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Abstract The aim of this paper is to propose an optimal

finite duration treatment method for avoiding tumor

growth. For this purpose, a mathematical model in the form

of ordinary differential equations is modified with combi-

nation vaccine therapy and chemotherapy treatments.

Numerical simulations, using human parameters, show that

there are two equilibrium points. The tumor-free equilib-

rium point is unstable while the high-tumor equilibrium

point is stable. Hence, the dynamics of the cancer model

must be changed to have finite duration treatment. There-

fore, the vaccine therapy is used to change the parameters

of the system and the chemotherapy is applied for pushing

the system to the domain of attraction of the healthy state.

It is shown that any treatment method without changing the

dynamics of the system around the tumor-free equilibrium

point is not an appropriate treatment method. For optimal

chemotherapy, the State-Dependent Riccati Equation based

optimal control is used to the nonlinear model. Different

weighting matrices are used to show the flexibility of this

method in design. Simulation results show that the per-

formance of the treatment would be better if the matrix was

state dependent. In this paper, the input weighting matrix

depends on the tumor cell population. If the input matrix

becomes less in the beginning of the treatment causes more

tumor cells eradication. Also, the present study states that a

proper treatment method should not only reduce the pop-

ulation of tumor cells, but also change the dynamics of the

cancer.

Keywords Mathematical model � SDRE optimal control �
Chemotherapy � Vaccine therapy

1 Introduction

Almost more than 585,700 deaths due to cancer from

1,665,540 cancerous people are reported every year in the

US [1]. So, modeling and treatment of cancer are the main

focus of many researchers worldwide from clinicians,

biologists, mathematicians, and control engineers. Many

evidences showed the ability of the immune system in

diminishing the tumor cells in the absence of the external

treatment [2]. Therefore, immunotherapy has been used for

cancer treatment. The two important parts of the defensive

mechanisms in the body are innate and adaptive immune

mechanisms. Adaptive immune systems have memory. In

other words, part of these cells will stay in the body after

encountering with a causing disease agent [2]. Hence, the

following issues are essential in cancer modeling and

finding an appropriate treatment method:

• existence of memory and memory cells;

• complete elimination of the tumors after a finite

duration treatments.

The modeling approaches to study disease dynamics

include, but not limited to the following, optimization,

compartmental, and dynamical system approaches [3]. In

this work, a dynamical system approach is used which

shows the interaction among cells and drugs. In [4, 5], a
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review of mathematical models which are used for cancer

therapy is expressed.

The two open-loop and closed-loop approaches could be

used to control a system. Feedback control strategy is

robust in dealing with parameter variation of the system,

which causes better performance relative to open-loop

controllers [6–8].

Chemotherapy as an efficacious method in treatment of

cancer and is based on usage of drugs. For avoiding from

adverse side effects of such drugs and preserving the level

of dosage, drugs should be used based on a regular pro-

gram. Different control methods have been used for

solving this problem. Using these methods besides opti-

mizing the amount of drugs used yields effective dimin-

ishing of tumor cells. Currently, many mathematical

models for simulating the behavior of the drug and its

effects on the body are presented [9]. Swan and Vincent

introduced chemotherapy treatment program as an optimal

control problem [10]. In 1990, Swan studied usage of

optimal control theory in cancer chemotherapy, and

described great variation among these models [11]. Then

in 2000, Claire et al [12] introduced several models in the

field of application of chemotherapy in the treatment of

breast cancer. In 2001, Parker and Doyle performed a

thorough review of articles that build the mathematical

models of drug delivery and allocated small part of the

cancer optimal chemotherapy [13]. In 2005 Harold and in

2009 Harold and Parker recognized deficiencies and

weaknesses in the treatment of chemotherapy that related

to clinical programs [13, 14]. In 2007, Nanda et al. [15]

applied an optimal control model of two-drug chemo-

therapy for leukemia. In 2011, Shi et al. [9] presented a

summary of the optimization models in treatment che-

motherapy programs. In 2013, Moradi et al. [16] designed

an optimal robust control in cancer chemotherapy. How-

ever, the existing studies assume that the dynamics of the

cancer during treatment is time invariant. In other words,

they consider the effect of therapeutic inputs only on the

states of the system. But, the dynamics of cancer alters

during its progression [17]. Wrecking inputs such as

external stresses can disable the DNA repair genes [18].

These inputs are able to change the functions of growth-

inhibiting signals (TGF-b), regulatory growth signals

(TGF-a), and apoptosis (TP53) [17]. Therefore, an

effective treatment method should correct these destruc-

tive changes in the dynamic behavior during treatment

which is considered in this paper.

