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Abstract This paper presents an artificial intelligence

approach for the development of predictive models for a

CO2 laser cutting of mild steel by using artificial neural

networks (ANNs) and real coded genetic algorithm

(RCGA). Laser cutting experiment, conducted according to

Taguchi’s experimental design using L25 orthogonal array,

provided a set of data for the development of ANN models

for the prediction of the kerf width and surface roughness.

Both ANN models considered cutting speed, laser power,

and assist gas pressure as input parameters. Considering the

disadvantages of the back propagation, the RCGA was

applied for training of the ANNs. Statistical results indicate

good correlation between the experimental results and

ANN predictions, which confirms the validity of the

applied approach. Finally, using the developed models, the

combined effects of input process parameters on the quality

characteristics were studied.

Keywords Carbon dioxide (CO2) laser cutting � Artificial

neural networks � Modeling � Kerf width � Surface

roughness � Real coded genetic algorithm

List of symbols

B Bias matrix of hidden neurons

bok Bias of output neuron

d Desired (target) value

E Fitness function

F Transfer function in hidden layer

g Transfer function in output layer

k Number of output neurons

Kw Kerf width, mm

m Number of hidden neurons

mup Upper limit of number of hidden neurons

n Number of input neurons

Ntr Number of data for training

Nts Number of data for testing

p Assist gas pressure, bar

P Laser power, W

R Correlation coefficient

Ra Average surface roughness, lm

T Total number of weights and biases

v Cutting speed, mm/min

V Weight matrix between input and hidden layer

W Weight matrix between hidden and output layer

xmin Minimal value of variable

xmin Maximal value of variable

xn Normalized value for variable

X Vector of input parameters

ŷ ANN prediction

1 Introduction

Among various advanced machining processes, laser cutting

is one of the most widely used thermal-based processes

applied for processing a wide range of materials. Laser cut-

ting technology finds many applications in various manu-

facturing industries due to its convenience of operation, high

precision, small heat-affected zone, minimum deformity

[24], low cost, high quality of end product [19], high pro-

cessing speed, and low waste [25]. Additionally, as a

Technical Editor: Alexandre Abrão.
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noncontact, it is well suited for advanced engineering

materials, such as difficult-to-cut materials, brittle materials,

electric and non-electric conductors, and soft and thin

materials [6]. Numerous advantages and possibilities of laser

cutting technology motivated considerable theoretical and

experimental research aimed at better understanding of the

laser cutting process. Comprehensive review papers about

laser cutting are available [7, 8, 16].

The laser cutting process is characterized by a number of

controllable and uncontrollable process parameters and their

interactions, which in turn determine the efficiency of the

whole process in terms of productivity, quality, and costs.

Maximization of productivity and quality along with cost

minimization are of particular interest to manufacturers.

Each of these goals often requires ‘‘optimal’’ selection of

cutting parameter settings. With a limited theoretical and

practical background to assist in the systematic selection,

these parameters are usually set by previous experience in

time consuming trial and error procedure. Consequently, it is

of great importance to exactly quantify the relationships

between laser cutting parameters and cutting performances

through mathematical modeling. Different methodologies

were employed for modeling of laser cutting, such as ana-

lytical methods, statistical experimental design, and artificial

intelligence (AI)-based methods. Few researchers concen-

trated on modeling and optimization of laser cutting through

AI-based techniques, such as artificial neural networks

(ANNs) [1, 4, 19, 26] and fuzzy logic [22]. Chen et al. [6]

presented an approach for optimization of laser cutting

process with multiple performance characteristics based on

Taguchi method and grey relational analysis.

