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Abstract
Researching the photosynthetic characteristics based on the whole chloroplast genome sequence of Camellia osmantha cv 
‘yidan’ is important for improving production. We sequenced and analyzed the chloroplast (cp) genomes of C. osmantha cv 
‘yidan’. The total cp genome length was 156,981 bp. The cp genomes included 134 genes encoding 81 proteins, 39 transfer 
RNAs, 8 ribosomal RNAs, and 6 genes with unknown functions. In total, 50 repeat sequences were identified in C. osmantha 
cv ‘yidan’ cp genomes. Phylogenetic analysis showed that C. osmantha cv ‘yidan’ is more closely related to Camellia vietnam-
ensis cv ‘hongguo’ and Camellia oleifera cv ‘cenruan 3’ than to Camellia semiserrata cv ‘hongyu 1’. Our complete assembly 
of four Camellia cp genomes may contribute to breeding for high oil content plants and further biological discoveries. The 
results of this study provide a basis for the assembly of the entire chloroplast genome of C. osmantha cv ‘yidan’.
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1  Introduction

The genus Camellia, which is used worldwide as an orna-
mental plant and for tea, belongs to the family Theaceae 
(Vijayan et al. 2012; Yang et al. 2013; Huang et al. 2014). 
Camellia oil is less known worldwide despite its use in 
China as an edible oil, as well as in Japan. Camellia is one 
of the four main oil-bearing trees in the world, in addition to 
palm, olive, and coconut (Robards et al. 2009).

Through years of research and experimentation, Guangxi 
Forestry Research Institute(GFRI) discovered the new spe-
cies C. osmantha (Ma et al. 2012a, b). C. osmantha is easy to 
plant, grows rapidly, and has strong cold, heat, and drought 
tolerance (Ma et al. 2013; Liu et al. 2013) as well as high 
oil yield (Wang et al. 2014). C. osmantha cv ‘yidan’ is rec-
ognized as a new variety of C. osmantha (Ma 2020). The 
plant height and crown width of 6-year-old C. osmantha 

cv ‘yidan’ was 5.39 m and 7.17 m, respectively, and the oil 
production of a 5-year-old plant was 0.0590 kg·m–2 (Liang 
et al. 2017), almost double the standard oil yield for C. oleif-
era cultivars (0.0325 kg·m–2). Camellia oil is also known 
as ‘‘eastern olive oil’’ because of the similarities in the 
chemical composition of Camellia and olive oils, with high 
amounts of oleic acid and linoleic acid, as well as low levels 
of saturated fats. At present, the total area of C. osmantha 
cv ‘yidan’ production is over 1500 ha, mainly in Qinzhou, 
Laibin, Yulin, Yunnan, and Hainan, China.

In China, the planting area of C. oleifera reaches 
4,466,700 ha, and the oil production is 600,000 tons. Camel-
lia oil production needs to be further developed. C. osmantha 
cv ‘yidan’ is a promising new species that produces 1590 kg 
of oil per hectare, doubling the standard oil productivity rate 
for C. oleifera cv ‘cenruan 3’ elite cultivars (750 kg·ha–1) 
(Liang et al. 2017). In plants, chloroplasts play an important 
role in maintaining life on Earth by providing carbohydrates, 
amino acids, lipids, and other metabolic substances (Daniell 
et al. 2021). Plant oil is one of the most important products 
of photosynthetic carbon assimilation. Fatty acid's biosynthe-
sis occurred early in seed-filling stage and went on until seed 
maturing. Then, oil accumulated rapidly in seed at late stage 
of seed maturing (Cao et al. 2021). Previous studies show 
that acetyl-CoA carboxylase (ACCase) in plastids was a key 
enzyme regulating the rate of de novo fatty acid biosynthesis. 
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And the expression of the ACCase gene was directly corre-
lated with change of lipid content (Modiri et al. 2018). Besides, 
the expression of oil biosynthesis-related transcription factors 
was influenced by the photosynthetic activity, such as WRIN-
KLED1 (Hua et al. 2012). Therefore, research on oil biosynthe-
sis and photosynthetic characteristic-related genes based on the 
whole chloroplast genome sequence of C. osmantha cv ‘yidan’ 
is of great significance for improving production. Moreover, 
the study of chloroplast genome genes provides a new idea for 
improving oil production in other oil plants.

