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Abstract
Parasitic flowering plants are characterized by the development of an organ known as haustorium, which has evolved in mul-
tiple independent angiosperms clades. The haustorium has also been deemed “the most plastic of organs” due to its ability to 
accommodate physiological and anatomical differences between the parasite itself and its host plants. This is achieved through 
the development of vascular connections, which involve the differentiation of various specialized cell types by the parasite. 
The development, structure, and evolution of the haustorium and the connections it fosters are reviewed here considering all 
12 parasitic plant lineages. A multi-level comparison between “model” parasitic plants, such as Orobanchaceae and Cuscuta 
species, with members of often neglected groups, such as Lennoaceae, Mitrastemonaceae, and Santalales yields the idea 
of a shared general body plan of the mature haustorium. This proposed haustorium bauplan is composed of an upper part, 
including structures associated with mechanical attachment to the host body, and a lower part, including all parasitic tissues 
and cell types within the host body. The analysis of multi-level convergence is also applied here to the comparison between 
haustoria and other plant organs. Considering the structure, molecular development, and functionality of this organ under the 
framework of continuum and process plant morphology, I propose the interpretation of haustoria as morphological misfits.
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1 Introduction

Parasitism is a widespread ecological interaction, observed 
in all domains of life (Combes 2001). In the Archaeplastida, 
the clade that harbors red algae, glaycophytes, multiple   
green algae lineages, and land plants (Baldauf 2008), para-
sitic interactions are often established by both green and 
red algae, as well as by land plants (Oborník 2019). Within 
the later, parasitic lifestyle is manifested in two different 
nutritional modes. On the one hand, mycoheterotrophism is 
observed in nearly all main lineages, including liverworts, 
ferns, conifers, and angiosperms, which exploit fungal hosts 
to fulfill their nutritional needs (Feild and Brodribb 2005; 
Merckx et al. 2009; Merckx 2013). On the other hand, plant 
parasitism is currently observed in 12 independent clades, 
exclusively among angiosperms  (Fig. 1a; Nickrent 2020). 
These species are unique in their capacity of obtaining water 

and nutrients directly from other plants, without the aid of a 
fungal partner or host.

In terms of their diversity, parasitic flowering plants add 
up to ca. 1% of extant angiosperm species (Westwood et al. 
2010). Such taxonomic diversity is matched by a broad vari-
ation of plant habits and functional attributes (Těšitel 2016). 
Most parasitic species, ranging from trees and shrubs, to 
small herbs and tuberous plants, germinate on the ground 
and attack the root system of their hosts (Fig. 1b–d; Bell 
and Adams 2011). Twining vines, i.e., Cassytha (Lauraceae) 
and Cuscuta (Convolvulaceae), germinate on the ground but 
develop no functional root system, attaching instead to the 
stems and branches of a wide variety of host plants (Fig. 1e; 
Kuijt 1969). Aerial shrubs, i.e., mistletoes, also parasitize 
host branches (Fig. 1f; Aukema 2003). However, their seeds, 
which are mostly transported by animal dispersers, germi-
nate directly upon the aerial organs of their hosts (Lamont 
1983). A final habit, known as endoparasitism, is observed 
in a few species that exhibit extreme vegetative body reduc-
tion and grow exclusively within the host roots/stems  during 
most of their life cycle (Fig. 1g; Mauseth and Rezaei 2013; 
Nikolov et al. 2014).
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Among the species exhibiting each of these growth 
habits, photosynthetic ability also varies widely, ranging 
from fully and partially photosynthetic plants, to species 
completely devoid of chlorophyll or chloroplast genome 
(Bromham et al. 2013; Molina et al. 2014). These non-
green species are usually termed holoparasites (Fig. 1c, 
g), while species that are at least partially photosynthetic 
are termed hemiparasites (Fig. 1b, d, e, f) (Musselman and 
Press 1995). Parasitic plants also show great diversity in 
terms of geographical distribution, having colonized the 
most different environments, from arctic to tropical regions 
(Irving and Cameron 2009; Heide-Jørgensen 2013). This 
widespread occurrence is frequently associated with a 
wide host range, from ferns to cacti, from trees to crops, 
and from shrubs to lianas (Heide-Jørgensen 2008).

The unifying feature of this broad diversity of species is 
their capacity to develop an organ known as a haustorium, 
which represents the “very essence of plant parasitism” 
(Kuijt 1969). The haustorium acts in the initial attach-
ment of a parasite to a suitable host, in the penetration 
of host tissues, and in the establishment of vascular con-
nections between the two plants, enabling the exchange 
of water, nutrients, and genetic information (Joel 2013; 
Yoshida et al. 2016). Given the importance of this organ 
for the parasitic nutritional mode, a wealth of information 

is available in the literature regarding haustorium mor-
phology, anatomy, and ultrastructure.

However, most of the research attention to date has been 
dedicated to parasitic plants considered as either forest 
pathogens, or weeds to horticultural and agricultural crops, 
including Cuscuta, Orobanchaceae, and a few mistletoe spe-
cies (Hawksworth 1983; Clarke et al. 2019; Watson et al. 
2020). Indeed, much of the available information on hausto-
rium structure, development, functionality, and evolution is 
based on the study of these parasites. This reflects both the 
considerable focus of current research on these economically 
important parasites and the need for more work on other par-
asitic plant species (Riopel and Timko 1995). The need for 
increased work dealing with non-pathogenic and non-weedy 
parasitic plants becomes even more relevant when one con-
siders that the interest in parasitic plants has increased over 
the past three decades (Nickrent 2020).

