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Abstract We carried out analysis of the effects of ther-

mal stratification in the boundary layer mixed convection

flow of Maxwell fluid. The thermal radiation effect is

considered. The derived equations with appropriate

boundary conditions are solved for series solutions of

velocity and temperature. Graphical results lead to the

interesting observations. Local Nusselt number is tabulated

and discussed. It is found that there is an opposite effect of

fluid characteristics on the velocity and temperature.

However, the velocity and temperature have similar effects

for thermal stratification and radiation.

Keywords Thermal stratification �Maxwell fluid �Mixed

convection flow � Thermal radiation

1 Introduction

The dynamics of non-Newtonian fluids is of great interest

amongst the recent researchers of both the theoretical and

applied fields. This type of fluids cannot be explained by

using Newton’s law of viscosity. Many fluids such as

polymer melts, mud, soaps, apple sauce, certain oils,

lubricants, suspension solutions, ketchup and many others

exhibit the rheological properties and thus cannot be

described by one constitutive relationship. Therefore, the

existing information regarding non-Newtonian fluids has

been presented through the differential, rate and integral

types. It is further seen that the rate type fluids are not

given due attention. Maxwell fluid is a subclass of rate type

fluids describing the relaxation time effects. Jamil and

Fetecau [1] in a recent study reported an analysis for the

helical flows of Maxwell fluid. They discussed the flow

situation when the inner cylinder begins to rotate around its

axis and to slide along the same axis due to time-dependent

shear stresses. Hankel transform method is employed for

the development of exact solution. Couette flow of frac-

tional Maxwell fluid with accelerated shear rate was stud-

ied by Athar et al. [2]. Expressions for velocity and shear

stress are obtained using Laplace and finite Hankel trans-

forms. Wang and Tan [3] provided the stability analysis of

Maxwell fluid with Soret-driven double diffusive convec-

tion in a porous medium. Hayat et al. [4] examined the

flow of Maxwell fluid subject to convective boundary

conditions. Thermophoresis effects in the two-dimensional

flow of Maxwell fluid was analyzed by Hayat et al. [5].

Few other recent attempts involving Maxwell fluid model

may be mentioned by the Refs. [6–10].

Mixed convection flow with heat transfer over a contin-

uously moving surface is encountered in extrusion processes,

cooling of metallic sheets and electronic chips, melt spin-

ning, crystal blowing, continuous casting, glass blowing, etc.

Further, mixed convection flow also has a pivotal role in the

environment when the temperature difference between land

and air leads to complicated flow patterns. Slip effects on the

unsteady mixed convection flow over a moving surface was
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examined by Mukhopadhyay [11]. Turkyilmazoglu [12]

provided the analytic solutions for mixed hydrodynamic

thermal slip flow past a stretching surface. Two-dimensional

flow of viscous fluid over an inclined stretching surface was

numerically investigated by Noor et al. [13]. Convective

heat transfer in two-dimensional flow of Maxwell fluid over a

non-isothermal stretching sheet was investigated by Vaj-

ravelu et al. [14]. Hayat and Alsaedi [15] studied the mixed

convection boundary layer flow of an Oldroyd-B fluid over a

moving surface. They explored the effects of thermophoresis

and Joule heating. Simultaneous effects of heat and mass

transfer in MHD mixed convection flow with porous medium

and internal heat generation were studied by Makinde [16].

Series solutions for mixed convection Falkner-Skan flow of

Maxwell fluid was addressed by Hayat et al. [17].

Thermal radiation effect has a vital role in operations

carried out at high temperature. Such effect is particularly

important in the industrial and engineering applications

including nuclear power plant, satellites, missiles, propul-

sion devices for aircraft and other space vehicles. Further,

the study of thermally stratified fluid is significant in various

industrial, environment and engineering processes. In fact

the thermal stratification is a property of all fluid bodies

surrounded by differentially heated side walls [18]. Thermal

stratification for vertical consideration is due to temperature

variations, concentration difference or presence of different

density fluids. Having such in mind, Kulkarni et al. [19]

carried out a study to investigate the similarity solution over

an isothermal vertical surface in a thermally stratified

medium. Natural convection flow in a thermally stratified

medium over a vertical cylinder was examined by Thakhar

et al. [20]. Hossain et al. [21] discussed the effects of vis-

cous dissipation and thermal stratification on the flow of

viscous fluid in the presence of uniform surface heat flux.