In this study, we regard a system of ordinary differential

equation (ODE) that presents interaction among immune

cells and tumor cells. This model is based on the model

developed in [19]. In the proposed treatment method, we

not only reduce the tumor cells, but also modify the

dynamics of the system to correct the aforementioned

destructive changes in the system dynamic. In many

studies, the important shortcoming is that the cancer

relapses after elimination of the therapy. For instance, in

[19], the authors suggest a combined open-loop control for

a series of parameters (patient 9). But after elimination of

the inputs (combination of chemotherapy and immuno-

therapy), the tumor will re-grow and the cancer relapses

due to instability of the tumor-free equilibrium point. We

want to propose a method for finite duration treatment such

that at the end of treatment the tumor becomes eradicated.

So, we analyze and extend this model by adding vaccine

and chemotherapy treatment terms. The vaccine has an

effect on some parameters of the system; while, chemo-

therapy has an effect on the cell populations. We use SDRE

method due to its optimal performance, flexibility in

design, and robustness [20].

In the next section, the no treatment model is analyzed.

In Sect. 3, we extend this model by adding vaccine therapy

and chemotherapy treatment terms. We show that any

treatment method without changing the dynamics of the

system around the tumor-free equilibrium point is not an

appropriate treatment method. Then, we suggest SDRE-

based optimal control for the nonlinear tumor growth mode

in Sect. 4. The aim of proposing the mixed vaccine and

chemotherapy treatment is to present an optimal finite

duration treatment such that the cancer is not able to

relapse. In the last section, simulation results are discussed.

The main highlights of the present study can be summa-

rized as follows:

• consideration the change in the dynamics of the cancer

during treatment as a main factor in proposing treat-

ment methods;

• applying the SDRE optimal control to nonlinear cancer

dynamics;

• robustness of the proposed method with respect to

parametric uncertainty;

• straightforward implementation of the SDRE method.

2 The no treatment model

We use the model presented in [19] in the absence of

treatment. This model is an extension of the model pre-

sented in [21] by adding new cell interaction terms. This

model does not concentrate on a special type of cancer. In

the absence of treatment, the model is fourth order ordinary

differential equations. The states of the system are: the total

tumor cell population (TðtÞ), the concentration of NK cells

(cells/L) (NðtÞ), the concentration of CD8?T cells (cells/L)

(LðtÞ), and the concentration of lymphocytes, not including

NK cells and active CD4?T cells (cells/L) (CðtÞ). The no

treatment system is given by:
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dT

dt
¼ aT 1� bTð Þ � cNT � DT ; D ¼ d

Ll

sTl þ Ll
; ð1Þ

dN

dt
¼ eC � fN þ g

T2

hþ T2

� �
N � pNT ; ð2Þ

dL

dt
¼ �mLþ j

D2T2

k þ D2T2
L� qLT þ r1NT þ r2CT � uNL2;

ð3Þ
dC

dt
¼ a� bC: ð4Þ

The tumor cells grow logistically with rate a up to b�1,

which is the tumor carrying capacity. The NK cells kill the

tumor cells in the form �cNT . The tumor lysis term by

CD8þT is in the form �DT , which shows the bounded

ability of the effector cells in lysing the tumor cells. In this

model, it is assumed that the growth rate of NK cells is tied

to the overall immune health levels (eC � fN). The NK

cells’ recruitment term is g T2

hþT2

� �
N. The death rate of NK

cells in dealing with tumor cells is �pNT . The death rate of

CD8þT cells is proportional to their population (�mL).

The recruitment term for CD8þT cells is j D2T2

kþD2T2 L; r1NT

and r2CT . The term �uNL2 shows in inactivation term of

these cells. It is assumed that the circulating lymphocytes

grow with constant rate, which have a natural lifespan [19].

2.1 Equilibria

To derive the equilibria of the system, we simultaneously

set all Eqs. (1), (2), (3) (4) equal to zero. Equation (4) is

decoupled from others; so we have CE ¼ a
b. By setting (1)

equal to zero, we may have two type of equilibrium points.

One of them is the tumor-free equilibrium point, i.e.,

TE ¼ 0. The second type corresponds to non-zero tumor

cell population. The tumor-free equilibrium point for all

four states variables is given by:

E0 ¼ 0;
ea
bf
; 0;

a
b

� �
:

The other equilibrium points for the non-zero tumor

population, i.e., TE 6¼ 0, must be obtained numerically. By

setting (2) equal to zero and solving for NE, we have:

NE ¼
eCEðhþ T2Þ

fhþ f � gð ÞT2 þ phT þ pT3
: ð5Þ

Similarly, by setting (1) equal to zero gives,

DE ¼ a� abT � cNE: ð6Þ

Using the expression for D we have:

LE ¼
sDETl

d � DE

� �1=l

: ð7Þ

Finally, by setting (3) equal to zero gives,

uNEL2 þ m� jD2
ET2

k þ D2
ET2
þ qT

� �
L� r1NE þ r2CEð ÞT ¼ 0: ð8Þ

Equilibrium points of the system defined by (1), (2), (3)

(4) are founded by intersecting Eqs. (7) and (8). Numerical

simulation shows that there are two solutions to (5), (6), (7)

(8) which only one of them is positive (Fig. 1). This means

that it is biologically plausible. So, the system has only two

equilibrium points with the parameters stated in Appendix 1.