In this context, this review discusses the development, 
structure, and functionality of the parasitic plant haustorium, 
with a special focus on the vascular connections between 
parasite and host. The broad diversity of parasitic plant 
clades is considered here, including “model lineages,” such 
as Orobanchaceae and Cuscuta (Cesarino et al. 2020), as 
well as groups that are often neglected in literature reviews, 
such as Santalales, Lennoaceae, and Mitrastemonaceae. 
The goal is to provide a comparison across the different 

Fig. 1  Diversity of parasitic 
flowering plants. a Angio-
sperm phylogeny ( modified 
from Nickrent 2020) indicat-
ing 12 independent origins of 
the parasitic lifestyle (in red). 
b Pyrularia pubera Michx. 
(Santalaceae, Santalales), a root 
hemiparasitic tree. c Lennoa 
madreporoides Lex. (Len-
noaceae), a root holoparasite. d 
Castilleja mexicana (Hemsl.) A. 
Gray (Orobanchaceae), a root 
hemiparasitic herb. e Cuscuta 
campestris Yunck. (Convolvu-
laceae), a parasitic vine. f Pho-
radendron juniperinum Engelm. 
ex A. Gray (Santalaceae), a mis-
tletoe. g Mitrastemon matudae 
Yamam. (Mitrastemonaceae), an 
endoparasite. p parasite, h host
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angiosperm groups that include parasitic plants. Further-
more, based on insights from evolutionary developmen-
tal biology and continuum morphology, an approach that 
acknowledges gradations between typical plant structures 
(Sattler 1996), a new perspective and interpretation of haus-
torium identity and development is discussed here.

2  Haustorium development

The continuum process of haustorium development can 
be divided into three phases, namely initiation, intrusion, 
and conduction (Kokla and Melnyk 2018), each of which 
involves the formation of a different set of structures. Upon 
initiation, which is often triggered by chemical and/or physi-
cal stimuli provided by the host (Thoday 1951; Goyet et al. 
2019; Shimizu and Aoki 2019), appendages associated with 
mechanical anchorage to the host surface are formed. These 
include the modified root hairs of some Balanophoraceae 
and most Orobanchaceae species (Holzapfel 2001; Cui et al. 
2016), as well as expansions of the haustorium upper part, 
such as the attaching folds of Santalales and Krameriaceae 
root parasites (Kusano 1902; Musselman 1977) and the 
holdfast of mistletoes (Sallé 1983). Adhesion to the host 
surface is also attained through the release of cementing 
substances by structures such as the papillae of Orobanche 
spp. (Joel and Losner-Goshen 1994), the secretory trichomes 
of Cuscuta (Vaughn 2002), and the adhesive disc, which 
corresponds to the external, flattened part of the young 
haustorium of Cassytha and mistletoe species (Sallé 1983; 
Heide-Jørgensen 1991).

Attachment to the host surface allows the parasite to 
mechanically penetrate host dermal tissues. Cell-wall-
degrading enzymes are also considered to play an impor-
tant role in loosening the middle lamellae of host cells, thus 
facilitating penetration (Nagar et al. 1984; Losner-Goshen 
et al. 1998; Ouyang et al. 2016). Invasion of the host body 
leads to the development of a penetration peg, also known as 
intrusive organ, which develops either endogenously, from 
the pericycle, or exogenously, from the epidermis and outer 
cortex of the parasitic haustorium (Lee 2007; Pérez-de-
Luque 2013; Kuijt 2015; Kokla and Melnyk 2018; Wakatake 
et al. 2018). Irrespective of its origin, the general anatomy 
of the penetration peg is similar across most parasitic plants, 
being composed of multiple parenchyma cells. The main 
exception is the searching hyphae formed by Cuscuta, which 
are formed by single parenchyma cells that grow via cell tip 
elongation (Vaughn 2003). It is noteworthy that regular root 
hairs, which differentiate from epidermal cells, also grow 
via tip elongation (Miller et al. 1997). The searching hyphae 
of Cuscuta, however, originate from cortical cells and later 
differentiates into vascular cells (Shimizu and Aoki 2019).

The final stage of haustorium development involves the 
expansion and differentiation of penetrating structures into 
specialized tissues and cell types that promote connection 
between the vascular systems of parasite and host. In addi-
tion to the contact hyphae described above, such tissues 
also include cortical strands and haustorium flanges, which 
expand the parasite–host interface by spreading through 
the host bark and wood, respectively (Kuijt 1977; Condon 
and Kuijt 1994). Cell types other than tracheary elements 
are also common at the host–parasite interface, including 
transfer cells and flange cells (Fineran 1985; Fineran and 
Calvin 2000). This set of parasitic tissues embedded within 
the host body is then termed the endophyte (Teixeira-Costa 
and Ceccantini 2018). These and other peculiar structures 
of parasitic plants will be discussed in more detail in the 
following sections.

