R.h.—R Ryl
TE" (R,C> ox00 ' Ee ( bt (th) )

aZTC 9l (g L owo: Owop  heR: o'y,
a B bc — (th/RbL‘) Ox Ox thRbL‘EC 0x00
R Rbc azTC
Rin )\ 21
+E ( <th>+> 6)62) ° 2

Ry h, T R (R, 1 .
T b < ()T
Re ( 2R,> vor ( + 2R,,>V0b 26 \R "R )

<htRbc Rpe n 1> Owor  hy Owgp

2R.R. R 90 2R, 00

RE/1 1  Ry)OT
+ £/ — -
E.\R. 2R, 2R2) 30

R R\ O°T¢
he + Ryl x
TE ( T n(R,)) ax00

1- Rbc/th + ln(Rbc/th)

In(R;c/Roc)
dwo  Owey W R T hRTL
00 00 R Ru,E. 00> E. oxd0 )
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It is seen that the governing equations in (15) through
(22) are in terms of eight unknowns; i.e., Uy, Ugps Vor
Vobs Woi Wobs Ty, and Ty, The solution procedure
for these equations along with the associated bound-
ary conditions in 29, 30, 31, 32, 33, 34, 35, 36 and 45,
46, 47, 48, 49, 50, 51, 52 is presented in the next
section.

4.3 Solution procedure

For solving the obtained equations, the HDQM is used.
In this method, the partial derivative of a function,
with respect to a spatial variable at a given discrete
point, is approximated by a linear summation of
weighted function values at all discrete points chosen in
the solution domain of the spatial variable. The domain
of the considered shell (0 <x <L, 0 <6< p) is dis-
cretized by N, x Ny grid points along x and 6 coordi-
nates. If F(x, 0) represents either of the functions uq,,
Uop, Vo Vob Wor Wop Te» and Tj, within the shell
domain, then the partial derivatives of F(x, ) with
respect to x and 0 at the point (x;, 0;) can be expressed
discretely as [17]:

n=1,2,...,Ne—1;
d” k=1
(23)
d"F(x;, 0 SN om
(m ) By F(xi,0); m=12,...,Ny—1;
do =
(24)
d"™"F (x;, 0 N N » : n=1,2,...,Ny—1;
dxndem ;;Azk Bj<l )F )Ck76[ : :1: 1" 27 N .’N() _ 1;
(25)

where A% and B;}") are the weighting coefficients in
conjunction with the order of partial derivative of F(x,
0) with respect to x, i.e., n and the order of derivative
with respect to 0, i.e., m at the discrete point (x;, 0)),
respectively. Here, the grid points are selected based on
the Chebyshev polynomials. The description of HDQ
method and how to choose the positions of the
grid points using Chebyshev polynomials can be found
in detail in [17]. Now, Eqgs. 23 through 25 are uti-
lized to discretize the coupled governing equations in
15, 16, 17, 18, 19, 20, 21, 22 along with the corre-
sponding boundary conditions in 29, 30, 31, 32, 33, 34,
35, 36 and 45, 46, 47, 48, 49, 50, 51, 52. However,
for the sake of brevity, only the discretized form
of Eq. 15 at the discrete point (x; 0;) is presented here,
as follows:
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Table 1 Transverse displacement of the shell at x = L/2 and 0 = f3/2, for lateral pressure of g, = 100 Pa
B.Cs w;atz, =0 weatz. =0 wpatz, =0
FEM (10”7 HOT-HDQM %disc.* FEM (107 HOT-HDQM %disc. FEM (1077 HOT-HDQM %disc.
m) (1077 m) m) (107" m) m) (107" m)
CCCC —4.3856 —4.4025 -0.385 -4.3720 -4.3719 0.003 -4.3572 -4.2785 1.806
CCSS  -9.6915 -9.9524 -2.692 -9.6850 -9.9111 -2.334 -9.6736 -9.8640 —1.969
SSCS  -15.891 -16.387 -3.122  -15.894 -16.327 -2.725 -15.887 -16.258 -2.335
SSSS  -18.525 -18.915 -2.105 -18.527 —18.853 -1.759 -18.520 —-18.781 -1412