At present, the chloroplast genome sequences of more than 
20 plants in the genus Camellia have been published in NCBI, 
including species for ornamental purposes (Huang et al. 2013; 
Yang et al. 2013) and tea production and C. oleifera. The chlo-
roplast (cp) genome is independent of the nuclear genome and 
exhibits maternal inheritance and semi-autonomous genetic 
characteristics (Guo et al. 2018). The structure of the cp 
genome in Camellia species is a typical four-segment, closed-
loop structure, with a large single-copy (LSC) region, a small 
single-copy (SSC) region, and two inverted repeats (IRs) of 
roughly the same length (Zheng et al. 2019). Among these 
structural regions, the IRs are the most stable, and the LSC 
has a higher mutation rate than the SSC. The coding regions 
of genes have a slower evolution rate, which is suitable for the 
analysis of relationships at the family and higher levels, while 
the non-coding regions have a faster mutation rate (Chen et al. 
2018), which is more suitable for analyzing relationships at 
lower levels such as genera and species (Clegg et al. 1994; 
Cui et al. 2019; Yang et al. 2019; Zeng et al. 2017). Thus, the 
characteristics of the maternal and highly conserved genes 
of the chloroplast genome provide favorable conditions for 
studying the phylogeny of plants.

Research on the chloroplast genome of Camellia plants 
is currently limited to the use of some chloroplast genes for 
phylogenetic analysis. Here, we describe the whole chloro-
plast genome sequence of C. osmantha cv ‘yidan’ and three 
other Camellia species using the next-generation Illumina 
genome analyzer platform. The three representative spe-
cies have notable phenotypic differences (including peri-
carp thickness, fruit size, seed yield, and oil content) and 
are widely cultivated in southern China. This study aimed to 
provide more information for the classification of C. osman-
tha cv ‘yidan’ by clarifying and comparing the cp genome 
sequences and structural variations between C. osmantha cv 
‘yidan’ and three closely related Camellia species.

2 � Materials and methods

Sample preparation, sequencing, and chloroplast genome 
assembly  –Fresh and healthy leaves of four Camellia 
species (C. osmantha cv ‘yidan’, Camellia vietnamensis cv 
‘hongguo’, Camellia oleifera cv ‘cenruan 3’, and Camellia 

semiserrata cv ‘hongyu 1’) were sampled and used for 
complete cp genome sequencing. The four Camellia species 
were deposited in the Camellia oil Germplasm Resource 
(Latitude 22°55′51″, Longitude108°20′03″). A modified 
CTAB method was used to extract total genomic DNA 
from 50 mg of fresh leaves [58]. A 270- or 350-bp insertion 
library was constructed for each species, using TruSeq 
DNA sample preparation kits (San Diego, CA 92122 USA). 
DNA from the 4 species was indexed by tags and pooled 
for sequencing in Illumina PE (2 × 150 bp) at Kunming 
Institution of Botany, Chinese Academy of Sciences.

A total of 72 million raw reads were generated and 
made available in FASTQ format. The quality of the raw 
sequence reads was evaluated using the software package 
FastQC (Andrews 2010). The software Trimmomatic 
v0.36 was used for removal of adapter, contaminant, low-
quality (Phred scores < 30), and short (< 36 bp) sequencing 
reads. The remaining high-quality sequencing reads were 
assembled de novo using the NOVOPlasty pipeline v2.7.2 
with default parameters and based on a kmer size of 39 or 
23 following the developer's suggestions, where the psbA 
gene of C. oleifera cv ‘cenruan 3’ was used as a seed input.

Chloroplast genomic annotation and sequence analyses  –
The assembled genomes of four species were originally 
annotated using PGA (Qu et  al. 2019). The annotation 
results of codon positions and intron/exon boundaries 
were manually corrected by comparing with other known 
homologous genes (NC_023084.1) in the Camellia cp 
genome. The circular structures were mapped using the 
OGDRAW tool (Lohse et al. 2013). By aligning the IR/LSC 
and IR/SSC regions with homologous sequences from other 
Camellia species (NC_023084.1), their exact boundaries 
were determined.