It is noteworthy that the three phases of haustorium devel-
opment summarized above have not been observed for all 
parasitic plant lineages. Early haustorium development, 
including the phases of initiation and penetration, has yet to 
be described for seven of the 12 currently recognized para-
sitic plant lineages. This includes Apodanthaceae, Cyno-
moriaceae, Cytinaceae, Hydnoraceae, Lennoaceae, Mitras-
tamonaceae, and Rafflesiacae (Kuijt 1966; Heide-Jørgensen 
2008). Among these groups, scanty information is available 
regarding seed germination (Heinricher 1917; Bolin et al. 
2009; Wicaksono et al. 2020); still, no reports of how the 
parasite first penetrates the host are available. Nevertheless, 
the structure of the mature haustorium, including establish-
ment of parasite–host phloem and xylem connections, has 
been described for species in all of these families. The fol-
lowing section discusses the structure and origin of these 
connections.

3  Structure of haustorium vascular 
connections

Haustorium vascular connections to the host xylem and 
eventually to the host phloem are classified as either direct, 
or indirect. Direct connections (Fig. 2a–d) occur when 
uninterrupted luminal/symplastic continuity is observed 
between tracheary/sieve elements of both plants (Hibberd 
and Jeschke 2001). Connections are classified as indirect 
(Fig. 2e–h) when mediated by parenchymatic tissue, often 
including specialized cells, such as flange and transfer cells 
(Pate et al. 1990; Fineran and Calvin 2000). A combination 
of both direct and indirect connections is also observed in 
many species (Fig. 2b, f) (Cameron and Seel 2007).

Phloem and symplast connections – Phloem differentia-
tion in the haustorium of parasitic plants and the develop-
ment of parasite–host phloem connections have been points 
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of controversy in the parasitic plant literature for decades. 
The use of inadequate methods for the detection of phloem 
sieve elements might have contributed to this debate (Esau 
1969; Dörr 1990). To date, direct phloem connections have 
been confirmed in few parasitic species. Sieve connections 
between certain species of Cuscuta (Israel et al. 1980) and 

Orobanche (Dörr and Kollmann 1995; Krupp et al. 2019) 
were revealed through the analysis of haustorium ultras-
tructure. More recently, phloem-mobile fluorescent dyes 
and in situ hybridization have also been used to detect the 
presence of sieve elements and the occurrence of direct 
phloem connections between Cuscuta species and their hosts 
(Birschwilks et al. 2006; Shimizu et al. 2018; Shimizu and 
Aoki 2019). Uninterrupted parasite–host phloem connec-
tions can also be detected by labeling the callose of sieve 
plates with specific fluorescent dyes (Angyalossy et al. 
2016). Following this method, sieve elements of Apodan-
thaceae and Rafflesiaceae species were observed to connect 
directly to the sieve elements of host plants (Teixeira-Costa 
et al. in press).

It is crucial to note that the presence of sieve elements 
in the haustorium is not necessarily an indication of direct 
parasite–host phloem connections (Dörr 1990). Indeed, 
sieve elements and companion cells have been observed in 
the haustorium of hemiparasites with no connection to the 
host phloem (Calvin 1967; Kuijt and Dobbins 1971). At the 
same time, the endophytic tissue of holoparasites can also 
contain sieve elements that do not connect directly to the 
host phloem. This has been shown to be the case in Balan-
ophoraceae, Cytinaceae, Hydnoraceae, and, more recently, 
Cynomoriaeae species (Hsiao et al. 1995; De Vega et al. 
2007; Tennakoon et al. 2007; Fahmy and Hassan 2020). 
Furthermore, although transfer cells are observed at the 
interface between Balanophora species (Balanophoraceae) 
and their hosts, connections to host sieve elements were not 
detected (Gedalovich-Shedletzky and Kuijt 1990). Simi-
larly, electron microscopy revealed no phloem connections 
between Boschniakia hookeri Walp. (Orobanchaceae) and 
its host (Kuijt and Toth 1985).

These observations suggest that direct phloem connec-
tions are either ephemeral or absent in several holopara-
sites, which would imply that these parasites obtain most 
(or all) of their nutrition by tapping into the host xylem. 
Considering holoparasites usually have low transpiration 
rates (Seel et al. 1992; Fahmy 1993), species without direct 
access to the host phloem would be expected to grow slow 
as a response to consequent low rates of resource uptake. 
This is observed in Balanophoraceae species, in which 
transpiration is also reduced to a minimum due to the 
absence of stomata (Moore 1940; Kuijt and Dong 1990). 
A similar situation could occur for Cytinaceae and Mitras-
temonaceae species, which have been anecdotally reported 
to take several years to bloom for the first time (Watanabe 
1933; Forstmeier et al. 1983). To a certain degree, the rela-
tion between slow growth and absence of direct sieve con-
nections can be extended to Striga (Orobanhaceae). These 
annual hemiparasites remain underground for most of 
their life cycle, being fully dependent on the host for their 

Fig. 2  Examples of parasitic plant species and the types of vascular 
connections formed with host plants. a, b Helosis cayanensis (Sw.) 
Spreng. (Balanophoraceae, Santalales). a External morphology. b 
Light microscopy of the parasite-host interface showing direct xylem 
connection (dashed square) between vessel elements of parasite and 
host; notice parasite parenchyma cell abutting a host vessel (arrow-
head). c, d Rafflesia cantleyi Solms (Rafflesiaceae). c External mor-
phology (photograph by Charles C. Davis). d Fluorescence micros-
copy of the parasite-host interface showing direct phloem connection 
between parasite and host sieve elements (callose marked with aniline 
blue dye; dashed circles). e, f Scybalium fungiforme Schott & Endl. 
(Balanophoraceae, Santalales). e External morphology. f Fluores-
cence microscopy (autofluorescence) of the parasite-host interface 
showing indirect xylem connection between parenchyma cells of the 
parasite and vessel elements of the host; notice large nuclei of para-
site parenchyma cells (arrowheads). g, h Bdallophytum americanum 
(R. Br.) Eichler ex Solms (Cytinaceae). g External morphology (pho-
tograph by Cyril H. Nelson). h. Fluorescence microscopy of the para-
site-host interface showing indirect phloem connection between para-
site parenchyma cells and host sieve elements (callose marked with 
aniline blue dye); notice large nuclei of parasite parenchyma cells 
(arrowheads). p parasite, h: host
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carbon supply during this period (Spallek et al. 2013; Lam-
bers and Oliveira 2019). The lack of parasite–host phloem 
connections (Dörr 1997) could then be an explanation to 
the delayed emergence of the above-ground stems of most 
Striga species.