* gdisc. = [(FEM)—(HOT-HDQM)J/(FEM) x 100

t Ny t No
C23 hy o C 33h,
§ g T E

Ct h 4
2 IZB(Z Vor, — Ctthf ZASIPWOW
k=1

M()z,»,,

- 2C§3h1 Z ZASI:)B_/(II)MO&,I

N. Ny

1
h(Cly + C3) ZZAEk)B )
=1

(1
i1 Vor
I=1

Ny Ny
— Cl R, S Aoy, — Cl3hiR > A vy, + RS, =0
k=1 k=1

(26)

For any sort of boundary conditions (clamped, simply
supported or free, see Appendix A and B), after separating
the domain and the boundary degrees of freedom (DOF),
the following assembled matrix equations are obtained:

el wil U (o)

(Kan)
where {d”} and {d"} represent the boundary and domain
DOF, respectively, and {P} is the load vector. After doing
some mathematical simplifications on Eq. 27, the dis-
placement components can be calculated by solving the
following relation:

(27)

(Kaa] — [th][Khle[Kbd]] {a'} = {P} (28)

Based on the above-outlined formulations, and using the
MALAB program solver, a self-developed computer pro-
gram is written by which the displacements, strains and
stresses in different points of the shell faces and core can be
obtained. Again it should be emphasized that no limitations
on the type of boundary conditions and loading exist when
solving these equations.

5 Results and discussions

Primarily, to investigate the convergence of HOT-HDQ
method, several cases with different number of grid points

were examined which for brevity are not presented here.
The outcome of this convergence study is that selecting a
grid with minimum 21 x 21 points will yield a stable
answer in any problem under consideration. Therefore, in
all up-coming case studies, this gird scheme has been used.
The results obtained based on the HOT-HDQM are com-
pared with those obtained from an FEM model in ANSYS
software comprising 11892 of 3-D 20-noded brick type
elements with total number of nodes of 85,273.

5.1 Case study 1: evaluation of proper functionality
and verification

A cylindrical sandwich shell with different boundary con-
ditions subjected to a uniform lateral pressure is consid-
ered. The geometrical parameters are L = 0.9 m,
R=12m, =35 h,=1mm, h, =1 mm, k. = 10 -
mm (see Fig. 1). Also, the structural steel with
E; = 210 GPa and v, = 0.3 has been chosen for both face
materials. The core material is AirexR63.50 [27] with
E.=375MPa and G.= 14.05 MPa. The results for
central transverse displacement w of the shell under a
uniform lateral pressure of ¢, = 100 Pa are compared with
those obtained using FEM analysis in Table 1. In this table,
four combinations of simply supported (S) and clamped
(C) boundary conditions for four edges are considered (for
example, CCSS denotes a cylindrical shell with one
clamped curved edge, one clamped axial edge, one simply
supported curved edge, and one simply supported axial
edge).

The comparison of the results in Table 1 shows a very
good agreement between the HOT-HDQM and FEM
results.

The variations of the transverse displacement w in the
core mid-surface along 6 and x directions are presented in
Fig. 2, for the shell with all edges clamped and under a
uniform pressure of g, = 1 kPa. For this shell, distributions
of normal stress ¢, and transverse shear stresses 7, and 7y,
of the core mid-surface along x and 0 directions are shown
in Figs. 3, 4, respectively. In addition, in-plane normal
stress g of the top surface of the shell along 0 direction
and in-plane normal stress o, of the bottom surface of the
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CCCCq;=1KkPa,atx=L/2,z.=0 (b) CCCCq;=1KkPa,at0=p/2,z.=0
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Fig. 2 Transverse displacement in the core mid-surface for uniform loading along a 6 and b x directions

CCCCq,=1KkPa,atx = L/2,7. =0 b CCCCq,=1KkPa,at 0=p/2,2.=0
(a) (b)
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Fig. 3 Transverse normal stress o, in the core mid-surface for uniform loading along a 0 and b x directions