Variation detection and evolutionary relationship analysis.
Repeat structures including palindromic, forward, 

complement, and reverse repeats were searched with 
BiBiServ software (https://​bibis​erv.​cebit​ec.​uni-​biele​feld.​
de/​reput​er) with a repeat size of 15 bp and 90% or greater 
sequence identity. SSRs within the four cp genomes were 
detected using MISA software (https://​webbl​ast.​ipk-​gater​
sleben.​de/​misa/​index.​php). The following parameters 
were set in MISA: maximum length of sequence between 
two SSRs to register as compound SSR for 100  bp, 
with the parameters set at 10 for mononucleotides, 6 for 
dinucleotides, 5 for trinucleotides, and 5 for tetranucleotide, 
pentanucleotide, and hexanucleotide repeats.

We aligned the 114 Camellia and four other oil-producing 
species cp genome sequences using ClustalX. Unambigu-
ously aligned DNA sequences were used for phylogenetic 
analyses, but ambiguously aligned regions were excluded. 
Maximum likelihood (ML) analyses were conducted using 
MEGA7. Bootstrap support (BS) values for individual 

https://bibiserv.cebitec.uni-bielefeld.de/reputer
https://bibiserv.cebitec.uni-bielefeld.de/reputer
https://webblast.ipk-gatersleben.de/misa/index.php
https://webblast.ipk-gatersleben.de/misa/index.php
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Table 1   The list of accession number of the chloroplast genome sequences used in this study