Xylem connections – As with many aspects of haustorium 
development and functionality, the growth of parasitic pen-
etration structures and subsequent differentiation of hausto-
rium vasculature depend, to a certain extent, on the anatomy 
of host stems/roots. When infesting herbaceous species or 
other plants that do not undergo pronounced secondary 
growth, parasite penetration structures are able to continue 
growing and elongating until they have reached the host 
primary xylem. This has been illustrated and reviewed for 
both aerial (McLuckie 1924; MacLeod 1962) and root para-
sites (Pérez-de-Luque 2013). Conversely, contact with the 
host secondary xylem is usually achieved by a coordinated 

proliferation between the endophyte and the host cambium. 
When infesting woody roots/stems, centripetal growth 
of the penetration peg is halted once it reaches the host 
cambial zone (Fig. 3a) (Fineran 1965). At this point, the 
meristematic tip of the peg usually becomes flattened and 
promotes further circumferential growth against the surface 
of the host secondary xylem (Pate et al. 1990). Then, as 
the host cambium produces new xylem tissue, the parasitic 
endophyte becomes passively embedded within the host 
wood (Kuijt 1965).

Alternatively, a few species can actively penetrate the 
host secondary xylem by growing in between radial cells 
(Fig. 3b) (Heil 1926; Dell et al. 1982; Kuijt et al. 1985; 
De Vega et al. 2007). Detection of this penetration strat-
egy requires detailed examination of the transition between 
intrusion and conduction phases of haustorium development. 
For this reason, such strategy may still be underestimated 

Fig. 3  Details of parasite–host xylem connections. Light (a, b, d, f, i), autofluorescence (c), and polarized light (g) microscopy shows longi-
tudinal and cross sections through the host stem/root. a Penetration peg (white outline) of Phoradendron juniperinum (Santalaceae) halted at 
the host cambial zone (asterisks). b Endophyte (white  outline) and sinker (diamond) of Bdallophytum americanum (Cytinaceae) penetrating 
through the host wood rays. c Parasite sinker (diamond) of Struthanthus martianus Dettke & Waechter (Loranthaceae, Santalales) branching 
to form vessel elements (white circle) within a host vessel. d Predominance of parenchymatic tissue at the interface between Pyrularia pubera 
(Santalaceae, Santalales) and its host; notice two areas of direct xylem connection (black circles). e Transmission electron microscopy showing 
transfer cell at the interface between Phoradendron perrottetii (DC.) Eichler (Santalaceae, Santalales) and its host; notice invaginations of the 
parasite cell wall (arrowheads). f Flange cells (white circle) at the interface between Phoradendron perrottetii (Santalaceae, Santalales) and its 
host. g Interface between Struthanthus flexicaulis (Mart. ex Schult. f.) Mart. (Loranthaceae, Santalales) and a conifer host indicating parenchym-
atic composition of the sinker (diamond) and endophyte (white outlines); notice parasite vessel elements (arrowhead) are absent in the sinker. h 
Transmission electron microscopy showing parenchymatic cell of the sinker formed by Struthanthus flexicaulis (Loranthaceae, Santalales) at the 
interface with a conifer host. i Direct vascular connection (white ellipse) at the interface formed by Arceuthobium americanum Nutt. ex Engelm. 
(Santalaceae, Santalales) and its conifer host; notice perforation plate (arrowhead). p parasite, h host
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among parasitic species. This is especially relevant in the 
case of root holoparasites, due to difficulties in sampling 
these plants during early developmental stages. The portion 
of the endophyte that extends radially into the host xylem 
is termed “sinker,” alluding to the sinking of parasitic cells 
deeper within the host (Kuijt 1977; Teixeira-Costa and Cec-
cantini 2018).

Sinkers are initially composed of parenchymatic cells 
(Fig. 3b), part of which later differentiate into tracheary 
elements (Fig. 3c, d) and other specialized conductive cells, 
such as transfer cells (Fig. 3e) and flange cells (Fig. 3f) 
(Fineran 1996; Hibberd and Jeschke 2001; Vaughn 2006). 
Oftentimes, parenchymatic cells of the sinker invade host 
vessels trough lateral pit apertures, in a process similar to 
what is observed in the formation of tyloses (Esau 1965; 
Kuijt 1977). Once within the host vessel, the process of pro-
grammed cell death leads to the formation parasitic vessels 
elements inside and in continuity with host vessels (Fig. 3c) 
(Toth and Kuijt 1977; Venturelli 1980; Heide-Jørgensen and 
Kuijt 1995; Cameron et al. 2006). In Orobanchaceae species, 
this type of parasitic vessel element is usually referred as 
“oscula” (Dörr 1997). Another peculiar cell type frequently 
observed in the haustorium of Orobanchaceae, Santalales, 
and Cassytha hemiparasites is known as graniferous tra-
cheary element (Musselman and Dickison 1975; Fineran 
1985; Calvin and Wilson 1996; Rajanna and Shivamurthy 
2001). This is a xylem conduit that contains amylaceous or 
proteinaceous granules attached to its inner cell walls, which 
have been hypothesized to help regulate sap flow from host 
to parasite (Fineran and Bullock 1979; Joel 2013).