2.2 Local stability

In this section, we examine the local stability of the equi-

librium points by linearizing the system about them. The

tumor-free equilibrium point is very important from

physiological viewpoint. Treatments actually should be

able to push the system to this point eventually. The

Jacobian matrix of the system around an arbitrary equi-

librium point is:

J ¼

J11 J12 J13 0

J21 J22 0 J24

J31 J32 J33 J34

0 0 0 J44

2
664

3
775;

where:
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Fig. 1 The non-negative equilibrium points for human data presented

in Appendix 1 by intersecting Eqs. (7) and (8)
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J11 ¼ a� 2abT � cN � d
sTlLl 1� lð Þ þ L2l

sTl þ Llð Þ2
;

J12 ¼ �cT ;

J13 ¼ �
sdlTlþ1Ll�1

sTl þ Llð Þ2
;

J21 ¼
2gNhT

hþ T2ð Þ2
� pN;

J22 ¼ �f þ g
T2

hþ T2
� pT ;

J24 ¼ e;

J31 ¼
2jkd2TL2lþ1 sTl þ Ll

� �
sTl 1� lð Þ þ Ll
� �

k sTl þ Llð Þ2þd2T2L2l
� �2

� qLþ r1N þ r2C;

J32 ¼ r1T � uL2;

J33 ¼ �mþ j
ð2lþ 1Þkd2sTlþ2L2l sTl þ Ll

� �
þ d2L4lT2ðd2T2 þ kÞ

k sTl þ Llð Þ2þd2L2lT2

� �2

� qT � 2uNL;

J34 ¼ r2T;

J44 ¼ �b;

Preposition1 The tumor-free equilibrium point E0 is

asymptotically stable if and only if: c [ abf
ea .

Proof The Jacobian matrix of the system around the

tumor-free equilibrium point E0 is simplified as:

J ¼

a� cea
bf

0 0 0

� pea
bf

�f 0 e

r1ea
bf
þ r2a

b
0 �m 0

0 0 0 �b

2
6666664

3
7777775
:

Therefore, the eigenvalues of the system around this

equilibrium point are:

k1 ¼ a� cea
bf

; k2 ¼ �f ; k3 ¼ �m; k4 ¼ �b:

Since f ; m and b are positive, therefore, the eigenvalues

k2; k3 and k4 are always negative. The first eigenvalue is

negative if:

a� cea
bf

\0! c [
abf

ea
:

Hence, if c [ abf
ea , the tumor-free equilibrium point E0 is

asymptotically stable and vice versa. h

The stability of the high-tumor equilibrium point is also

investigated. By investigating the Jacobian matrix of the

system at this equilibrium point, all eigenvalues are nega-

tive. Therefore, this equilibrium point is stable. This means

that, if the treatment is stopped and the dynamics of the

system has not been changed during treatment, the system

will return to its high-tumor state. So, if the tumor-free

equilibrium point is unstable, to have an effective cure, any

treatment must not only lessen the tumor volume, but it

must also change the dynamics of the system around the

tumor-free equilibrium point.

3 The mixed vaccine and chemotherapy treatment

model

The aim of this paper is the total recovery of the patient

after a finite duration treatment such that the cancer is not

able to relapse again. In the sense that, the cancer cell

populations must go to zero after the end of elimination of

treatment. For this purpose, the system during treatment

must be pushed to the tumor-free equilibrium point exactly

due to the instability of this point. But, in a continuous

system, it takes infinite time. In other words, the treatment

must be applied during the entire life of the patient.

Otherwise, after elimination of the input, the system comes

back to its non-zero tumor equilibrium point (Fig. 2). In

Fig. 2, the tumor cell population is pushed toward zero by

constant five dose chemotherapy in period of 5 days, but

after elimination of the input due to the instability of this

point, the system goes to the only stable equilibrium point

in the positive region of solutions.

Therefore, the total recovery in a finite duration treat-

ment is not possible unless this equilibrium point becomes

stable. Therefore, one of the features of an appropriate

treatment method must be to change the dynamics of the

system around the tumor-free equilibrium point. Then, by

pushing the system to the domain of attraction of this point,

the system converges to it even after elimination of the

treatment inputs.

Since, the vaccine therapy has an effect on some

parameters of the system, we use mixed vaccine and che-

motherapy treatment. The duty of the vaccine therapy is to

change the dynamics of the system and the duty of the

chemotherapy is to push the system toward the domain of

attraction of the tumor-free equilibrium point. The effect of

vaccine is considered on parameters c; g; j; s and d [19].