Singh et al. [22] examined the thermal stratification effects

on MHD flow of viscous fluid. Recently, Mukhopadhyay

and Ishak [23] provided the numerical solutions for the

thermally stratified flow over a stretching cylinder.

To the best of our information, the boundary layer due to

temperature gradient in non-Newtonian fluid with radiation

effects has not been attained so far. This interest motivated us

to examine such effects for the flow of Maxwell fluid over a

stretched surface. This article is arranged in the following

pattern. Next section deals with the definitions of problem and

some physical quantities. Series solutions and related con-

vergence analysis are given in the Sects. 3 and 4 respectively

by homotopy analysis method [24–28]. Physical results are

presented in Sect. 5. Section 6 contains main conclusions.

2 Governing problems

We consider the mixed convection flow of an incompress-

ible Maxwell fluid over a stretching surface. Thermal

stratification and radiation effects are present. The vertical

surface has temperature Tw and further T1 denotes the

temperature of ambient fluid. The x and y-axes are chosen

along and normal to the surface. The equation of continuity,

the equations of momentum in the absence of pressure

gradient [6] and the equation of energy can be written as

ou
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where u and v denote the velocity components in the x- and

y-directions, q the fluid density, T the fluid temperature,

k the thermal conductivity of fluid, g the gravitational

acceleration, bT the thermal expansion coefficient, Cp the

specific heat at constant pressure and qr the radiative heat

flux. The extra stress tensor sij related to the deformation

rate tensor dij for a Maxwell fluid can be defined as [29]:

sij þ k
M

Mt
sij ¼ 2ddij; ð5Þ

in which d is the coefficient of viscosity, k is the relaxation

time and M

Mt
is the upper convected time derivative. By

applying this time derivative to the stress tensor, we have [29]

M

Mt
sij ¼

D

Dt
sij � Ljksik � Likskj; ð6Þ

where Lij denote the velocity gradient tensor. For an

incompressible flow of Maxwell fluid, the x-component of

the momentum equation and energy equation after

employing the boundary layer theory [30] has the

following forms:

u
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where m is the kinematic viscosity. The subjected boundary

conditions are

u¼uwðxÞ¼cx;v¼0;T¼Tw¼T0þbx at y¼0; ð9Þ
u! 0; T ! T1 ¼ T0 þ ax as y!1; ð10Þ

in which c is the stretching rate, a, b are dimensional

constants and T0 is the reference temperature.
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The radiative flux is accounted by the Rosseland

approximation in the energy equation [31]:

qr ¼ �
4r�

3k�
oT4

oy
; ð11Þ

in which r� the Stefan-Boltzmann constant and k� the

mean absorption coefficient. Further, the differences of

temperature within the flow is assumed to be small such

that T4 may be expressed as a linear function of

temperature. Expansion of T4 about T1 via Taylor’s

series and ignoring higher order terms, we have

T4 ffi T4
1 þ ðT � T1Þ4T3

1 ¼ 4T3
1T � 3T4

1: ð12Þ

By employing Eqs. (11) and (12), Eq. (8) has the form

qCp u
oT
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oT
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� �
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þ 16rT3

1
3k�
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Setting

u ¼ cxf 0ðgÞ; v ¼ �
ffiffiffiffiffi
cm
p

f ðgÞ; g ¼ y

ffiffiffi
c

m

r
; hðgÞ ¼ T � T1

Tw � T0

;