In several cases, however, direct connections between 
parasite and host tracheary elements can be extremely rare 
(Lambers and Oliveira 2019). This is especially observed 
in Santalalean root hemiparasites and a few mistletoes, in 
which direct xylem connections account for less than 10% 
of the parasite–host interface area (Fig. 3d) (Pate et al. 
1990; Calvin and Wilson 1995). In that event, indirect para-
site–host xylem connections often involve transfer cells 
(Fig. 3e), characterized by intricate wall labyrinths that 
amplify the surface area of the plasma membrane (Offler and 
Patrick 2020), and flange-type parenchyma cells (Fig. 3f), 
which show wall thickenings in the form of flanges (Fineran 
1996). Both cell types are associated with intense transport 
of nutrients (Fineran 1996; Fineran and Calvin 2000; Offler 
and Patrick 2020).

Parenchyma cells can also play a crucial role in xylem 
connections of species with a broad host range, known as 
host–generalist parasites, that attack tracheid-bearing hosts, 
such as conifers and most ferns. In the sinker of the mis-
tletoe Struthanthus flexicaulis (Loranthaceae), for instance, 
parenchyma cells usually differentiated into vessel ele-
ments. However, when infesting conifer hosts, the sinker 
remains parenchymatic, leading to the formation of indirect 

xylem connections only (Fig. 3g, h) (Ceccantini et al. 2019). 
On the other hand, in mistletoes that exclusively  infest 
conifer species, such as Arceuthobium spp. (Santalaceae), 
although most of the parasite–host interface is comprised 
of parenchyma cells, direct xylem connections are achieved 
via tracheary pits (Fig. 3i). This comparison suggests that 
parasitic species with broad host ranges can recognize the 
surrounding cells of the host xylem and accommodate the 
structure of their sinkers accordingly. Furthermore, this 
comparison highlights haustorium plasticity and its ability 
to accommodate physiological and anatomical differences 
between the parasite itself and its host plants. Future inves-
tigation of this topic should focus on the molecular mecha-
nisms behind this form of host recognition, which could 
provide insights into why some parasitic plants display a 
virtually unlimited host range. At the same time, understand-
ing how a parasite can differentiate between distinct types of 
tracheary elements could broaden the general understanding 
molecular xylem development.

4  Proposal for a general haustorium 
bauplan

As the parasitic habit evolved multiple times independently, 
so did the haustorium. Considered as a homoplastic charac-
ter, there would be no a priori reason to imagine all hausto-
ria to be similar in their developmental origin or structural 
organization (Kuijt 1969). Indeed, haustorium morphology 
and anatomy may vary greatly when comparing species from 
distantly related lineages and different functional groups, 
such as endoparasites and the root hemiparasites. Differ-
ences are less pronounced when comparing species with 
similar life histories. Similarities in development and struc-
ture of the haustorium among and within root hemiparasitic 
clades, including Krameriaceae (Fig. 4a), Orobanchaceae 
(Fig. 4b), and Santalaceae, have been long recognized (Bar-
ber 1907; Musselman and Dickison 1975; Musselman 1977). 
Likewise, the convergence between Cassytha (Fig. 4c) and 
Cuscuta (Fig. 4d) has long been observed, and it extends 
from their lianescent form and rudimentary roots, to the gen-
eral aspect of their haustorium (Kuijt 1969; Heide-Jørgensen 
2008).

Among mistletoes, the remarkable diversity in haustorium 
morphology has been recently shown to have a common 
developmental trajectory, one that is also partially shared 
with Santalalean root hemiparasites (Teixeira-Costa et al. 
2020). Striking developmental similarities have also been 
observed among endoparasitic species of the families Apo-
danthaceae, Cytinaceae, Mitrastemonaceae (Fig. 4e), and 
Rafflesiaceae (Fig. 4F) (Teixeira-Costa et al. in press). On 
the other hand, root holoparasites are more diverse, forming 
haustorial systems with different origins and morphologies. 
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For instance, Prosopanche caatingicola Machado & L.P. 
Queiroz (Hydnoraceae, Fig. 4g) forms multiple hausto-
ria, which emerge laterally along the root system, while 
Scybalium fungiforme  (Balanophoraceae, Fig. 4h) forms 
a single haustorium, which emerges at a terminal posi-
tion. As expected, similarities have been more often rec-
ognized between root holoparasites with the same type of 
haustorium, such as in the case of the endophyte tissue of 
Hydnoraceae and Lennoaceae, both of which have lateral 
haustoria (Tennakoon et al. 2007). A similar endophyte is 
also observed in Cynomoriaceae (Fahmy and Hassan 2020). 
Among root holoparasites with a terminal haustorium, the 
same form of parasite-induced alteration to the host xylem, 
forming a “placenta-like” structure that accommodates 
parasite tissues (Fig. 4i), is observed in Orobanchaceae 
(Kuijt and Toth 1985; Baird and Riopel 1986) and Balan-
ophoraceae (Holzapfel 2001). Curiously, this feature is also 
developed in the association of many mistletoe species and 
their hosts, being called a woodrose (Kuijt and Lye 2005).