Taxon GenBank accession 
number

Taxon GenBank 
accession 
number

R.communis NC_016736.1 C.chrysanthoides MW543443.1
O.europaea NC_013707.2 C.achrysantha MW543442.1
R.communis JF937588.1 C.brevistyla MW256435.1
O.europaea GU931818.1 C.pubipetala MW186719.1
C.crapnelliana KF753632.1 C.perpetua MW186718.1
C.sinensis KF562708.1 C.sinensis var. sinensis cultivar Tieguanyin MW148820.1
C.taliensis voucher HKAS:S.X.Yang3157 KF156839.1 C.sinensis isolate JM007 cultivar Bantianyao MW046255.1
C.yunnanensis voucher HKAS:S.X.Yang1090 KF156838.1 C.fascicularis MW026668.1
C.pitardii voucher HKAS:S.X.Yang3148 KF156837.1 C.meiocarpa MT956593.1
C.taliensis voucher HKAS:S.X.Yang3158 KF156836.1 C.sinensis cultivar Tieluohan MT773377.1
C.impressinervis voucher HKAS:S.X.Yang1080 KF156835.1 C.sinensis cultivar Shuijingui MT773376.1
C.danzaiensis voucher HKAS:S.X.Yang3147 KF156834.1 C.sinensis cultivar Rougui MT773375.1
C.cuspidata voucher HKAS:S.X.Yang3159 KF156833.1 C.grandibracteata NC_024659.1
C.sinensis KC143082.1 C.crapnelliana NC_024541.1
C.arabica NC_008535.1 C.yunnanensis voucherHKAS:S.X.Yang1090 NC_022463.1
C.azalea KY856741.1 C.pitardii voucher HKAS:S.X.Yang3148 NC_022462.1
C.luteoflora voucher CLUTE20161220 KY626042.1 C.impressinervis voucherHKAS:S.X.Yang1080 NC_022461.1
C.liberofilamenta voucher CLIBE20161220 KY626041.1 C.danzaiensis voucherHKAS:S.X.Yang3147 NC_022460.1
C.huana voucher CHUAN20161220 KY626040.1 C.cuspidata voucher HKAS:S.X.Yang3159 NC_022459.1
C.japonica KU951523.1 C.taliensis voucher HKAS:S.X.Yang3157 NC_022264.1
C.sinensis var. sinensis KJ806281.1 C.sinensis NC_020019.1
C.sinensis var. pubilimba KJ806280.1 C.japonica strain Huaheling MW602996.1
C.sinensis var. dehungensis KJ806279.1 C.debaoensis MW543445.1
C.reticulata KJ806278.1 C.pubipetala MW543444.1
C.pubicosta KJ806277.1 C.nitidissima NC_039645.1
C.petelotii KJ806276.1 C.gymnogyna NC_039626.1
C.leptophylla KJ806275.1 C.ptilophylla NC_038198.1
C.grandibracteata KJ806274.1 C.granthamiana NC_038181.1
C.gymnogyna MH394406.1 C.chekiangoleosa NC_037472.1
C.gymnogyna MH394405.1 C.japonica strain S288C NC_036830.1
C.gymnogyna MH394404.1 C.azalea NC_035574.1
C.gymnogyna MH394403.1 C.reticulata NC_024663.1
C.nitidissima MH382827.1 C.pubicosta NC_024662.1
C.renshanxiangiae MH253889.1 C.petelotii NC_024661.1
C.sinensis MH042531.1 C.leptophylla NC_024660.1
C.ptilophylla MG797642.1 C.kissii NC_053915.1
C.granthamiana MG782842.1 C.fascicularis NC_053896.1
C.chekiangoleosa MG431968.1 C.yuhsienensis NC_053622.1
C.japonica strain S288C MF850254.1 C.gauchowensis NC_053541.1
C.oleifera MF541730.2 C.brevistyla NC_052752.1
C.sinensis sangmok LC488797.1 C.amplexicaulis NC_051559.1
C.grandibracteata KJ806274.1 C.rhytidophylla NC_050389.1
C.lungzhouensis MN579509.2 C.fraterna NC_050388.1
C.tachangensis cultivar Xingyi6 MN327576.1 C.anlungensis voucher CANLU20191106 NC_050354.1
C.sinensis cultivar Baiye 1 MN086819.1 C.renshanxiangiae NC_041672.1
C.weiningensis voucher CwCPF1-201,901 MK820035.1 C.sasanqua NC_041473.1
C.japonica isolate Jeju Island MK353211.1 C.sinensis var. assamica MH394407.1
C.japonica isolate Soyeonpyeongdo MK353210.1 C.sinensis cultivar Dahongpao MT773374.1
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clades were calculated by running 1,000 bootstrap rep-
licates of the data. ML Heuristic method searches were 
conducted with the nearest-neighbor-interchange (NNI). 
The genetic relationship of the four Camellia cp genomes 
together with 108 available Camellia (Table 1) and four 
other oil-producing species cp genome sequences (Gen-
Bank accession no. JF937588.1(Ricinus communis cultivar 
Hale), NC_016736.1(Ricinus communis), GU931818.1(Olea 
europaea cultivar Frantoio), and NC_013707.2) (Olea euro-
paea cultivar Bianchera) were used to construct a maximum 
likelihood method (ML) tree by using MEGA 7 with default 
parameters (Tamura et al. 2011).

3 � Results

The structure of the chloroplast genomes of four camellia 
species  –The complete cp genomes of C. semiserrata cv 
‘hongyu 1’ (GenBank accession no. OP953553), C. vietna-
mensis cv ‘hongguo’ (GenBank accession no. OP 953555), 
C. osmantha cv ‘yidan’ (GenBank accession no. OP936137), 
and C. oleifera cv ‘cenruan 3’ (GenBank accession no. 
OP953554) were sequenced using Illumina sequencing 
technology (Fig. 1). The cp genomes of the four species 
are composed of a circular DNA molecule ranging in size 
from 156,807 to 157,005 bp, with the typical quadripartite 
structure consisting of two inverted repeats (IRa and IRb) 
and LSC and SSC regions (Table 2).

The C. semiserrata cv ‘hongyu 1’, C. osmantha cv 
‘yidan’, and C. oleifera cv ‘cenruan 3’ cp genomes each con-
tain 134 genes (81 protein-coding genes, 39 transfer RNA 
(tRNA) genes, and 8 ribosomal RNA (rRNA) genes, as well 
as 6 genes with unknown functions). The C. vietnamensis 
cv ‘hongguo’ cp genome contains 136 genes (83 protein-
coding genes, 39 tRNA genes, and 8 rRNA genes, as well 
as 6 genes with unknown functions), which includes two 
copies of the rpl2 gene. By contrast, rpl2 is not found in the 
other three species.