ð14Þ

Equation (1) is satisfied automatically and reduced forms

of Eqs. (7)–(10) and (13) are

f 000 þ ff 00 � f 02 þ bð2ff 0f 00 � f 2f 000Þ þ kh ¼ 0; ð15Þ

ð1þ 4

3
NÞh00 þ Prf h0 � Prf 0h� PrSf 0 ¼ 0; ð16Þ

and the boundary conditions in dimensionless form has the

following form:

f ¼ 0; f 0 ¼ 1; h ¼ 1� S at g ¼ 0; ð17Þ

f 0 ¼ 0; h ¼ 0 as g!1: ð18Þ

Here De = k1c is the Deborah number, k = Grx/Rex
2 the

mixed convection parameter with Grx ¼ gbTðT �
T1Þx3=m2 the local Grashof number and Rex = uw(x)x/m the

local Reynolds number, Pr = m /a the Prandtl number, a ¼
k

qCp
the thermal diffusivity, N ¼ 4r�T3

1
kk� the thermal radiation

parameter, S = b/a the thermal stratification parameter, h
the dimensionless temperature and g the similarity variable.

Local Nusselt number is defined by

Nux ¼
xqw

kðT � T1Þ
; ð19Þ

where the heat transfer from the surface qw is

qw ¼ �k
oT

oy

� �
y¼0

: ð20Þ

Equation (13) in dimensionless variables is given as

Nux=Re1=2
x ¼ �h0ð0Þ: ð21Þ

3 Development of the series solutions

For an interest in the homotopy analysis solutions we

choose the initial guesses and operators in the form given

below:

f0ðgÞ ¼ ð1� expð�gÞÞ; h0ðgÞ ¼ ð1� SÞ expð�gÞ; ð22Þ

Lf ¼ f 000 � f 0; Lh ¼ h00 � h; ð23Þ

with

Lf ðC1 þ C2eg þ C3e�gÞ ¼ 0; LhðC4eg þ C5e�gÞ ¼ 0;

ð24Þ

where Ci (i = 1–5) are the arbitrary constants. The zeroth

order deformation equations together with the boundary

conditions are

1� pð ÞLf f̂ ðg; pÞ � f0ðgÞ
� �

¼ p�hfN f f̂ ðg; pÞ; ĥðg; pÞ
� �

;

ð25Þ
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� �

¼ p�hhN h f̂ ðg; pÞ; ĥðg; pÞ
� �

;

ð26Þ

f̂ ð0; pÞ ¼ 0; f̂ 0ð0; pÞ ¼ 1; f̂ 0ð1; pÞ ¼ 0; ĥð0; pÞ
¼ 1� S; ĥð1; pÞ ¼ 0; ð27Þ
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ð29Þ

N h½ĥðg; pÞ; f̂ ðg; pÞ� ¼ ð1þ
4

3
NÞ o

2ĥðg; pÞ
og2

� Prĥðg; pÞ of̂ ðg; pÞ
og

þ Prf̂ ðg; pÞ oĥðg; pÞ
og

� PrS
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og
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ð30Þ

where p is an embedding parameter, �hf and �hh the non-zero

auxiliary parameters and N f and N h the nonlinear

operators. For p = 0 and p = 1 one has

f̂ ðg; 0Þ ¼ f0ðgÞ; ĥðg; 0Þ ¼ h0ðgÞ and f̂ ðg; 1Þ ¼ f ðgÞ; ĥðg; 1Þ
¼ hðgÞ:

ð31Þ

When variation of p is taken into account from 0 to 1 then

f(g, p) and h (g, p) vary from f0(g), h0(g) to f(g) and h(g).