The examples discussed above highlight the value of 
examining convergence, and more specifically, phenotypic 

convergence at multiple levels of biological organization. 
Similarity/difference at one hierarchical level not necessar-
ily implies similarity/difference at another level (Rosenblum 
et al. 2014). Indeed, conservation or divergence in morphol-
ogy can be influenced by developmental, genetic or struc-
tural constrains (Lau and Oakley 2020). Because haustorium 
development is a dynamic process that involves shifts in 
structure and functionality (Yoshida et al. 2016), tissues and 
cell types that are readily identified during one phase may 
not be distinguishable later in development. For instance, in 
Loranthaceae mistletoes such as Psittacanthus and Loran-
thus species, few sinkers can be observed at young stages of 
haustorium development, but become indistinguishable at a 
later, mature stage (Dzerefos and Witkowski 1997; Teixeira-
Costa et al. 2020).

Based on a comparative analysis across parasitic plant lin-
eages, a convergence in the topology of haustorium tissues 
emerges, suggesting a convergent haustorium bauplan. This 
shared body plan can be artificially divided in two parts: 
the upper haustorium and lower haustorium. The first lies 
external to the host body and, in most cases, originates from 

Fig. 4  Similarities and differences in the haustorium of multiple parasitic plant lineages. a, b Cross section through host roots showing a similar 
form of penetration by the parasites a Krameria lappacea (Dombey) Burdet & B.B. Simpson (Krameriaceae; image provided by G. Brokamp 
and M. Weigend) and b Aureolaria pedicularia (L.) Raf. ex Pennell (Orobanchaceae). c, d Longitudinal and cross sections through host stems 
showing the general aspects of the haustorium in c Cassytha filiformis L. (Lauraceae) and d Cuscuta sp (Convolvulaceae); note searching hypha 
(black outline). e, f Longitudinal section through the host root and macroscopical image showing similarities of the interface formed by e Mitras-
temon matudade Yamam. (Mitrastemonaceae) and f Rafflesia cantleyi Solms (Rafflesiaceae); note the presence of a cupule (cp) in both species. 
g Habit of the parasite Prosopanche caatingicola (Hydnoraceae) bearing lateral haustoria (black circles). h Habit of the parasite Scybalium 
fungiforme (Balanophoraceae) bearing a terminal haustorium (tuber). i. Habit of the parasite Scybalium glaziovii Eichler (removed) causing the 
formation of a placenta-like structure (black arrowhead) in the host root. p parasite, h host; white arrowheads: parasite xylem
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the appendages that aid in mechanical anchorage, which are 
formed during haustorium initiation. The lower haustorium 
comprises the endophyte and its diverse set of tissues and 
cell types, all of which derive from the penetration peg 
formed during haustorium intrusion. This includes tissues 
that establish vascular connections with the host phloem 
and/or xylem. The proposed haustorium bauplan is repre-
sented in Fig. 5, indicating the similar topology observed in 
both aerial (Fig. 5a) and root (Fig. 5b, c) parasites.

This schematic representation also illustrates the topol-
ogy observed in the haustorium of Balanophoraceae species 
(Fig. 5d). It has been suggested that plants in this family 
have a unique type of haustorium in which the host vascular 
system is stimulated to differentiate new conductive cells 
toward the parasite (Mangenot 1947; Kuijt 1969). While 
this is indeed the case, stimulation and rearrangement of 
host phloem and/or xylem is not an exclusive feature of 
the Balanophoraceae haustorium. The extreme phenotype 
observed in Balanophoraceae is similar to what has been 
reported in other root holoparasites (Tate 1925), mistle-
toes (Aloni 2015), and endoparasites (García-Franco et al. 
2007; do Amaral and Ceccantini 2011; Teixeira-Costa 
et al. in press). The frequent occurrence of host vascular 
cells converging toward the haustorium highlights another 

level of convergence among different parasitic plants. At a 
physiological level, these changes caused to host vascular 
development appear to be mediated by the same hormones 
released by the parasite at the interface with the host (Zhang 
et al. 2012; Hu et al. 2017; Spallek et al. 2017).

Another feature of the Balanophoraceae haustorium that 
deserves special mention is the highly modified chimeric 
structure that many of them develop with their hosts. The 
tuberous organ of Balanophora, Langsdorffia, and Thonnin-
gia species is traversed by chimeric vascular strands com-
posed of both parasite and host cells (Fig. 5d) (Holzapfel 
2001). In addition to xylem, phloem, and transfer cells, these 
chimeric strands contain both parasitic and host-derived 
meristematic cells at the apical region (Gedalovich-Shed-
letzky and Kuijt 1990; Hsiao et al. 1995). This close integra-
tion of meristematic cells is also observed in endoparasites 
such as Pilostyles thurberi A. Gray (Apodanthaceae; Ruther-
ford 1970), Arceuthobium douglasii Engelm. (Santalaceae; 
Lye 2006), and at least temporarily in Tristerix aphyllus 
(DC.) Barlow (Loranthaceae; Mauseth et al. 1985). Moreo-
ver, endoparasites such as Rafflesiaceae and Mitrastemon-
aceae species develop another type chimeric structure known 
as cupule, which is part of the parasite haustorium (Fig. 4e, 
f, cp) and partially produced by the host as a response to 
the burst of parasite flower buds (Kuijt 1969; Nikolov et al. 
2014).