ANNs as one of the most used AI methods have proved to

be one of the most powerful modeling tools based on the

statistical approach. The ability of ANN to capture any

complex input–output relationships from limited data is very

valuable in manufacturing processes where huge experi-

mental data for the process modeling are difficult and

expensive to obtain [13]. In addition, they are more efficient

modeling tool when compared with other classical prediction

methods [2]. They are especially suitable in situations where

mathematical formulae and prior knowledge on the func-

tional relationship between process parameters are

unknown. Among different ANN types, single hidden layer

back propagation (BP) ANN is considered as most popular

variant of multilayer feed forward ANN for modeling of

complex nonlinear relationships between multiple input and

the output variables [4]. The most common training algo-

rithm for ANNs is the BP algorithm and its variants because

it is stable and easy to implement. Conventional BP and

faster algorithms like Levenberg–Marquardt have been

already used for input/output modeling in the field of laser

cutting [19, 26]. However, because ANNs generate complex

error surfaces with multiple local optima, even for simple

functions being estimated, BP tends to become trapped in

local solutions that are not global [9]. In addition, the basic

BP algorithm is often very slow to converge in real practice

[10]. Considering the disadvantages of the BP, researchers

observed that genetic algorithms (GAs) might prevent ANN

from falling into a local optimum during training [9, 14].

Gupta and Sexton [9] showed that the GA is superior to the

BP in effectiveness, ease of use, and efficiency for training.

Furthermore, as noted by [3], real coding is the most suitable

coding for continuous domains, and it is beneficial to use real

coded genetic algorithm (RCGA) for the ANN training.

As the present study deals with relatively small number

data obtained from Taguchi’s experimental design, training

of ANNs using the RCGA is thought to be an appropriate

algorithm for the purpose of developing accurate and

robust ANN models for the prediction of cut quality in CO2

laser cutting.

2 Modeling methodology

Relationship between laser cutting parameters (cutting

speed, laser power, and assist gas pressure) and the output

parameters (kerf width and surface roughness) was

obtained from the ANN models. Two ANN models with

the same architecture were designed for each of the output

parameters. Experimental results, obtained from Taguchi’s

experimental design, were used for developing predictive

models. The experimental data were randomly divided into

a data subset for the ANN training (Ntr = 20), and data

subset for testing the prediction accuracy of the ANN

models (Nts = 5). Among the various kinds of ANN

models, feed-forward multilayer perceptron (MLP) was

selected due to its robustness and ability to approximate

any nonlinear relationship. To overcome the local con-

vergence problem of the BP, RCGA was chosen as an

appropriate method to be used for the ANN training. The

aim of RCGA is to simultaneously search for the near

optimal set of weights and biases of the ANNs so that

ANNs are able to accurately model the CO2 laser cutting

process.

3 Experimental setup

Experiment trials were conducted using a 2.2 kW CO2

ByVention 3015 laser cutting machine provided by Bys-

tronic Inc. The cuts were performed with a Gaussian dis-

tribution beam mode (TEM00) on 2-mm-thick commercial

mild steel sheet. Oxygen gas with a purity of 99.95 % was

employed as an assist gas. The laser beam was focused on

the surface of the samples using a focusing lens with a

focal length of 5 in. (127 mm). The conical shape nozzle
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(HK10) with 1-mm nozzle diameter was used. The nozzle–

work piece stand-off distance was controlled at 0.7 mm.

Focusing lens, focus position, nozzle diameter, nozzle

stand-off distance, and sheet thickness were kept constant

throughout the experimentation.

In the present experimental study, three input parame-

ters, namely: cutting speed (v), laser power (P), and assist

gas pressure (p), were considered. The parameter ranges

were varied by about 40 % above and below their normal

operating level as recommended by the machine manu-

facturer (Table 1).

To study the entire experimental region with minimum

cost and time of the experiment, Taguchi experimental

design was applied. Based on the selected parameters and

parameter levels, a design matrix was constructed in

accordance with the standard L25 Taguchi’s orthogonal

array (Table 2).

Two cuts, 60-mm length each, were made in every

experimental trial. The laser cut quality was assessed by

measuring kerf width and surface roughness. Surface

roughness on the cut edge was measured in terms of the

average surface roughness (Ra) using Surftest SJ-301

(Mitutoyo) profilometer. Cutoff length was 0.8 mm, and

evaluation length was 4 mm. Each measurement was taken

along the cut at approximately the middle of the thickness,

and the measurements were repeated three times to obtain

averaged values. The kerf width (Kw) of each cut was

measured at three equally distanced locations along the

length of cut by means of Eschenbach scaled magnifier

(109) with illumination and digital micrometer (Mitutoyo)

with accuracy of 0.01 mm.