(a) CCCCq;=1KkPa,at0=p/4,2,=0 (b)
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Fig. 4 Transverse shear stresses a 7. along x direction and b 74, along 6 direction in the core mid-surface for uniform loading
shell along x direction are shown in Fig. 5. In all above  a very good agreement between the HOT-HDQM and FEM

cases, the FEM results are also shown along with the HOT-  results. Note that based on the Saint-Venant’s principle, the
HDQM results. A close inspection of these results indicates ~ results near to the boundaries cannot be trusted.
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(a) CCCCq;=1KkPa,atx =L/2,z,=h,/2
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(b) CCCCq,=1KkPa, at 0 = BI2, z, = -hy/2
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Fig. 5 a In-plane normal stress oy of zop surface of the shell along 6 direction and b in-plane normal stress o, of bottom surface of the shell along

x direction for uniform loading

Table 2 Transverse displacement, w (1076 m)atx=1L/3,0=p/3and z. =0

E/E, helhy =5 helhy = 10 helhy = 20
HOT- FEM %disc. HOT- FEM %disc.  HOT- FEM Pdisc.
HDQM HDQM HDQM
525 ~3.7699 -3.8474 201 37711 39118 -3.60 -3.6201 -3.7679 392
1,050 -3.6753 -3.7011 ~0.70 ~3.7385 -3.7921 ~141 -3.7295 -3.7828 ~1.41
2,625 ~3.5024 ~3.4856 0.48 -3.6033 -3.5991 0.12 -3.6973 -3.6917 0.15
5,250 -3.3586 -3.3225 1.09 -3.4707 ~3.4460 0.72 -3.5955 -3.5706 0.70
10,500  -3.2151 -3.1682 1.48 33282 -3.2908 1.14 ~3.4661 ~3.4290 1.08

It should be further clarified that for the case of cylin-
drical sandwich shell with CCCC type of boundary con-
ditions under a uniform pressure, the CPU time used by the
self-developed program based on the implementation of
HOT-HDQM reveals a minimum 50.6 % saving in CPU
time with respect to the FEM model. Furthermore, it has
been verified that upon equal number of nodes in a speci-
fied grid size, the developed program based on HOT-HDQ
method leads to a more accurate result than FEM. Note that
this advantage of the DQ methods over FEM has been
frequently reported by other researchers as well [17, 21].

5.2 Case study 2: effects of core flexibility

To investigate the effect of core flexibility, a cylindrical
sandwich shell with clamped edges (CCCC) under a uni-
form pressure of g, = 1 kPa is considered. Furthermore,
the geometry of the shell comprises the following param-
eters; L=09m, R=12m, f=60° h, =1 mm,
h, = 1 mm, and A, has three different values 4. = 5 mm,
h. = 10 mm, and h. = 20 mm. The faces are made of
structural steel with the same mechanical properties as the
one considered in Sect. 5.1. Nonetheless, several isotropic

materials are selected for the core material with the values
of their E,, varying in the range of 20-400 MPa (for foams
like PVC and PU: E. < 400 MPa). The variation of
transverse displacement w and transverse normal stress o,
at the core mid-surface, in-plane normal stress o, on the
external surface of the shell and in-plane normal stress o
on the internal surface of the shell are listed in Table 2, 3,
4, and 5, respectively, for five different ratios of E/E, and
three different ratios of h./hy.

As indicated in Tables 2, 3, 4, 5, comparison of these
results shows a very good agreement between HOT-
HDQM and FEM model (The greatest error is 6.91 % for
g,). These results show that by increasing the ratios of i/
hy, the accuracy of HOT-HDQM decreases. It may be due
to ignoring the in-plane stresses in the core modeling based
on the HOT. Moreover, no specific trend in the errors of the
shell displacement and stresses can be seen when E/E,
ratios are changed.

5.3 Case study 3: effects of geometric parameters

Here, two important ratios: the core to the face thickness ratio
(ho/hy) and the ratio of shell curvature to thickness (R/h) are
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Table 3 Transverse normal stress, o, (Pa) at x = L/3, 0 = /3 and z. = 0