It is noteworthy that, at their mature developmental 
stage, endoparasites lack a recognizable upper haustorium 
(Fig. 5e). In other parasites, the upper haustorium provides 
a link between the exterior parasite body (i.e., the exophyte) 
and the vascular connections formed with host tissues via 
the lower haustorium. Through the course of evolution, the 
increased specialization of the endophytic system, which 
acquired the function of giving rise to the main exophyte 
(Kuijt 1969; Těšitel 2016), could have coincided with a 
reduction of the upper haustorium, rendering it ultimately 
superfluous. In endoparasites with remnant photosynthe-
sis, such as Tristerix aphyllus (Loranthaceae) and Viscum 
minimum Harv. (Santalaceae), a distinct upper haustorium is 
formed upon germination (Mauseth et al. 1985; Kuijt 1986). 
As development progresses, the shoot apex is aborted and 
the upper haustorium disintegrates (Mauseth et al. 1985; 
Kuijt 1986). A similar form of germination and initial devel-
opment could also occur for other endoparasites.

5  New interpretation of haustorium organ 
identity

Questions of homology between parasitic plant structures, 
especially the haustorium, and other plant organs have long 
puzzled researchers and divided opinions. For instance, 
structures that foster the development of additional lateral 

Fig. 5  Schematic representation of different morpho-anatomical types 
of haustoria according to the interpretation of a shared body plan. 
Transition zones between different parts of the haustorium are repre-
sented with color gradients
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haustoria, such as the epicortical roots of certain mistletoes, 
the pilot roots of Lennoaceae and  Hydnoraceae species, 
and the runners of Balanophoraceae have all been initially 
identified as modified roots (Kuijt 1964, 1966, 1969). How-
ever, more recent publications have reopened the question 
of homology in all of these structures (Mauseth et al. 1992; 
Tennakoon et al. 2007; Kuijt 2015).

The most debated issue, however, is the question to 
whether haustoria are modified roots, stems, or an entirely 
different type of structure. Based on the evolutionary plas-
ticity of plants, leading to a diverse array of morphologies, 
Kuijt (1969) claims that the haustorium “represents a root 
in function and evolutionary origin.” Considering hausto-
rium anatomy is highly modified, showing no clear paral-
lels with other organs, Goebel (1905) and Forstreuter (1988) 
have interpreted the haustorium as an organ sui generis, 
that is, a structure of its own kind. Finally, Weber (1987) 
avoided the “sui generis debate” by suggesting that a ter-
minal haustorium could be interpreted as a type of lateral 
haustoria formed directly at the root apex due to extreme 
root reduction.

The analysis of multi-level convergence is an interest-
ing approach that can also be helpful in the discussion of 
organ identity of parasitic plant haustoria. At the functional 
level, all different types of haustorium exert the same basic 
functions of a root system. In fact, parasitic plants depend 
upon their hosts in a similar way that non-parasitic plants 
depend on the soil (Calvin and Wilson 1998). Haustoria pro-
vide mechanical anchorage to the host and act in the uptake 
of water and mineral nutrients (Joel 2013). In some cases, 
haustoria might also be involved in mycorrhizal interactions 
(Baird and Riopel 1986; de Vega et al. 2010). At the molec-
ular level, albeit data are still restricted to a few Cuscuta 
and Orobanchaceae species (Yang et al. 2015; Vogel et al. 
2018; Yoshida et al. 2019), evidence suggests genes that 
control lateral root formation in non-parasitic plants have 
been coopted for haustorium development in parasite spe-
cies (Yoshida et al. 2019). Similarities between hormonal 
control of haustorium formation and root development have 
also been described (Zhang et al. 2015, 2016). Nevertheless, 
at the developmental and anatomical levels, the message is 
not quite clear.

Four key features are used in comparative morphol-
ogy and anatomy of seed plants to differentiate roots from 
shoots: (1) the organization of xylem and phloem tissues in 
alternating sectors (roots, Fig. 6a) versus same axial sectors 
(shoots, Fig. 6b); (2) endogenous (root, Fig. 6c) versus exog-
enous (shoot, Fig. 6d) origin of daughter axes; (3) presence 
(roots, Fig. 6e) versus absence (shoots, Fig. 6f) of a root 
cap; (4) absence (roots, Fig. 6g) versus presence (shoots, 
Fig. 6h) of exogenously formed leaves (Rutishauser and Isler 
2001). Internal haustorium anatomy in the different lineages 
of parasitic plants is not organized in sectors and cannot be 

classified as either root-like, or stem-like (Fig. 6i; Bhandari 
and Mukerji 1993). In terms of their ontogenesis, terminal 
haustoria develop from the embryo root apex soon after ger-
mination, while lateral haustoria have an exogenous origin 
(Fig. 6j), developing from cells in the cortical region of roots 
or stems (Kuijt 1969; Heide-Jørgensen 2008). Despite their 
root-like origin, the root apical meristem of most parasites 
with a terminal haustorium lacks a root cap (Calvin 1966; 
Musselman and Dickison 1975; Lamont 1983). In parasites 
with lateral haustoria, a cap-like tissue can be present (Bro-
kamp et al. 2012), however, with a different appearance, 
more similar to bark tissues (Fig. 6k). The underground 
structures of Balanophoraceae are regarded as not having a 
root (nor a shoot) organization (Hansen 2015).