4 Kerf width and surface roughness ANN models

4.1 ANNs functioning

The MLP represents fully connected feed-forward network

architecture composed of many interconnected neurons

grouped into input, hidden, and output layer. The func-

tioning of a three-layer feed-forward ANN with n input

neurons, m hidden neurons, and one output neuron can be

expressed by the following mathematical relation:

ŷ ¼ g
X

m

W � f
X

n

V � Xþ B

 !
þ bok

 !
ð1Þ

where V and W are weight matrices between input and

hidden layer and hidden and output layer, respectively; B is

the bias matrix of hidden neurons; bok is the bias of output

neuron; X is the vector of input parameters; f and g are

transfer functions in hidden and output layer, respectively;

and ŷ is the ANN prediction.

Determining weights and biases, in which the

‘‘knowledge’’ of the ANN is kept, is done during train-

ing process where examples (input–output pairs) are

presented to the ANN. Training is a continuous process,

which is repeated until the differences between predicted

and the target (experimental) values are below previously

defined threshold. The trained ANN should be tested on

selected set of input–output data (testing data) in order to

assess its ability to predict and make generalization on

the basis of the acquired ‘‘knowledge’’. Finally, the

trained and tested ANN can be used for modeling and

Table 1 Laser cutting parameters and their levels

Cutting parameter Unit Level

1 2 3 4 5

Cutting speed, v mm/min 3,000 4,000 5,000 6,000 7,000

Laser power, P W 700 900 1,100 1,300 1,500

Assist gas

pressure, p
bar 3 4 5 6 7

Table 2 Experimental design and results

Trial V P p Ra Kw

(mm/min) (watts) (bar) (lm) (mm)

1 3,000 700 3 1.487 0.228

2 3,000 900 4 1.290 0.278

3 3,000 1,100 5 2.073 0.293

4 3,000 1,300 6 2.477 0.427

5 3,000 1,500 7 2.937 0.667

6 4,000 700 4 1.780 0.255

7 4,000 900 5 1.707 0.327

8 4,000 1,100 6 2.337 0.302

9 4,000 1,300 7 3.307 0.328

10 4,000 1,500 3 1.190 0.330

11 5,000 700 5 2.013 0.303

12 5,000 900 6 2.017 0.288

13 5,000 1,100 7 2.603 0.305

14 5,000 1,300 3 1.173 0.302

15 5,000 1,500 4 1.380 0.292

16 6,000 700 6 1.660 0.253

17 6,000 900 7 1.710 0.277

18 6,000 1,100 3 0.963 0.273

19 6,000 1,300 4 1.007 0.268

20 6,000 1,500 4 1.143 0.293

21 7,000 700 7 1.587 0.255

22 7,000 900 3 0.832 0.250

23 7,000 1,100 4 0.903 0.300

24 7,000 1,300 5 0.88 0.275

25 7,000 1,500 6 1.073 0.312

Bolded rows denote data for ANN
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prediction of outputs when it is presented with new

(original) input data.

4.2 ANNs design

The ANN models were aimed to predict the kerf width

(Kw) and average surface roughness (Ra) considering three

process parameters, namely: cutting speed (v), laser power

(P), and assist gas pressure (p). To this aim, two ANN

models were developed:

• Model 1—which relates v, P, p, and Kw, and

• Model 2—which relates v, P, p, and Ra.

In order to increase prediction accuracy, stabilize and

enhance ANN training, the input and output data were

normalized between -1 and 1 by the following equation:

xn
i ¼ 2 � xi � xminð Þ= xmax � xminð Þ � 1; i ¼ 1; . . .; n ð2Þ

where xn
i is the normalized value for the variable, and xmin and

xmax are the minimum and maximum of each variable xi.

Linear transfer function and hyperbolic tangent sigmoid

transfer function were used in the output and hidden layer,

respectively. These transfer functions were used, since it

was assumed that there exists nonlinear relationship

between input and output process parameters.