The effect of vaccine therapy is included in the mathe-

matical model by the term vvðtÞ� 0. The rate of changing

these parameters is assumed to be proportional to the input

magnitude vv tð Þ, which is in accordance with [19, 22]. The

values of lc; lg; lj; ls and ld depend on the dynamics of

c; g; j; s and d, respectively. The biotransformation coeffi-

cients saturate at a finite limit kc; kg; kj; ks and kd, which are

related to the biological limits of body organs and the

accumulation of external effect [22]. Also, the effect of

chemotherapy is included by the term M tð Þ which

vMðtÞ� 0 is the amount of chemotherapy agent injected per
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day per liter of blood. Some chemotherapeutic drugs, such

as doxorubicin, are only effective during certain phases of

the cell cycle, and pharmacokinetics also indicate that the

effectiveness of chemotherapy is bounded [19]. Therefore,

a saturation term 1:2M
0:8þM

is used to represent the chemo-

therapy fractional cell kill. Note that the kill rate is almost

linear at low concentrations of drug, while it becomes

plateaus at higher drug concentration. So, the modified

equations of the system with treatment are as following:

dT

dt
¼ aT 1� bTð Þ � cNT � DT � KT

1:2M

0:8þM

� �
T;D

¼ d
Ll

sTl þ Ll
;

ð9Þ

dN

dt
¼ eC � fN þ g

T2

hþ T2

� �
N � pNT � KN

1:2M

0:8þM

� �
N;

ð10Þ

dL

dt
¼ �mLþ j

D2T2

k þ D2T2
L� qLT þ r1NT þ r2CT � uNL2

� KL

1:2M

0:8þM

� �
L;

ð11Þ
dC

dt
¼ a� bC � KC

1:2M

0:8þM

� �
C; ð12Þ

dc

dt
¼ lcvv tð Þ 1� c

kc

� �
; ð13Þ

dg

dt
¼ lgvv tð Þ 1� g

kg

� �
; ð14Þ

dj

dt
¼ ljvv tð Þ 1� j

kj

� �
; ð15Þ

ds

dt
¼ lsvv tð Þ 1� s

ks

� �
; ð16Þ

dd

dt
¼ ldvv tð Þ 1� d

kd

� �
; ð17Þ

dM

dt
¼ �lM þ vM tð Þ: ð18Þ

Note also that the system, which is an autonomous

system with differentiable functions, satisfies existence and

uniqueness of initial value problems [23].

A concise illustration of each term can be found in

Appendix 2. Also, the parameters of the system and their

values, from experimental data, are described in Appendix 1.

All constants are positive.

4 Optimal control for mixed drug administration

A recently developed technique for nonlinear systems is

called State-Dependent Riccati Equation (SDRE)-based

optimal control, which does not yet have complete theo-

retical background, and has been applied successfully to

nonlinear systems both in theory and experimental practice.

Although there are some applications of SDRE optimal

control to biological systems, control of drug administra-

tion in cancer dynamics using this method has not been

studied yet. Due to its computational simplicity and its

satisfactory simulation/experimental results, SDRE optimal

control technique becomes an attractive control approach

for a class of nonlinear systems and therefore many

research and application results are reported [8].

In this paper, we apply SDRE-based optimal control for

the nonlinear cancer dynamics. The amount of chemo-

therapy drug administration is considered as a control input
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Fig. 2 Turning the system to the non-zero tumor equilibrium point after elimination of the chemotherapy due to instability of tumor-free

equilibrium point
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to the system which holds the interactions between normal,

tumor, and immune cells and should be optimal which is

defined as the minimization of drug amount and duration of

the treatment. The aim of the control is to eliminate the

tumor cell while minimizing the amount and duration of

chemotherapy. The cost function for the optimal control is

selected as a biological relevant quadratic function of the

states and control input. One of the main contributions of

this paper is to apply SDRE optimal control to cancer

dynamics. Although there are many optimal control algo-

rithms proposed in this field, almost all of these algorithms

require the use of some special nonlinear optimization

software. Unlike the other optimal control approaches

which have appeared in the literature in which (Hamilton–

Jacobi–Bellman) HJB equations should be solved using

numerical shooting methods or using special nonlinear

optimization algorithms, the method proposed here gives a

suboptimal solution by solving the well-known linear

quadratic regulator (LQR) problem. The method also gives

some extra freedom to choose different state-dependent

coefficient (SDC) matrices and weighting matrices of the

states and controls which may lead to better results in terms

of chosen variables such as a state or a control input [8].

4.1 SDRE optimal control theory

Consider the deterministic, infinite horizon nonlinear

optimal regulation (stabilization) problem, such that it is

full state observable, time invariant and affine in the input,

represented in the following form:

_x ¼ f xð Þ þ B xð Þu tð Þ; x 0ð Þ ¼ x0; ð19Þ

where x 2 Rn is the state vector, u 2 Rm is the input vector,

and t 2 ½0;1Þ with C1ðRnÞ functions f : Rn ! Rn and

B : Rn ! Rn�m, and B xð Þ 6¼ 08x. Without loss of general-

ity, the origin x ¼ 0 is assumed to be an equilibrium point.