We expand f and h in the following forms:
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f ðg; pÞ ¼ f0ðgÞ þ
X1
m¼1

fmðgÞpm; fmðgÞ ¼
1

m!

omf ðg; pÞ
ogm

				
p¼0

;

ð32Þ

hðg; pÞ ¼ h0ðgÞ þ
X1
m¼1

hmðgÞpm; hmðgÞ ¼
1

m!

omhðg; pÞ
ogm

				
p¼0

;

ð33Þ

where the convergence of above series strongly depends

upon �hf and �hh: Considering that �hf and �hh are selected

properly such that Eqs. (32) and (33) converge for p = 1

and thus

f ðgÞ ¼ f0ðgÞ þ
X1
m¼1

fmðgÞ; ð34Þ

hðgÞ ¼ h0ðgÞ þ
X1
m¼1

hmðgÞ: ð35Þ

The general solutions are derived as follows:

fmðgÞ ¼ f �mðgÞ þ C1 þ C2eg þ C3e�g ð36Þ

hmðgÞ ¼ h�mðgÞ þ C4eg þ C5e�g ð37Þ

where f �m and h�m are the special solutions.

4 Convergence analysis

The auxiliary parameters �hf and �hh appearing in the series

solutions have the key role regarding the control and

adjustment of the convergence of the homotopy solutions.

Hence, the �h—curves are sketched for 21st order of

approximations to find the range of admissible values of �hf

and �hh: It is obvious from Fig. 1 that the range of admis-

sible values of �hf and �hh are �1:15� �hf � �0:2 and

�1:1� �hh� �0:15: Both series are convergent in the

whole region of g for �hf ¼ �0:7 and �hh ¼ �0:6:

5 Results and discussion

The purpose of this section is to describe the role of

emerging parameters through plots and construction of

tabular values of Nusselt number. Such objective is

achieved for the variations of Deborah number De, mixed

convection parameter k, thermal stratified parameter

S, Prandtl number Pr and radiation parameter N on the

velocity f 0ðgÞ and temperature h (g). The effects of Deborah

number on velocity and temperature are seen in the Figs. 2

and 3. We observed that the velocity and associated

boundary layer thickness are decreased by increasing De.

This is attributed to the fact that the relaxation time opposes

the fluid flow. De is dependent on the relaxation time and an

Fig. 1 �h —curves for the functions f(g) and h (g)

Fig. 2 Influence of De on f 0ðgÞ

Fig. 3 Influence of De on hðgÞ
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increase in De increases the relaxation time and thus

decreases the velocity and boundary layer thickness. From

Fig. 3, one can see that Deborah number has quite opposite

effects on temperature in comparison to velocity. This

reverse behavior is due to the relaxation time. In fact

increase in Deborah number leads to an increase in the

relaxation time. For larger relaxation time, the velocity is

increased but temperature decreases. Hence, an increase in

the Deborah number gives rise to the velocity and reduced

the temperature. Figures 4 and 5 show that the velocity

increases by increasing mixed convection parameter but the

temperature decreases by increasing k. This is because of

the buoyancy force. The effects of thermal stratification

parameter on velocity and temperature are observed from

the Figs. 6 and 7. It is seen that both the velocity and

temperature are decreasing functions of S. We also noticed

that the variation in temperature is more significant when

compared with velocity. This shows that the temperature

decreases rapidly while the decrease in velocity is slow.

There is a reduction in the effective convective potential

between the surface and the ambient fluid for the increasing

values of thermal stratification parameter. This reduction

causes a decrease in the momentum and thermal boundary

layer thicknesses. From Figs. 8 and 9, we see that both the

velocity and temperature decrease by increasing Prandtl

number. This is because of the fact that higher Prandtl

number fluid has lower thermal diffusivity which decreases

the temperature and thermal boundary layer thickness.

Comparison of Figs. 8 and 9 shows that the thermal

boundary layer thickness is more dominant than the velocity

boundary layer thickness. The thermal radiation parameter

N has similar effects on the velocity and temperature. Both

the velocity and temperature increase by increasing N. An

increase in the radiation parameter provides more heat to

the fluid due to which the velocity and temperature are

increased. It is also seen that an increase in temperature is

Fig. 4 Influence of k on f 0ðgÞ

Fig. 5 Influence of k on hðgÞ

Fig. 6 Influence of S on f 0ðgÞ

Fig. 7 Influence of S on hðgÞ
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Fig. 8 Influence of Pr on f 0ðgÞ