It has been widely reported that ANN with a single

hidden layer are able to approximate any arbitrary function

to a given accuracy. Therefore, the selection of ANN

architecture can be reduced to finding the ‘‘optimal’’

number of hidden neurons. Too few neurons in hidden

layer can lead to under-fitting, whereas too many neurons

can contribute to over-fitting [13].

For the single hidden layer ANN architecture with n

input neurons, m hidden neurons and k output neurons, the

total number of weights and biases can be expressed as

T ¼ m � nþ k þ 1ð Þ þ k ð3Þ

The upper limit of number of hidden neurons can be

determined considering that the total number of weights

and biases in the ANN does not exceed the number of data

for training (Ntr). Though the ANN can still be trained, the

case is mathematically undetermined [20]. For ANNs with

single output neuron (k = 1), the upper limit of number of

hidden neurons can be determined by

mup� Ntr � 1ð Þ= nþ 2ð Þ ð4Þ

In order to take full modeling potential of the ANN, the

3-3-1 ANN architecture was selected for both models.

4.3 ANNs training

The ANN models were trained with the RCGA using the

available training data. The RCGA itself is not discussed,

and the details are available elsewhere along with numer-

ous examples of applications [3, 5, 15, 18]. A review

related to RCGA is also available [11]. Prior to using the

RCGA for ANN training, the explicit mathematical model

of the 3-3-1 ANN architecture was created using MATLAB

package. The aim of the RCGA was to explore the search

space to find optimal or near-optimal weights and biases on

the ANNs. These include weights between the input layer

and the hidden layer, weights between the hidden layer and

the output layer, biases of the hidden neurons and bias of

the output neuron. Therefore, the optimization problem

involved determining of total 16 weight and bias values,

that is,

V ¼

v11 v12 v13

v21 v22 v23

v31 v32 v33

2

664

3

775;

W ¼ w1 w2 w3½ �; B ¼ b1 b2 b3½ �; bok;

ð5Þ

The objective of the RCGA application was to

approximate connection weights and biases given in Eq.

(5) such that to minimize the following fitness function:

E ¼
XNtr

i¼1

di � ŷij j ð6Þ

where di and yi are the i-th target (experimental) and ANN

predicted values, respectively.

Basically, obtaining the best optimal results depends on

some features related to the RCGA parameters. Although

some general guidelines about such selections exist in

relevant literature, it was reported that optimal setting is

strongly related to the design problem under consideration

[1]. After few trials were conducted, the parameters of the

RCGA’s for both models were set as shown in Table 3

since with these settings minimum error was observed.

Figure 1 shows the best function value in each genera-

tion versus iteration number and convergence of the opti-

mization problem.

After an iterative calculus, the RCGA provided the

(near) optimal values for weights (V, W) and biases

(B, bok) for the ANN models (Table 4).

Table 3 RCGA parameter values used for ANN training

RCGA parameters Value

Population size 20

Selection Stochastic uniform

Reproduction Elite count: 2 crossover

fraction: 0.9

Crossover function Scattered

Mutation function Gaussian
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5 Results and discussion

5.1 Prediction performance of the ANN models

Regarding the data normalization, transfer functions used in

the ANNs and using the weights and biases from Table 4, one

can predict the kerf width and surface roughness using Eq. (1).

The prediction performance of the ANN models was exam-

ined based on the correlation coefficient between the ANN

predictions and the experimental values using both training

and testing data. Figure 2a shows good agreement of the

results for kerf width and the experimental results given in

Table 2. Also, Fig. 2b shows good accuracy of calculation for

the surface roughness, compared with the experimental values

of the average surface roughness.

To get a better picture of the ANN models’ prediction

performance, the statistical methods of correlation coeffi-

cient (R) and mean absolute percent error (MAPE) were

calculated separately for both training and testing data

(Table 5).

The results from Fig. 2 and Table 5 indicate that the

developed ANN models can be used for the prediction of

the kerf width and surface roughness for arbitrarily chosen

values of cutting parameters with good accuracy. Thus,

the influence of the cutting parameters on the kerf width

and surface roughness can be studied using the developed

ANN models. The effects of the cutting parameters were

examined at different combinations of input parameters.

Kerf width and surface roughness variation are shown in

Figs. 3 and 4 with two parameters in interaction, keeping

other parameter constant.