The minimization of the infinite time performance index:

J x0; u :ð Þð Þ ¼ 1

2

Z 1
0

xT tð ÞQ xð Þx tð Þ þ uT tð ÞR xð ÞuðtÞ
� 	

dt;

is considered, which is non-quadratic in x but quadratic in

u. The state and input weighting matrices are assumed state

dependent such that Q : Rn ! Rn and R : Rn ! Rm�m. It is

assumed that Q and R are symmetric and R is positive

definite.

Q xð Þ� 0; R xð Þ[ 0:

Since f 0ð Þ ¼ 0 and f ð:Þ 2 C1ðRnÞ, the system (19) can

be written as pseudo-linear form:

_x ¼ A xð Þxþ B xð Þu; ð20Þ

where f xð Þ ¼ A xð Þx. In Eq. (20), AðxÞ 2 Rn�n and BðxÞ 2
Rn�m are state-dependent coefficient (SDC) matrices which

bring the nonlinear system described by (19) into a linear-

like representation. These matrices are not unique. How-

ever, it is advisable to select such that the matrices A xð Þ
and BðxÞ are controllable. The state-dependent controlla-

bility matrix is as follows:

M xð Þ ¼ ½B xð Þ A xð ÞB xð Þ . . . An�2 xð ÞB xð Þ An�1 xð ÞBðxÞ�:

To control the nonlinear system, the above matrix must

have full rank in the domain for which the nonlinear system

is controlled.

Some optimal control problems need constraints that must

be applied on state variables or the control input. Choice of

weight matrices QðxÞ and RðxÞ plays an important role in

satisfying these optimal control problems’ constraints.

Hamiltonian matrix for the optimal control problem is as

follows:

H x; u; kð Þ ¼ 1

2
xT Q xð Þxþ uT R xð Þu
� �

þ kT A xð Þxþ B xð Þuð Þ
� wT u� uminð Þ � ŵT umax � uð Þ;

where w and ŵ are m dimensional non-negative vectors

presented to apply constraints to the control input and they

must satisfy the following conditions:

wT u� uminð Þ ¼ ŵT umax � uð Þ ¼ 0:

From the Hamiltonian, the necessary conditions for

optimality are:

_x ¼ oH

ok
¼ A xð Þxþ B xð Þu;

_k ¼ � oH

ox
¼ �Qx� oA xð Þx

dx


 �T

k� oB xð Þu
dx


 �T

k;

0 ¼ oH

ou
¼ R xð Þuþ BT xð Þk� wþ ŵ ð21Þ

8>>>>>>><
>>>>>>>:

The last equation of (21) gives the optimal control of the

form:

u xð Þ ¼ �R�1 xð Þ BT xð Þk� �wþ ŵ
� �

;

By applying the theory of LQR, the ad-joint state vector

has the form given by:

k ¼ P xð Þx:

If we suppose Ai: as the i th row of AðxÞ and Bi: as the i

th row of BðxÞ:
oðAðxÞxÞ

ox
¼ A xð Þ þ oðAðxÞÞ

ox
x

¼ A xð Þ þ

oA1

ox1

x . . .
oA1

oxn

x

..

. ..
.

oAn

ox1

x . . .
oAn

oxn

x

2
66664

3
77775

and.
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oðBðxÞuÞ
ox

¼

oB1

ox1

u . . .
oB1

oxn

u

..

. ..
.

oBn

ox1

u . . .
oBn

oxn

u

2
66664

3
77775

Differentiation from k ¼ PðxÞx with respect to time

along a trajectory to find the matrix-valued function PðxÞ
yields:

_k ¼ _P xð Þxþ P xð Þ _x
¼ _P xð Þxþ P xð ÞA xð Þx
� P xð ÞB xð ÞR�1 xð Þ BT xð ÞP xð Þx� wþ ŵ

� �
The following notation is used:

_P xð Þ ¼
Xn

i¼1

Pxi
xð Þ _xiðtÞ

By comparing with (21):

_P xð Þxþ P xð ÞA xð Þx� P xð ÞB xð ÞR�1 BT xð ÞP xð Þx� wþ ŵ
� �

¼ �Q xð Þ � A xð Þ þ o A xð Þð Þ
ox

x


 �T

PðxÞx� oB xð Þu
dx


 �T

PðxÞx

Rearranging the terms gets:

_P xð Þ þ o A xð Þð Þ
ox


 �T

P xð Þ þ oB xð Þu
dx


 �T

PðxÞ
 !"