Considering the exogenous development of lateral haus-
toria, a similar origin is mostly common for bud forma-
tion (Fig. 6d), developing from either pre-existing shoots 
(stem ramification or branching) or roots (root–shoots or root 
buds) (Esau 1965). On the other hand, lateral and adven-
titious root formation in angiosperms are both associated 
exclusively with an endogenous origin (Fig. 6c), i.e., devel-
oping from cells in the vascular system (Esau 1965). Devel-
opment of structures that emerge directly from a haustorium 
occurs in few parasitic clades. In root holoparasites with a 
terminal haustorium, such as some Orobanchaceae and all 
Balanophoraceae, inflorescences develop from the tuberous 
haustorium, originating from parenchyma cells among the 
many vascular bundles (Schrenk 1894; Shivamurthy et al. 
1981). In the haustorial roots of Lennoaceae species, stem 
apical meristems also develop from parenchyma cells among 
vascular bundles (Fig. 6l). In Loranthaceae mistletoes, basal 
epicortical roots develop at the base of the hypocotyl, in 
close proximity to the upper haustorium, but separate from it 
(Calvin and Wilson 2006). Finally, in the case of most endo-
parasites, such as Apodanthaceae, Cytinaceae, Mitrastemon-
aceae, and Rafflesiaceae species, flower/inflorescence axes 
also develop endogenously, from a secondary morphological 
surface formed internally to the reproductive meristem apex 
(Kuijt 1969; Nikolov et al. 2014).

In face of these multiple interpretations, all of which 
based on somehow conflicting evidence, the haustorium 
appears as a “misfit” in the sense of the classical morphol-
ogy discipline (Bell 1991). Often used in reference to plants 
such as river-weeds (Podostemaceae) and bladderworts 
(Lentibulariaceae), the term “morphological misfit” has been 
applied to label a variety of natural deviations to the norm 
of a root–shoot axis with independent, non-overlapping 
structures (Rutishauser 2016). Using these peculiar plants 
as subjects and examples, several plant morphologists, phi-
losophers, and developmental geneticists (e.g., Arber 1950; 
Sattler 1996; Sinha 1999; Rutishauser and Isler 2001) have 
argued in favor of a complementary approach to the classical 
morphology framework. Known as Continuum Morphology, 
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or Fuzzy Arberian Morphology, in homage to the pioneer 
work of Agnes Arber (1950), this complementary approach 
understands plant structures as processes, highlighting that 
drastic evolutionary changes to the basic root–shoot program 
may require fuzzy, rather than clear-cut concepts of organ 
identity (Rutishauser 2020).

Under this framework, the haustorium of parasitic flow-
ering plants would be better interpreted as a root–shoot 
mosaic, as it has been suggested for the underground struc-
tures of Utricularia and Pinguicula (Lentibulariaceae) (Rut-
ishauser and Isler 2001). Using the mosaic as a metaphor, a 
terminal haustorium could then be interpreted as composed 
mostly of “root-like tiles,” while lateral haustoria would be 

Fig. 6  Diagnostic anatomical features of roots (a, c, e, g) and stems (b, d, f, h) compared with aspects of haustorium (i–l) anatomy. a, b Organi-
zation of xylem (black arrowheads) and phloem (black outlines) tissues in alternating sectors (roots, a) versus same axial sectors (shoots, b); 
note the opposite direction of vessel element differentiation (curvy black arrows) in each organ. c, d Daughter axes (black outlines) with an 
endogenous (root, c) versus exogenous (shoot, d) origin; note the position of the vascular system in each organ (black star). e, f Apical meris-
tem (black asterisks) showing presence (root, e) versus absence (shoot, f) of a root cap. g, h Absence (roots, g) versus presence (shoots, h) of 
exogenously formed leaves; note the position of the vascular system in each organ (black star) and the shape of the leaf gap in the stem (black 
outline). i Cross section through the haustorium of Krameria lappacea (Krameriaceae; image provided by G. Brokamp and M. Weigend); note 
the absence of phloem and presence of xylem (white arrowhead) tissues. j Haustorium initiation (white outline) in the cortex of Cuscuta ameri-
cana L. (Convolvulaceae); note the position of the vascular system (white star). k Pre-haustorium of Krameria lappacea (Krameriaceae; image 
provided by G. Brokamp and M. Weigend); note the presence of a bark-like dermal tissue (white arrow) covering part of the structure. l Shoot 
apical meristem (white asterisk) developed from parenchyma cells in the haustorial root of Lennoa madreporoides (Lennoaceae)
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composed of roughly equal parts of “root-like tiles” and 
“stem-like tiles.” This interpretation provides more than a 
resolution to the conflict of haustorium homology and organ 
identity, opening up new research avenues for the compari-
son between parasitic plants and other morphological mis-
fits, especially in terms of their evolutionary development. 
The continuum morphology approach complements the 
interpretations based on classical morphology, providing 
a more comprehensive framework for the comparison and 
investigation of the haustorium across the multiple angio-
sperm lineages. Finally, this mosaic interpretation reinforces 
that, despite being a homoplastic character, the haustoria of 
the different functional and taxonomic groups of parasitic 
plants are more similar to each other, than they are similar 
to other plant organs. The shared developmental trajectory of 
the different types of haustoria could then be due to homolo-
gous regulatory genes expressed in a similar manner in all 
different lineages of parasitic flowering plants.
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