E/E,. helhy =5 helhy = 10 helhe = 20
HOT- FEM Yodisc. HOT- FEM Yedisc. HOT- FEM Yodisc.
HDQM HDQM HDQM
525 -500.55 —490.51 2.05 —499.29 -478.88 4.26 —499.04 -467.32 6.79
1,050 -500.43 —494.23 1.25 -500.18 -487.85 2.53 -500.78 -482.67 3.75
2,625 —499.64 —498.57 0.21 -499.23 -496.59 0.53 -498.63 —496.13 0.50
5,250 —497.86 -500.05 -0.44 —495.67 —499.06 —0.68 -491.26 —498.8 -1.51
10,500 -493.94 —499.29 -1.07 —487.70 -497.36 -1.94 -475.31 —494.38 -3.86
Table 4 In-plane normal stress, o, (Pa) at x = L/3, 0 = f§/3 and z, = h,/2
E/E. helhy =5 helhy = 10 helhy = 20
HOT- FEM odisc. HOT- FEM Yedisc. HOT- FEM Yodisc.
HDQM HDQM HDQM
525 -179,770 -186,320 -3.52 -190,190 -201,500 -5.61 -198,150 -212,850 -6.91
1,050 -179,630 —-183,470 -2.09 —-185,090 -190,920 -3.05 —-188,980 -196,010 -3.59
2,625 -177,500 178,460 -0.54 -179,720 -181,120 -0.77 -181,270 -182,620 -0.74
5,250 -175,530 —174,930 0.34 -177,950 -177,030 0.52 —-180,840 -178,910 1.08
10,500 —-174,180 -172,380 1.04 -178,160 -174,960 1.83 —184,630 -178,640 3.35
Table 5 In-plane normal stress, gy (Pa) at x = L/3, 0 = /3 and z, = —h,/2
EJE. helhy =5 helhy =10 helhy = 20
HOT- FEM Yodisc. HOT- FEM Yedisc. HOT- FEM Yodisc.
HDQM HDQM HDQM
525 -592,840 —589,700 0.53 -579,700 -565,510 2.51 —545,420 -519,390 5.01
1,050 -597,340 —593,780 0.60 -591,330 -579,960 1.96 -575,210 —558,580 2.98
2,625 —-599,830 -599,870 -0.01 -596,430 -593,820 0.44 -589,640 -589,980 -0.06
5,250 -599,940 -602,960 -0.50 -595,130 -598,960 -0.64 -586,290 —-598,650 -2.06
10,500 —-597,050 -603,290 -1.03 -587,930 -598,760 -1.81 -570,590 -596,530 —4.35
Table 6 Transverse and in-plane normal stresses at x = L/3 and 0 = f}/4
h./ g,(Pa)at z. = 0 o, (Pa) at z, = —h,/2 oy (Pa) at z;, = h/2
hy
! HOT- FEM Yodisc. HOT- FEM Yedisc. HOT- FEM Yedisc.
HDQM HDQM HDQM
5 -497.58 -494.39 0.64 -165,620 -169,770 -2.44 -605,090 610,370 -0.87
10 -495.42 -494.17 0.25 -162,830 -166,600 -2.26 -610,410 -611,210 -0.13
20 -491.03 —495.40 —0.88 -157,480 -161,520 -2.50 -619,010 —615,790 0.52
40 -482.30 —499.12 -3.37 —149,970 -154,110 -2.69 -631,680 —601,980 4.93

studied. To study the core to the face thickness ratio, a
cylindrical sandwich shell with clamped edges (CCCC) sub-
jected to a uniform lateral pressure of g, = 1 kPa is consid-
ered. The geometrical parametersare L = 0.9 m,R = 1.2 m,
p = 60° h, =1 mm, h, = 1 mm and h. has four different
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values 5, 10, 20, and 40 mm. Also, the faces and the core are
made of the structural steel and AirexR63.50, respectively,
whose properties are given in Sect. 5.1.

The results for transverse normal stress o, of the core
mid-surface, in-plane normal stress o, of the top surface of
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Table 7 Transverse and in-plane normal stresses at x = L/3 and 0 = /3

R/ g,(Pa)atz. =0

o, (Pa) at z;, = —h,/2

gy (Pa) at z;, = h/2

HOT- FEM Yodisc. HOT- FEM Yedisc. HOT- FEM Yedisc.
HDQM HDQM HDQM
500 -491.31 —492.44 -0.23 -382,050 -394,710 -3.21 2,622,200 2,655,800 -1.27
100 —494.60 -498.81 -0.84 -154,110 155,000 -0.57 -560,640 555,130 0.99
50 -468.37 -490.62 -4.54 -76,247 -80,463 -5.24 298,760 285,660 4.59
20 -340.23 -435.95 -22.0 -20,898 27,781 -24.8 -153,300 -131,610 16.5

the shell, and in-plane normal stress oy of the bottom
surface of the shell for four different thickness ratios at
specified positions are presented in Table 6. A very good
agreement between HOT-HDQM and FEM is observed.
Furthermore, it is seen that by increasing the ratios of a./hy,
the accuracy of HOT-HDQM decreases which was also
reported in the second case study.