Among the 134 unique genes in C. semiserrata cv 
‘hongyu 1’, C. osmantha cv ‘yidan’, and C. oleifera cv 
‘cenruan 3’, 15 contain one intron (petB, petD, atpF, ndhA, 
ndhB, rps12, rps16, rpl16, trnG-UCC​, trnK-UUU​, trnL-
UAA​, trnA-UGC​, trnI-GAU​, trnV-UAC​, and rpoC1), and 2 
contain two introns (clpP and ycf3) (Table 3). Previous stud-
ies reported that ycf3 is necessary for the stable accumula-
tion of the photosystem I complex (Boudreau et al. 1997; 
Naver et al. 2001; Guo et al. 2018). Among the 135 unique 
genes in C. vietnamensis cv ‘hongguo’, 16 contain one intron 
(petB, petD, atpF, ndhA, ndhB, rps12, rps16, rpl2, rpl16, 
trnG-UCC​, trnK-UUU​, trnL-UAA​, trnV-UAC​, trnA-UGC​
,trnI-GAU​, and rpoC1), and 2 contain two introns (clpP and 
ycf3). The gene maps of C. osmantha cv ‘yidan’, C. sem-
iserrata cv ‘hongyu 1’, C. oleifera cv ‘cenruan 3’, and C. 
vietnamensis cv ‘hongguo’ are shown in Fig. 1.

Expansion and contraction of the border regions  –The 
border regions and neighboring genes of the four Camel-
lia cp genomes were compared to analyze the expansion 
and contraction of the connected regions (Fig. 2). The cp 
genomic structures, including gene type, gene order, and 
gene number, were conserved in C. osmantha cv ‘yidan’and 
C. oleifera cv ‘cenruan 3’, while the cp genomes of C. viet-
namensis cv ‘hongguo’ exhibited visible differences at the 
IRb/SSC/IRa/borders. The IRb region expanded into the 
gene ycf1 with 1042–1068 bp in the IRb regions (1068 bp 
for C. osmantha cv ‘yidan’ and C. oleifera cv ‘cenruan 3’, 
1042 bp for C. semiserrata cv ‘hongyu 1’).

The IRa/SSC borders displayed large differences among 
the four cp genomes. The gene ndhF is located at the IRa/
SSC or IRb/SSC junction, with 5–65 bp gaps between ndhF 
and the IR/SSC junction (5, 56, and 65 bp gaps in C. sem-
iserrata cv ‘hongyu 1’, C. osmantha cv ‘yidan’, and C. oleif-
era cv ‘cenruan 3’, respectively). The ndhF and ycf1 genes 
in C. vietnamensis cv ‘hongguo’ are reversed in the IRb/
SSC/IRa boundary region compared with the cp genome 
sequences of the other three species. ndhF in the SSC region 
was 56 bp from the IRb/LSC junction in C. vietnamensis cv 

Table 1   (continued)

Taxon GenBank accession 
number

Taxon GenBank 
accession 
number

C.sasanqua MH782189.1 C.sinensis cultivar Baijiguan MT773373.1
C.sinensis MH460639.1 C.yuhsienensis MT665973.1
C.sinensis var. assamica MH394410.1 C.rhytidophylla MT663343.1
C.sinensis var. assamica MH394409.1 C.fraterna MT663342.1
C.sinensis var. assamica MH394408.1 C.chuongtsoensis MT663341.1
C.amplexicaulis MT317095.1 C.sinensis cultivar Wuyi Narcissus MT612435.1
C.anlungensis voucher CANLU20191106 MN756594.1 C.gauchowensis MT449927.1
C.brevistyla MN640791.1 C.kissii MN635793.1
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‘hongguo’. By contrast, the IRa/LSC and IRb/LSC boundary 
regions were relatively conserved in the four cp genomes. 
The gene rpl2 formed another boundary by expanding into 
the IRa region in C. vietnamensis cv ‘hongguo’, leading to 
complete duplication of the gene within the IRs (Table 3).