þ P xð ÞA xð Þ þ AT xð ÞP xð Þ � P xð ÞB xð ÞR�1BT xð ÞP xð Þ þ QðxÞ
� �#

� x� P xð ÞB xð ÞR�1ð� �wþ ŵÞ ¼ 0

By assuming that oðAðxÞÞ=ox, oðBðxÞuÞ=ox are small

and P xð Þ is stationary, the suboptimal solution is:

~u xð Þ ¼ min max u; uminð Þ; umaxð Þ;

where umin and umax are the minimum and maximum

bounds on the control, respectively and:

u xð Þ ¼ �R�1 xð ÞBT xð ÞP xð Þx: ð24Þ

It is shown that the feedback control law works rea-

sonably well when these conditions are not satisfied [24]. It

is assumed that P xð Þ solves the SDRE, which is given by:

P xð ÞA xð Þ þ AT xð ÞP xð Þ � P xð ÞB xð ÞR�1BT xð ÞP xð Þ þ Q xð Þ
¼ 0

then the following condition must be satisfied for

optimality:

_P xð Þ þ o A xð Þð Þ
ox


 �T

P xð Þ þ oB xð Þu
dx


 �T

P xð Þ ¼ 0

The above equation is the optimality criterion [25].

Dynamics of the closed-loop system is obtained

according to the following equation:

_x ¼ A xð Þ � B xð ÞR�1 xð ÞBT xð ÞP xð Þ
� �

x:

4.2 SDRE optimal control design

To design SDRE-based optimal control, we must rewrite

the system in the form (20) by shifting the tumor-free

equilibrium point to the origin. New state variables are as

follows:

T ¼ x1;

N ¼ x2 þ ea=bf ;

L ¼ x3;

C ¼ x4 þ a=b;

M ¼ x5:

In this case, the system of equations is as following:

dx1

dt
¼ ax1 1� bx1ð Þ � c x2 þ ea=bf

� �
x1 � Dx1

� 1:2KTx1x5

0:8þ x5

;

dx2

dt
¼ e x4þ a=b

� �
� f x2 þ ea=bf

� �

þ g
x2

1

hþ x2
1

x2 þ ea=bf

� �
� pðx2 þ ea=bf Þx1

� 1:2KNx5

0:8þ x5

x2 þ ea=bf

� �
;

dx3

dt
¼ �mx3 þ j

D2x2
1

k þ D2x2
1

x3 � qx1x3

þ r1 x2 þ ea=bf

� �
þ r2 x4þ a=b

� �� �
x1

� u x2 þ ea=bf

� �
x2

3 �
1:2KLx3x5

0:8þ x5

;

dx4

dt
¼ a� b x4þ a=b

� �
� 1:2KCx5

0:8þ x5

x4þ a=b

� �
;

dx5

dt
¼ �cx5 þ tM tð Þ;

D ¼ d
x3=x1

� �l

sþ x3=x1

� �l
:

To use the SDRE method, the above equations must be

represented in the form of pseudo-linear given by (20). The

matrices AðxÞ and BðxÞ are:

A xð Þ ¼

A11 �cx1 0 0 A15

A21 A22 0 e A25

A31 r1x1 A33 r2x1 A35

0 0 0 �b A45

0 0 0 0 �c

2
66664

3
77775;
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A11 ¼ a 1� bx1ð Þ � D� cea
bf

;

A15 ¼
�1:2KT x1

0:8þ x5

;

A21 ¼
gx1

hþ x2
1

ea
bf
� p x2 þ

ea
bf

� �
;

A22 ¼
gx2

1

hþ x2
1

� f ;

A25 ¼
�1:2KN

0:8þ x5

x2 þ
ea
bf

� �
;

A31 ¼ �qx3 þ r1

ea
bf
þ r2

a
b
;

A33 ¼ �mþ jD2x2
1

K þ D2x2
1

� u x2 þ
ea
bf

� �
x3;

A35 ¼
�1:2KLx3

0:8þ x5

;

A45 ¼
�1:2KC

0:8þ x5

x4 þ
a
b

� �
;

B xð Þ ¼ 0 0 0 0 1½ �T :

5 Numerical simulations

The goal of the treatment is to kill the tumor cells in a finite

duration while minimizing the amount of drug that also

reduces the detrimental toxicity effect caused by extra

usage of chemotherapy drugs. In the proposed model the

tumor-free equilibrium point is unstable; therefore, for

changing its stability, the vaccine therapy is necessary.

Hence, at the first of the treatment, the vaccine input is

applied for stabilization of the tumor-free equilibrium point

and it changes the parameters of the system in day 10.

Then, chemotherapy pushes the system to the domain of

attraction of this point in an optimal manner.

In this section, we simulate the behavior of our model by

considering the combination treatment for human data. A

tumor of size 107 cells is too large for the immune system to

control naturally. Hence, we consider a tumor of size 107

cells for testing the proposed combination therapy. We also

simulate three different cases of bounded optimal control

application to the cancer model to show the effects of dif-

ferent weighting matrices. We test the combination therapy

using experimental human data presented in Appendix 1.

5.1 Case 1

In this case, we use the following constant matrices for the

cost function:

Q xð Þ ¼

100 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0:1

2
66664

3
77775; R ¼ 4� 1013:

Results show that the combination vaccine therapy and

chemotherapy treatment are effective for finite duration

treatment. It is shown that changing the dynamics of the

cancer around the tumor-free equilibrium point is essential

for having finite duration treatment (Fig. 3).