5.2 Effects of cutting parameters on the kerf width

As seen from Fig. 3a, the effect of the cutting speed on the

kerf width is nonlinear and variable. For assist gas pressure

below 5 bar, in the first stage the kerf width increases with

the increase of the cutting speed, but after a certain limit,

the increase of the cutting speed adversely affects the kerf

width, and the kerf width decreases with the increase of the

cutting speed. Laser cutting is a complicated process

because melting and evaporation of material take place

simultaneously under laser beam power and exothermal

reaction by the action of oxygen. For a given laser power

level, reducing the laser cutting speed increases the dura-

tion for which the high temperature oxidation reaction

takes place at the workpiece surface. In this case, the

influence of the assist gas pressure is obvious, i.e., the

combination of high assist gas pressure with low cutting

speed enhances the energy coupling at the workpiece sur-

face and increases the kerf width considerably (Fig. 3a). In

general, it was observed that a decrease in the kerf width

occurs with an increase in the cutting speed. These results

are in agreement with those reported in references [17, 23,

25]. This is due to the fact that an increase in cutting speed

reduces the rate of energy transfer from the laser source to
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Fig. 1 Plot functions of the best fitness for a Model 1 and b Model 2

Table 4 Experimental design and results

ANN V W B bok

Model 1 2.1337 0.2766 0.4269 -0.1730 0.1000 0.5490

0.3967 -1.5386 -1.0616 -1.4032 2.9569 –

2.4180 1.3974 1.3620 0.1638 2.5242 –

Model 2 0.0699 -0.6479 1.2718 0.3999 0.1759 -0.1607

1.2323 -1.2739 -1.8049 -0.3773 1.7168 –

3.5479 -0.3268 0.3860 -0.2466 -1.4582 –
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the workpiece material [23] which results in decrease in

side burning [21].

As seen from Fig. 3b, generally, increasing the laser

power enhances the kerf width size. Moreover, as the

cutting speed increases the kerf width reduces which is

particularly evident at higher laser power levels. When

comparing the present predictions with the previous find-

ings [23, 25], it can be noted that both results agree. For

cutting speed above 5,000 mm/min, the kerf width is

decreasing slowly until a certain limit with the increase of

the laser power but it begins increasing with the increase of

the laser power after about 1,200 W. On the other side, for

lower cutting speeds, the kerf width is increasing rapidly.

These findings are in agreement with previously reported

[25]. At higher laser power levels, the ignition zone is

expected to be wider because of the higher heat input [17].

As the interaction effect of the laser power and the cutting

speed determines the amount of heat that enters the

workpiece during processing, combination of the lowest

laser power level and the highest cutting speed level

resulted in the lower heat input during machining and

consequently, the lowest kerf width was observed.

For cutting speed of 5,000 mm/min, the increase in

oxygen gas pressure produces small changes in the kerf

width (Fig. 3c). However, the interaction effect of the

Table 5 Experimental design and results

ANN Training data Testing data

R MAPE R MAPE

Model 1 0.968 5.38 0.924 5.07

Model 2 0.979 6.13 0.995 7.79
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assist gas pressure and the laser power of 1,500 W results

in continual increase of the kerf width. When the high

power laser beam is absorbed by the workpiece material, it

results in solid-state heating, melting and evaporation of

the workpiece material. The melted and the evaporated

material together with the oxygen from the impinging gas

initiate a high temperature exothermic reaction [25]. This

ionizes the evaporation front slightly and generates a par-

tially ionized surface plasma [12] which acts as a heat

source, enlarging the size of the melt in the kerf. This effect

was particularly pronounced when using high laser power

(1,500 W) and high assist gas pressure (7 bar) when wide

kerf is produced (Fig. 3c).

5.3 Effects of cutting parameters on the surface

roughness

As seen from Fig. 4a, for laser power of 1100 W, an

increase in the cutting speed decreases the surface rough-

ness for assist gas pressures ranging from 3 to 7 bar. This is

due to the fact that as the cutting speed increases, the

interaction time between the laser beam and workpiece

material decreases, hence the thermal energy available at

the workpiece surface decreases, which results in minimum

side burning of the cut edge. On the other hand, increasing

the heat input (low cutting speed and high laser power)

increases the kerf width and surface roughness.