Long‑repeat and simple sequence repeat (SSR) analysis  –
We detected palindromic, forward, complementary, and 

reverse repeats in the four cp genomes. Overall, 50 repeat 
sequences were identified in all Camellia cp genomes, of 
which 23–24 palindromic repeats, 16–17 forward repeats, 
7–9 reverse repeats, and 2–4 complementary repeats were 
separately found (Figure S1(A)). The lengths of palindromic 
repeats ranged from 19 to 79 bp, the forward repeats ranged 
in length from 19–42 bp, the reverse repeats ranged in length 

Fig. 1   Gene maps of the C. osmantha, C. semiserrata, C. vietnamensis, and C. oleifera cp genome. Genes drawn outside the circle are tran-
scribed clockwise and those inside are transcribed counter clockwise. Genes belonging to different functional groups are color-coded. The inner 
dark gray represents the GC content of the chloroplast genome, and the light gray indicates the AT content. (Lohse et al. 2013)
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from 19–23 bp, and the complementary repeats ranged in 
length from 19–20 bp (Figure S1(B–E)).

In this study, we found 50, 51, 51, and 53 SSRs in the 
C. semiserrata cv ‘hongyu 1’, C. osmantha cv ‘yidan’, C. 
vietnamensis cv ‘hongguo’, and C. oleifera cv ‘cenruan 3’ 
cp genomes, respectively (Fig. 3). These SSRs were mainly 
composed of adenine (A) or thymine (T) repeats and did 
not contain guanine (G) or cytosine (C) repeats. Moreover, 
the four cp genomes only contained mononucleotide repeats 
ranging from 10 to 17 bp.

Phylogenetic analysis  –We generated a phylogenetic tree 
using the nucleotide sequences of the cp genomes of 112 
Camellia species and other oilseed crops using the maxi-
mum likelihood method (Fig.  4), and Coffea arabica 
(NC_008535.1) was selected as an outgroup. C. osmantha cv 
‘yidan’ is most closely related to C. vietnamensis cv ‘hong-
guo’ and C. oleifera cv ‘cenruan 3’, which belong to the 
section Oleifera Chang.

4 � Discussion

In this study, we sequenced the complete cp genomes of 
four Camellia species and annotated their sequences. 
Phylogenetic studies have shown that cp genome evolution 
includes nucleotide substitutions and structural changes 
(Feng et al. 2008; Haberle et al. 2008; Guo et al. 2018).

Some studies have shown that there are introns or gene 
deletions in the chloroplast genome (Downie et al. 1996; 
Downie et al. 1991; Graveley et al. 2001;Guisinger et al. 
2010; Jansen et al. 2007; Ueda et al. 2007). Introns play 
an important role in the regulation of gene expression (Xu 
et al. 2017). They can increase gene expression levels in 
specific locations and at specific times (Niu et al. 2011; Le 
et al. 2003). The intron regulation mechanism has also been 
researched in other species (Callis et al. 1987; Emami et al. 
2013). However, no studies have analyzed the association 
between intron loss and gene expression. The chlB, chlL, 
chlN, and trnP-GGG​ genes were missing in the four Camel-
lia cp genomes but were found in several other angiosperm 

plastomes (Jansen et al. 2007; Green 2011; Mader et al. 
2018). These four genes represent synapomorphies for flow-
ering plants(Jansen et al. 2007). We found 15 genes that con-
tained one intron and two genes that contained two introns 
(ycf3 and clpP) in the C. osmantha cv ‘yidan’ cp genomes. 
The ycf3 protein is necessary to stabilize the complex of 
photosystem I with the light-harvesting complex I (Boudreau 
et al. 1997; Naver et al. 2001). We therefore speculate that 
intron gain in ycf3 may alter the expression of genes encod-
ing the photosystem I assembly protein. In the next study, 
we will focus on the photosynthesis-related genes in the four 
species. The clpP gene includes two introns. The intron gain 
in clpP may alter the regulation of genes encoding the clp 
protease proteolytic subunit. This phenomenon might be due 
to the increased evolutionary rates.