The chemotherapy stopped the tumor growth at the

primary of the treatment and pushed the system toward the

tumor-free equilibrium point. Then, by changing the

parameters of the system in the tenth day with vaccination

and stabilizing the tumor-free equilibrium point, the system

would converge to this point without needing any

chemotherapy.

5.2 Case 2

In this case, we use the matrix Q xð Þ as before and a state-

dependent matrix for input, R xð Þ ¼ Rþ cx2 where c is a

positive constant. As it is clear, the R xð Þ is greater than R at

the beginning of treatment and decreases by time till tends

to R by diminishing tumor cells. So, at the beginning of

treatment, the control input is lower than case 1.

In this case, the behavior of the system is similar to case

1. However, the amplitude of the input is smaller that case

1 (Fig. 4).

5.3 Case 3

In this case, we use matrix Q xð Þ as before and a state-

dependent matrix for input, R xð Þ ¼ R� cx2 where c is a

positive constant. We choose the value of c such that

always R [ cx2. As it is clear, the R xð Þ is smaller than R at

the beginning of treatment and increases by time till tends

to R. So, at the beginning of treatment, the control input is

higher than cases 1 and 2 (Fig. 5).

In the above three cases, the behavior of the system is

similar but the control inputs are different. The natural killer

cells and tumor cell populations during the treatment are

shown in Figs. 6, 7 for all three cases. As shown in these

figures, the results for case 3 are slightly better than two other

cases. However, the control input in case 2 is significantly

smaller than two others. This is due to that the chemotherapy

has not considerable effect on removing tumor cells and the

main purpose of chemotherapy is to prevent tumor growth

until the vaccination changes the dynamics of the cancer.

However, after day 10, when the vaccination changes the

stability of the tumor-free equilibrium point the chemo-

therapy is stopped and the tumor cell populations converge to
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its point exponentially. So, this proposed finite duration

treatment method is effective for cancer treatment.

In [26], the authors proposed on–off regimens for

minimizing the tumor cell population and maintaining

the healthy cells in an allowable level. However, these

suggested regimens are not able to complete elimination

of tumor cells. Moreover, this method is not flexible

whilst considering the particular conditions of the

patients is not possible. Also, this method is sensitive to

the initial estimates of state variables and control.

Evaluation of quadratic and linear cost functions are

examined in [6, 21]. The optimal chemotherapy regimens

which are computed based on these cost functions are

able to eradicate the tumor, but they are sensitive to the
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initial estimates of state variables and control. In [19], de

Pillis et al. proposed a mixed immunotherapy and che-

motherapy protocol for cancer treatment. The main

shortcoming of these protocols is that after elimination

of the treatment, the cancer relapses due to lack of stable

tumor-free equilibrium point (Fig. 2). In this paper, we

use vaccine therapy for changing the dynamics of the

system around the tumor-free equilibrium point. In

addition, these proposed methods are open-loop which

has many deficiencies such as un-robustness in dealing

with parameter variation. In [2, 7, 8], the authors pre-

sented the SDRE method based on the model of de Pillis

et al. which is published in 2003. In this model the

tumor-free equilibrium point is stable. But in the model

of de Pillis et al. which is published in 2006, new

interaction terms among cells are added and this exten-

ded model has unstable tumor-free equilibrium point. So,

chemotherapy is not adequate for finite duration cancer

treatment. Hence, we use mixed vaccine–chemotherapy

using SRDE approach. Moreover, for better performance

of the control system, we use state-dependent matrix for

R xð Þ. In addition, the chemotherapy terms are exerted in

a saturation manner which is in accordance with physical

observations [19].

6 Conclusion

In this paper, we have extended and analyzed previous

mathematical models of cancer by mixed vaccine therapy

and chemotherapy. The model describes the effect of tumor

cells on the immune response with considering the effect of

vaccine therapy and chemotherapy. First, the system of

equations has analyzed in the absence of treatment, then; the

equilibrium points of the system along with the criteria for

stability have determined. For human parameter set, we

found two equilibria. One was a tumor-free equilibrium

point, which was unstable, and the other was a high-tumor

equilibrium point which was stable. The instability of the

tumor-free equilibrium implies that any successful finite

duration treatment must be able to change the system

dynamics to force this desirable equilibrium point becomes

stable. So, the vaccine therapy is used for this purpose.