To study the effect of the curvature to thickness ratio, a
cylindrical sandwich shell with clamped edges (CCCC)
subjected to a uniform lateral pressure of g, = 1 kPa is
considered. The geometrical parameters are L = 0.9 m,
p=060° h,=1mm, h, = 1 mm, h. = 10 mm and the
problem has been solved for four different values of R/h 20,
50, 100, and 500. Also, the faces and the core are made of
structural steel and AirexR63.50, respectively, with the same
mechanical properties as those used in the case study 1.

The results for transverse normal stress ¢, on the core
mid-surface, in-plane normal stress ¢, on the external
surface of shell, and in-plane normal stress gy on the
internal surface of shell are given in Table 7. This table
shows that by decreasing the curvature to thickness ratio,
the difference between HOT-HDQM and FEM increases.
This, on the other hand, is due to the assumptions of Love—
Kirchhoff shell theory (used here in modeling of the faces)
which are valid for thin shallow shells.

6 Conclusion

Cylindrical sandwich shells under general type of distrib-
utive lateral loadings are modeled based on a HOT of
sandwich structures. The faces are modeled as thin cylin-
drical shells obeying the Kirchhoff-Love assumptions. For
the core material, it is assumed to be thick and the in-plane
stresses are negligible. The governing equations are
derived using the principle of minimum total potential
energy and solved using HDQM. The obtained results
using HOT-HDQM are compared with the results out of the
finite element method. Based on this study, the followings
are concluded:

e In using HOT-HDQM for static analysis of sandwich
shells, there are no limits on type of boundary
conditions and loadings.

e The convergence of the HOT-HDQM is faster than
FEM and the calculation cost for the HOT-HDQM is
less than FEM.

e HOT-HDQM neglects the in-plane strains and stresses
in the core and, therefore, it is expected that less
accurate results be obtained in comparison with FEM.
However, the results show that for low stiffness cores,
this assumption is a valid assumption and has no
significant effect in the results.

e For sandwich panels having low stiffness cores with
small ratios of the core to the face thickness, there is a
good agreement between HOT-HDQM and finite
element results.

e Comparison of the results obtained based on HOT-
HDQM and FEM shows that by increasing the core to
the face thickness ratio and the curvature to thickness
ratio, the accuracy of HOT-HDQM decreases.

Appendix A

Boundary conditions, on 0 = 0, f.

oug AUy, = 0 (29)
SuopAUgy = 0 (30)
SvorA Vo = 0 (31)
SvopAVo, = 0 (32)
SwoAWo = 0 (33)
owopAWo, = 0 (34)
5 agvgo’ ADWy, = 0 (35)
5% 4 D, — 0 (36)
a0
where.
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Cosh Cishi Quor  Cos3hs Dvor
R, 00 R, 00

au() avO
+ Clshi——+ Cizhy axt

ox
C&hb W C33hb 6140;, C%hb %
R, " R, 00 ' R, 00
Ougp Ovop

ox ox

Czth au()[ Cézhl htz aVQl
R 0 ] "

R TR 0 TR T 2Re) 0
C§2h? 62W0t t au()t t 2 6\/()[

— h 1 f -
12R} 36> G5+ Cosh +1213,2 ox

 Chl @wo  Clyhy @y,
6R? Ox00  12R, Ox?

Corh _|_C§3hb Ouop +C1272hb 14 hiz Ovoe
Ry R, 90 = R, 12R2) 30
ngh?; 62W0b au()b b [27 av()b

— Chihp| 1 -

12K} 0P o U TR o
_ C{’zhi@ Wop

_ Céghi 62W0b
6R; 0x00 12R, 0Ox?

AU(); =

0t

hb + C%hb

(39)

AVyp, =

Wob

+ Chyhy——

(40)

Ch,h? 3 vor
12R} 00?

 Choli o, | Ch3hy B
12R} 00° = 4R? 0x00
Gl Dwo | v R
3R? 3x00*  6R, Ox* 12R,
aSW(), Ctmh? 63w0, htRz
— < T¢ (x,0 41
X320 6 o Tamm, =m0 (31
CoLl3 vop  Chyhy Bwop | Chihi vy
12R} 80> 12R} 00> = 4R 0xd0
oy Bwoy | Chl e, B
3R% Gxa()z 6Rb 6x2 12Rb
% 63W0b . Cﬁhi 63W0b thg
ax260 6 6x3 2RbRbc

Chh? vy, Chyh> wy,  Cih? Dvgy
12R3 30 ' 12R? 00> 12R? ox
Chh? Fwor  Clald wy,
6R? x00 = 12R, Ox?