In addition, key genes related to lipid synthesis and photo-
synthesis are present in the chloroplast genome or located in 
chloroplast, such as carboxylase (accD) (Modiri et al. 2018), 
ω3-fatty acid desaturases(FAD) (Raboanatahiry et al. 2021), 
fatty acid exporter (FAX1-1, FAX2, FAX4) (xiao et al. 2021; 
Li et al. 2020), and phosphoenolpyruvate/phosphate translo-
cator (PPT) genes (Tang et al. 2022). The accD gene encodes 
the heteroacetyl coenzyme A carboxylase (ACCase), a key 
enzyme involved in plant fatty acid biosynthesis (Nakkaew 
et al. 2008; Wicke et al. 2011; Kode et al. 2005; Zhang et al. 
2016). Maliga (Maliga and Svab 2011) showed that accD in 
Nicotiana sylvestris was 1539 bp long. The accD sequence 
lengths were 1541, 1541, 1541, and 1532 bp in C. oleifera 
cv ‘cenruan 3’, C. semiserrata cv ‘hongyu 1’, C. osmantha 
cv ‘yidan’, and C. vietnamensis cv ‘hongguo’, respectively, 
suggesting that this gene has been conserved in plant cp 
genomes. Moreover, we observed no pseudogene formation 
of accD in the four Camellia cp genomes, consistent with the 
importance of fatty acid biosynthesis for these oil-produc-
ing plants. Camelina sativa ω3-fatty acid desaturases Csa-
FAD7 and CsaFAD8 were located in the chloroplast, which 
can modify the fatty acid composition of seed oil, which 
is useful for genetic engineering strategies (Raboanatahiry 
et al. 2021). FAX1-1, FAX2, and FAX4 were both localized 
to the chloroplast membrane, which play critical roles in 
transporting plastid fatty acids for triacylglycerols (TAGs) 

Table 2   Summary of Camellia 
chloroplast genome features

SSC (Small Single-Copy Region); IRs (Inverted Repeats Region); LSC (Large Single-Copy Region)

Camellia osmantha Camellia 
vietnamensis

Camellia 
semiserrata

Camellia oleifera

Genome size (bp) 156,981 157,003 156,807 157,005
LSC size (bp) 86,647 86,656 86,449 86,632
SSC size (bp) 18,284 18,297 18,256 18,291
IRa size (bp) 26,025 26,025 26,051 26,041
IRb size (bp) 26,025 26,025 26,051 26,041
Number of genes 134 136 134 134
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biosynthesis during seed embryo development (Li et al. 
2020). BnaFAX1-1 may simultaneously improve seed oil 
content, oil quality, and biological yield in B. napus (xiao 
et al. 2021). BnaPPT1 plays an important role in leaf mem-
brane lipid synthesis and chloroplast development, thus 
affecting photosynthesis (Tang et al. 2022). Therefore, the 
study of lipid metabolism-related genes in the chloroplast 
genome provides a new approach for future molecular breed-
ing in camellia oil.

Previous studies showed that C. oleifera cv ‘cenruan 3’ is 
more adapted to low light conditions compared to the other 
Camellia species (Ma et al. 2012a, b). And, the light satura-
tion point of C. osmantha cv ‘yidan’ is 499.7 μmol · m−2 s−1, 
and this species is more adapted to high light conditions. 
So, the light energy utilization of C. osmantha is maybe 
higher. Differences in plant photosystems maybe used to 
improve the efficiency of light absorption and transformation 
and further increase plant yield (Zhang et al. 2011). As the 
center of photosynthesis, the chloroplast genome is of great 
significance for revealing the mechanism and metabolic 

regulation of plant photosynthesis (Fang et al. 2010; Huang 
et al. 2013). Seed or silique wall photosynthesis contributed 
to the increased seed weight and oil content (Hu et al. 2018; 
Liu et al. 2012). The rpoA and rpoC2 genes encode the 
alpha and beta subunits of plastid RNA polymerase (PEP), 
respectively, which is responsible for the transcription of 
most photosynthetic proteins. We speculate that rpoA and 
rpoC2 genes in the chloroplast genome play a key role in the 
photosynthesis of C. osmantha.