Hence, at the first of treatment, the vaccine therapy is used for

stabilization of the tumor-free equilibrium point. Then,

chemotherapy pushes the system to the domain of attraction

of this point in an optimal manner. For this purpose, we have

developed an SDRE-based optimal control and applied it to

the model. Afterward, by pushing the system inside the

domain of attraction of this equilibrium point, the tumor cell

populations converge to zero even after the elimination of

therapies. We have shown that the SDRE optimal control

method provides fast and easy derivation of suboptimal

control for the chemotherapy administration problem. We

apply different types of input weighting matrix to show the

effectiveness of this feature of the SDRE method in cancer

treatment. It is shown that after the end of treatment,

although the populations of tumor cells are not zero due to

change in the stability of tumor-free equilibrium point and

pushing the system to its domain of attraction, the system

converges to the tumor-free equilibrium point ever after

elimination of the inputs. So, the development of combina-

tion vaccine–chemotherapy protocols for remedying certain

forms of cancer is an appropriate strategy in cancer treatment

research. Also, the present study suggests that a proper

treatment method should not only change the dynamics of

the cancer, but also reduce the population of tumor cells,

which has not been considered yet and is a shortcoming of

many treatment methods.

Appendix 1: Nomenclature and parameter values

In this section, we list human parameters used in the model,

their definition and their estimated values. See Table 1.

Fig. 6 The natural killer cell populations in the three cases during

treatment

Fig. 7 The tumor cell populations in the three cases during treatment
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Appendix 2: Equation terms descriptions

See Table 2.

Table 1 Estimated patient parameters values

Parameter Description Patient 10 Source

a Tumor growth rate 4:31� 10�1 [24]

b b�1 is tumor carrying capacity 1:02� 10�9 [24]

c Fractional (non)-ligand-transduced tumor cell kill by NK cells 6:41� 10�11 [24]

d Saturation level of fractional tumor cell kills by CD8?T cells. Primed with ligand-transduced cells,

challenged with ligand-transduced cells

1:88 [24]

l Exponent of fractional tumor cell kill by CD8?T cells. Primed with ligand-transduced cells,

challenged with ligand-transduced cells

1:81 [24]

s Steepness coefficient of the tumor-(CD8?T cell) lysis term D. Primed with ligand-transduced cells,

challenged with ligand-transduced cells
5:12� 10�1 [24]

e Fraction of circulating lymphocytes that become NK cells 2:08� 10�7 [24]

f Death rate of NK cells 4:12� 10�2 [24]

g Maximum NK cell recruitment rate by ligand-transduced tumor cells 1:25� 10�2 [24]

h Steepness coefficient of the NK cell recruitment curve 2:02� 107 [24]

p NK cell inactivation rate by tumor cells 3:59� 10�6 [24]

m Death rate of CD8?T cells 9:12 [24]

j Maximum CD8?T cell recruitment rate. Primed with ligand-transduced cells, challenged with ligand-

transduced cells
2:49� 10�2 [24]

k Steepness coefficient of the CD8?T cell recruitment curve 5:66� 107 [24]

q CD8?T cell inactivation rate by tumor cells 1:59� 10�6 [24]

r1 Rate at which CD8?T cells are stimulated to be produced as a result of tumor cells killed by NK cells 1:1� 10�7 [24]

r2 Rate at which CD8?T cells are stimulated to be produced as a result of tumor cells interacting with

circulating lymphocytes
6:5� 10�11 No data

found.

u Regulatory function by NK cells of CD8?T –cells 3� 10�10 No data

found.

KT Fractional tumor cell kill by chemotherapy 0:9 [24]

KL;KN ;KC Fractional immune cell kill by chemotherapy. 0:6 [24]

a Constant source of circulating lymphocytes. 5� 108 [24]

b Natural death and differentiation of circulating lymphocytes. 8� 10�3 [24]

l Rate of chemotherapy drug decay. 0.9 [24]

Table 2 Description of equation terms

Equation Term Description

dT

dt
aT 1� bTð Þ Logistic tumor growth

�cNT NK-induced tumor death

�DT CD8?T cell-induced tumor death

�KT
1:2M

0:8þM

� �
T Chemotherapy-induced tumor death

dN

dt
eC Production of NK cells from circulating lymphocytes

�pNT NK death by exhaustion of tumor-killing resources

�fN NK turnover

�KN
1:2M

0:8þM

� �
N Death of NK cells due to chemotherapy toxicity
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Table 2 continued

Equation Term Description

dL

dt
�mL CD8?T cell turnover

þj D2T2

kþD2T2 L CD8?T cell stimulation by CD8?T cell-lysed tumor cell debris

�qLT CD8?T cell death by exhaustion of tumor-killing resources

þr1NT CD8?T cell stimulation by NK-lysed tumor cell debris

þr2CT Activation of native CD8?T cells in the general lymphocyte population

�uNL2 Breakdown of surplus CD8?T cells in the presence of IL-2

�KL
1:2M

0:8þM

� �
L Death of CD8?T cells due to chemotherapy toxicity

dC

dt
a Lymphocyte synthesis in bone marrow

�bC Lymphocyte turnover

�KC
1:2M

0:8þM

� �
C Death of lymphocytes due to chemotherapy toxicity

dM

dt
�lM Excretion and elimination of chemotherapy in secondary tumor

dk
dt

lkvv tð Þð1� k
kk
Þ Changing the parameter k due to vaccine in
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