An increase in laser power improves surface roughness

in the 700–1,000 W laser power range (Fig. 4b). This is

because laser cutting is less stable at low power levels

[17, 21]. Above this range, the effect of the laser power is

variable depending on the cutting speed.

At lower cutting speeds, there is sufficient time for heat

diffusion and melting wider grooves which cause surface

deterioration. Actually, for a given cutting speed and assist

gas pressure, there exists an optimum laser power which

provides good surface finish.

An increase in the assist gas pressure increases the

surface roughness, and this functional dependence follows

the same trend apart from the values of the laser power

(Fig. 4c). By increasing the oxygen pressure, the exother-

mic-induced burning of the cut surface is increased and

also drag force is enhanced which results in higher surface

roughness.

It should be noted that the variations of the kerf width

and surface roughness with laser cutting parameters were

not consistent probably because of the interaction effects

between the laser cutting parameters and/or presence of

impurities and inclusions (pockets of phosphorus and sul-

fur) within mild steel workpiece.

With respect to the various combinations of laser cutting

parameters used in the experimental design, the dross

formation has been observed. In high-speed CO2 laser

cutting of mild steel (experimental trials 21, 22 and 23 in

Table 2), the different combinations of the laser power and

assist gas pressure levels resulted in dross formation. This

was also observed when using low cutting speeds (exper-

imental trials 4 and 5 in Table 2) wherein high laser power

and increased oxygen pressure led to excessive exothermal

reaction resulting in wide irregular kerf and dross

formation.

For most of the cutting conditions performed in the

study, the top kerf width was larger than the bottom kerf

width indicating the tapered nature of CO2 laser cutting as

caused by the loss of laser beam intensity and gas pressure

across the thickness of the cut.

3000 4000 5000 6000 7000
0.5

1

1.5

2

2.5

3

3.5

Cutting speed, v (mm/min)

S
ur

fa
ce

 r
ou

gh
ne

ss
, R

a 
(µ

m
)

p = 3 bar
p = 4 bar
p = 5 bar
p = 6 bar
p = 7 bar

700 900 1100 1300 1500
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Laser power, P (W)

S
ur

fa
ce

 r
ou

gh
ne

ss
, R

a 
(µ

m
)

v = 3000 mm/min
v = 4000 mm/min
v = 5000 mm/min
v = 6000 mm/min
v = 7000 mm/min

3 4 5 6 7

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Gas pressure, p (bar)

S
ur

fa
ce

 r
ou

gh
ne

ss
, R

a 
(µ

m
) P = 700 W

P = 900 W
P = 1100 W
P = 1300 W
P = 1500 W

(a)

(b)

(c)

Fig. 4 Variation of surface roughness with a cutting speed and assist
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6 Conclusions

This paper proposes an approach for the development of

predictive models for a CO2 laser cutting using the ANN

models trained by the RCGA. Experimental results from

the Taguchi’s experimental design, where three cutting

parameters (cutting speed, laser power and assist gas

pressure) were arranged, were used to develop ANN pre-

diction models for the kerf width and surface roughness.

The ANN models’ prediction results were compared with

the experimental results and were statistically assessed.

Considering the ANN model architectures and available

data for training, it can be concluded that the RCGA offers

reliable ANN training along with good prediction results of

ANNs. In addition, fast and easy implementation in

MATLAB software package makes applied approach an

alternative that can be effectively used in the prediction of

CO2 laser cutting process. It should be noted that the pre-

diction performance may be more enhanced by exploiting

the full potential of the RCGA through fine tuning of the

RCGA parameters.

It can be concluded that the proposed approach can be

efficiently used for the mathematical modeling and analysis

of the effects of process parameters on the cut quality

characteristics with the ultimate aim of better understand-

ing of the CO2 laser cutting process.

The practical application of the developed models

derived from the study can provide a fundamental foun-

dation for the manufacturers using laser cutting technology.

Integration of the developed models with an optimization

method will lead to improvement of product quality via

appropriate selection of the process parameters.
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