Besides, it has been shown that when using chloroplast 
gene fragments for species low-order unit delineation, 
applicable highly variable regions should first be screened 
in the whole chloroplast genome (Dong et al. 2012). Chlo-
roplast molecular markers in hypervariable region analysis 
can explain the intraspecific divergences in the species (Lin 
et al. 2022; Li et al. 2022; Xiong et al. 2022). Moreover, 
chloroplast genomes can develop a high-resolution molecu-
lar marker for tracking population genetic diversity (Song 
et al. 2020). In C. vietnamensis cv ‘hongguo’, rpl2 is present 
and has not been found in the other three species. The gene 

Table 3   List of genes in the three Camellia chloroplast genomes

rpl2: 2 copies in C. vietnamensis and 0 in the other three species
* genes containing one intron; **genes containing two introns; (2) genes present in two copies; (3) genes present in three copies

Group of genes Gene names Number

Protein-coding genes Large subunit of Rubisco rbcL 1
Photosystem1 psaA, psaB, psaC, ycf1, psaI 5
PhotosystemII psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, 

psbM, psbN, psbT, psbZ
15

Cytochrome b/f complex petA, petB*, petD*, petG, petL, petN 6
ATP synthase atpA, atpB, atpE, atpF(*), atpH, atpI 6
NADH dehydrogenase ndhA*, ndhB(2)*, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, 

ndhJ, ndhK
12

Envelope membrane protein cemA 1
ATP-dependent protease subunit P clpP** 1

Ribosomal proteins Ribosomal small proteins rps2, rps3, rps4, rps7(2), rps8, rps11, rps12(3)*, rps14, rps15, 
rps16*, rps18, rps19

15

Ribosomal large proteins rpl14, rpl16*, rpl20, rpl22, rpl23(2), rpl32, rpl33, rpl36 9
RNA genes tRNA genes trnA-UGC(2)*, trnC-GCA​, trnD-GUC​, trnE-UUC​, trnF-GAA​, 

trnG-UCC*, trnG-GCC​, trnH-GUG​, trnI-CAU(2), trnI-GAU(2)*, 
trnK-UUU*, trnL-CAA(2), trnL-UAA*, trnL-UAG​, trnM-CAU(2), 
trnN-GUU(2), trnP-UGG​, trnV-GAC(2), trnQ-UUG​, trnR-ACG(2), 
trnR-UCU​, trnS-GGA​, trnS-GCU​, trnS-UGA​, trnT-UGU​, trnT-GGU​
, trnV-UAC*, trnV-GAC(2), trnW-CCA​, trnY-GUA​

39

rRNA genes rrn4.5(2), rrn5(2), rrn16(2), rrn23(2) 8
Transcription/ translation Maturase matK 1

Subunit of acetyL-CoA carboxylase Accd 1
Functions unknown (conserved 

open reading frames)
ycf1, ycf2(2), ycf3**, ycf4, ycf15(2), ycf68 8

c-type cytochrome synthesis ccsA 1
DNA-dependent RNA polymerase rpoA, rpoB, rpoC1*, rpoC2 4
Translational initiation factor infA 1

Total 134
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encodes a ribosomal protein L2, which full-length sequence 
is 1494 bp with a 671 bp intron. The rpl2 is found in other 
plants of the genus Camellia, so the development of molecu-
lar markers using the rpl2 gene could be used to distinguish 
thee four species, but whether it can be used to differentiate 
them from other Camellia spp. and requires further research.

Phylogenetic relationships among four Camellia spe-
cies revealed that C. osmantha cv ‘yidan’ is more closely 

related to C. vietnamensis cv ‘hongguo’ and C. oleifera cv 
‘cenruan 3’ than to C. semiserrata cv ‘hongyu 1’, other 
Camellia species, and other oil crops. The results of this 
study provide an assembly of a whole chloroplast genome 
of C. osmantha cv ‘yidan’, which may be useful for future 
breeding and further biological discoveries. It will provide 
a theoretical basis for the improvement of Camellia oil 
yield and the determination of phylogenetic status.

Fig. 2   Comparison of the SSC, IRs, and LSC border regions among the four Camellia cp genomes. Note: SSC(Small Single-Copy Region); 
IRs(Inverted Repeats Region); LSC(Large Single-Copy Region)

Fig. 3   Number of SSR motifs in 
different Camellia cp genomes
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