AWy, =

(Cly +4C5;)

AWy, =

(Chh +4C53)

Tp.(x,0)  (42)

ADWy = —

szl’lh avo;,
12R} 30
C§3h3 GZW();,
6RZ ox0

ngh}j 62W0b

12R) o0®
Cchh3 wop
12Rb 6x2

C1273 hz aV()b
12R? Ox

ADWy, =

(44)

Note that for considered boundary conditions the rela-
tions are as follows:
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Clamped (C) 5140; = 514017 = 5\/0, = 5\/0;, = 5WQZ =
Swop = 020 = § % = (),

Slmply supported (S): Oug, = Ougy, = AVy, =
AVob = 5W0, = 5W0b = ADW()t = ADW()b =0

Free (F) AUot = AU()b = AV(), = AV()b = AW()[ =
AWy, = ADWy, = ADWy, = 0.

Appendix B

Boundary conditions, on x = 0, L.

5140;BU01 =0 (45)
5u0bBU0b =0 (46)
5V0;BVO, =0 (47)
5V0bBVOb =0 (48)
SwoBWo; = 0 (49)
5W0bBWOb =0 (50)
0
5 g”‘” BDWy, =0 (51)
6w0b
00— i BDWy, =0 (52)
where.
au() 6vo
BUy = CizthQZ + Ct ael + C 60t
0 0
+ CliR S+ ClihiR, avo’ (53)
auOb Avop
BUy, = Cb,h Chsh boh
0b 121Wop +a by 60 a b 30
Uob Vob
C (R C SRy —— 54
+ bRy == + Ry (54)
Oug vy
BVor = Coghowr + Ciahi =557+ Cl”h’( 12R2> 0
C§3h? aZW(), 6140, h2
— C'.hR,—+ C.h | R, +
12R? 30> TGl g Gl R 12R,
X % _ Cf’)?)ht3 62W0, o C§3h? azw()f (55)
Ox 6R;, 0x00 12 ox?
61401, C23 b 6\/01,
BVy, = C23hbWOb + C33hb 20 ( 12R2 + C23hb 69

ol Pwop Ouop b Cashy
— hpRp—— hyR

12R} 00° T CheRy =5 7GR 5 R,
vy Chihi &Pwop  Chyhy 0w (56)
Ox 6R, 0x00 12 ox?
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BWy, = Chah? 0o, Chyh} @ wy (cqzh; cg3h§> vy
6R2 30> 6R? o0° 12R, ' 6R, ) dxd0
Cll?  Ciuh?\ wy Lk 0Pvy,
_<12R, 3R, >6x602 12 ax2
Gl @wo ClL RO wor | hiR. T* (x.0)
3 x200 12 a3 | 2 o~

(57)

BWo — C&hg 62v0b _ C&hg 63W0b Ci)zhl?; C&hz 62v0b
“TT6RZ 00> 6R2 06° \12R, 6R, ) ox00
. (C?zhi Cé’;hi) 63w0,, Clbghi aZVOb

12R, ~ 3R, ) ox00> 12 &x?
_ C}1’3h2 63wob _ C?lthb 63W0b hyR. T (x,0)
3 ox200 12 ox3 PR
(58)
BDWO = — tlzh? % iZh? azw()f _ Ci3h?%
t 12R, 00~ 12R, 80> 12 &
Ci3h? 62W0t Cﬁ lh?Rt 62W0t (59)
6 oxo0 12 o2
BDWOb = — C?zhz % CIIJZhi 62W0b . C?3h2 @vﬁ
12R, 80 © 12R, 00> 12 ox
+ Cll]3h?) azwob Clbl h?)Rb @ZWO;, (60)
6 0x00 12 o2

Note that, for considered boundary conditions, the
relations are as follows:

Clamped (C) (31/{0; = (3M0b = (SV()I = (SVOb = 5WO[ =
Swop = 6 %o = 5o — ),

Simply supported  (S):0ug, = dug, = BVy, = BV, =
5W0t = 5W0b = BDW(), = BDW()[, =0

Free (F) BU(); = BUOb = BVot = BV()b = BW()[ =
BWy, = BDWy, = BDW;;, = 0.
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