Fig. 9 Influence of Pr on hðgÞ

Fig. 10 Influence of N on f 0ðgÞ

Fig. 11 Influence of N on hðgÞ

Fig. 12 Influence of N on f 0ðgÞ when Pr ¼ 0:2

Fig. 13 Influence of N on hðgÞ when Pr ¼ 0:2
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Fig. 14 Influence of S on f 0ðgÞ when Pr ¼ 0:2

Fig. 15 Influence of S on hðgÞ when Pr ¼ 0:2

Fig. 16 Influence of S vs. De on �h0ð0Þ

Fig. 17 Influence of N vs. De on �h0ð0Þ

Table 1 Convergence of homotopy solution for different order of

approximations when De ¼ 0:1; k ¼ 0:5; Pr ¼ 1:0; S ¼ 0:1; N ¼
0:5; �hf ¼ �0:7 and �hh ¼ �0:6

Order of approximation �f 00ð0Þ �h0ð0Þ

1 0.86000 0.75000

10 0.78217 0.73879

20 0.78207 0.73860

25 0.78208 0.73861

30 0.78208 0.73861

35 0.78208 0.73861

Table 2 Numerical values of local Nusselt number �h0ð0Þ for dif-

ferent values of De, k, S, Pr and N

De k Pr S N �h0ð0Þ

0.0 0.5 1.0 0.1 0.5 0.74632

0.3 0.72422

0.5 0.71112

0.1 0.0 0.67631

0.6 0.74671

1.0 0.77404

0.4 0.43553

0.9 0.69456

1.3 0.86119

0.0 0.77693

0.2 0.69946

0.3 0.65948

0.0 0.99617

0.4 0.77550

0.7 0.67739
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rapid than velocity (see Figs. 10, 11). Figures 12 and 13

are plotted for the different values of radiation by consid-

ering smaller value of Prandtl number. Here we examined

that the fluid velocity corresponding to Pr ¼ 1:0 dies out

quickly in comparison to the fluid velocity for Pr ¼ 0:2: A

comparison of Figs. 11 and 13 shows that increase in

radiation increases the temperature for Pr ¼ 1:0 and Pr ¼
0:2 but the temperature is higher for Pr ¼ 0:2: Figure 14

shows the variations of S when Pr ¼ 0:2 on the fluid

velocity. The fluid velocity increased by increasing the

values of S. From Figs. 6 and 14, we have seen that

the fluid velocity is large for Pr ¼ 0:2 when compared with

the velocity for Pr ¼ 1:0: From Fig. 15, one can see that the

temperature is zero for S = 1.0. Also we see that the tem-

perature decreases rapidly in Fig. 15 in comparison to

Fig. 7. Figures 16 and 17 illustrate the effects of S and N vs.

De on the local Nusselt number �h0ð0Þ: The local Nusselt

number reduced with an increase in S and N vs. De but the

local Nusselt number corresponding to N is greater than the

local Nusselt number for S.

Table 1 is prepared to see the convergent values and to

find that how much deformations are required for the

convergent series solutions. We see that the solutions for

velocity and temperature start to repeat from 25th order of

deformations. So it is concluded from this table that 25th

order approximations are enough for the convergent series

solutions of velocity and temperature. Numerical values of

local Nusselt number �h0ð0Þ for different values of

De, k, Pr, S and N are examined in Table 2. The values

of Nusselt number increase by increasing the values of

Prandtl number and mixed convection parameter. Such

values reduce by increasing the Deborah number, thermal

stratification parameter and radiation parameter. Table 3

provides the comparison for different values of De on f 00ð0Þ
and h0ð0Þ with Vajravelu et al. [14]. Here we see that our

homotopic solution has good agreement with that presented

by Vajravelu et al. [14].

6 Conclusions

Influence of thermal stratification on the mixed convection

flow of upper convected Maxwell fluid over a stretching

sheet is explored. Similarity transformations are utilized for

the reduction of partial differential equations into the

ordinary differential equations. The governed nonlinear

ordinary differential equations with the subjected boundary

conditions are solved by homotopy analysis method. The

main points of the presented study can be summed up as

follows.

• Deborah number has reverse effects on the dimension-

less velocity and temperature.

• There is decrease in both the velocity and temperature

when thermal stratified parameter increases. However,

the decrease in velocity is more significant than the

temperature.

• Decrease in temperature and thermal boundary layer

thickness is rapid when compared with an increase in

velocity by increasing Prandtl number.

• The velocity and temperature increase by increasing the

radiation parameter N.

• Values of local Nusselt number decrease when Deborah

number and stratification parameter are increased.

• Increase in Prandtl number causes an increase in the

values of �h0ð0Þ:

Acknowledgments We are thankful to the reviewers for their useful

suggestions and comments to improve the quality of manuscript. The

research work of Dr. Al-Sulami was partially supported by the

Deanship of Scientific Research (DSR), King Abdulaziz University,

Saudi Arabia.

References

1. Jamil M, Fetecau C (2010) Helical flows of Maxwell fluid

between coaxial cylinders with given shear stresses on the

boundary. Nonlinear Anal Real World Appl 11:4302–4311

2. Athar M, Fetecau C, Kamran M, Sohail A, Imran M (2011) Exact

solutions for unsteady axial Couette flow of a fractional Maxwell

fluid due to an accelerated shear. Nonlinear Anal Model Control

16:135–151

3. Wang S, Tan WC (2011) Stability analysis of soret-driven dou-

ble-diffusive convection of Maxwell fluid in a porous medium.

Int J Heat Fluid Flow 32:88–94

4. Hayat T, Shehzad SA, Qasim M, Obaidat S (2011) Steady flow of

Maxwell fluid with convective boundary conditions. Z Natur-

forsch 66a:417–422

Table 3 Comparison values of

f 00ð0Þ and h0ð0Þ for different

values of b when

k = N = S = 0.0

De �f 00ð0Þ �h0ð0Þ

Vajravelu et al. [14] Present results Vajravelu et al. [14] Present results

0.0 1.0001743 1.00000 1.0001743 1.00000

0.2 1.051975 1.051890 0.98009229 0.980077

0.4 1.1019475 1.101903 0.96078789 0.960805

0.6 1.1501625 1.150137 0.94231808 0.692263

0.8 1.1967279 1.196711 0.92469829 0.924694

388 J Braz. Soc. Mech. Sci. Eng. (2013) 35:381–389

123



5. Hayat T, Qasim M (2010) Influence of thermal radiation and

Joule heating on MHD flow of a Maxwell fluid in the presence of

thermophoresis. Int J Heat Mass Transf 53:4780-4788

6. Vajravelu K, Prasad KV, Sujatha A, Chiu-on NG (2012) MHD

flow and mass transfer of chemically reactive upper convected

Maxwell fluid past porous surface. Appl Math Mech Engl Ed

33:899–910

7. Haitao Q, Mingyu X (2007) Unsteady flow of viscoelastic fluid

with fractional Maxwell model in a channel. Mech Res Commun

34:210–212

8. Tripathi D, Pandey SK, Das S (2010) Peristaltic flow of visco-

elastic fluid with fractional Maxwell model through a channel.

Appl Math Comput 215:3645–3654

9. Jamil M, Rauf A, Zafar AA, Khan NA (2011) New exact ana-

lytical solutions for Stokes’ first problem of Maxwell fluid with

fractional derivative approach. Comput Math Appl 62:1013–1023

10. Hayat T, Abbas Z (2008) Channel flow of a Maxwell fluid with

chemical reaction. Z Angew Math Phys 59:124–144

11. Mukhopadhyay S (2010) Effects of slip on unsteady mixed

convective flow and heat transfer past a stretching surface. Chin

Phys Lett 27(12):124401

12. Turkyilmazoglu M (2011) Analytic heat and mass transfer of the

mixed hydrodynamic/thermal slip MHD viscous flow over a

stretching sheet. Int J Mech Sci 53:886–896

13. Noor NFM, Abbasbandy S, Hashim I (2012) Heat and mass

transfer of thermophoretic MHD flow over an inclined radiate

isothermal permeable surface in the presence of heat source/sink.

Int J Heat Mass Transf 55:2122–2128

14. Vajravelu K, Prasad KV, Sujatha A (2011) Convection heat

transfer in a Maxwell fluid at a non-isothermal surface. Cent Eur J

Phys 9:807–815

15. Hayat T, Alsaedi A (2011) On thermal radiation and Joule

heating effects in MHD flow of an Oldroyd-B fluid with ther-

mophoresis. Arab J Sci Eng 36:1113–1124

16. Makinde OD (2012) Heat and mass transfer by MHD mixed

convection stagnation point flow toward a vertical plate embed-

ded in a highly porous medium with radiation and internal heat

generation. Meccanica 47:1173–1184

17. Hayat T, Farooq M, Iqbal Z, Alsaedi A (2012) Mixed convection

Falkner–Skan flow of a Maxwell fluid. J Heat Transf Trans

ASME 134:114504

18. Kishore PM, Rajesh V, Verma SV (2010) Thermal stratification

and viscous dissipation effects on MHD unsteady radiative

natural convection flow past an infinite vertical accelerated plate

embedded in a porous medium with variable surface temperature.

Int J Appl Math Mech 6:1–18

19. Kulkarni AK, Jacobs HR, Hwang JJ (1986) Similarity solution for

natural convection flow over an isothermal vertical wall

immersed in a thermally stratified medium. Int J Heat Mass

Transf 30:691–698

20. Thakhar HS, Chamkha AJ, Nath G (2002) Natural convection on

a vertical cylinder embedded in a thermally stratified high-

porosity medium. Int J Thermal Sci 41:83–93

21. Hossain MA, Saha SC, Gorla RSR (2005) Viscous dissipation

effects on natural convection from a vertical plate with uniform

surafce heat flux placed in a thermally stratified media. Int J Fluid

Mech Res 32:269–280

22. Singh G, Sharma PR, Chamkha AJ (2010) Effect of thermally

stratified ambient fluid on MHD convective flow along a moving

non-isothermal vertical plate. Int J Phys Sci 5:208–215

23. Mukhopadhyay S, Ishak A (2012) Mixed convection flow along a

stretching cylinder in a thermally stratified medium. J Appl Math

Article ID 491695

24. Liao SJ (2003) Beyond perturbation: introduction to homotopy

analysis method. Chapman and Hall, CRC Press, Boca Raton

25. Abbasbandy S (2011) Approximate analytical solutions to

thermo-poroelastic equations by means of the iterated homotopy

analysis method. Int J Comput Math 88:1763–1775

26. Rashidi MM, Mohimanian Pour SA, Abbasbandy S (2011)

Analytic approximate solutions for heat transfer of a micropolar

fluid through a porous medium with radiation. Commun Non-

linear Sci Numer Simulat 16:1874–1889

27. Liu C (2011) The essence of the generalized Taylor theorem as

the foundation of the homotopy analysis method. Commun.

Commun Nonlinear Sci Numer Simulat 16:1254–1262

28. Hayat T, Shehzad SA, Alsaedi A, Alhothuali MS (2012) Mixed

convection stagnation point flow of Casson fluid with convective

boundary conditions. Chin Phys Lett 29:114704

29. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of poly-

meric liquids. Wiley, New York

30. Schichting H (1964) Boundary layer theory, 6th edn. McGraw-

Hill, New York

31. Saha G, Sultana T, Saha S (2010) Effect of thermal radiation and

heat generation on MHD flow past a uniformly heated vertical

plate. Desalin Water Treat 16:57–65

J Braz. Soc. Mech. Sci. Eng. (2013) 35:381–389 389

123


	Influence of thermal stratification on the radiative flow of Maxwell fluid
	Abstract
	Introduction
	Governing problems
	Development of the series solutions
	Convergence analysis
	Results and discussion
	Conclusions
	Acknowledgments
	References


