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Abstract
Cynanchum thesioides (Freyn) K. Schum. with higher drought tolerance has received much research attention in arid and 
semiarid areas of China. However, no full evaluation of drought resistance had been made. In the current study, we compared 
relative water content, water saturation deficit, root vitality, root–cap ratio, photosynthetic pigments and ten physiological 
indices in C. thesioides and C. thesioides (Freyn) K. Schum. var. australe (Maxim.) Tsiang et P.T. Li. seedlings under a 
gradient of drought stress. The ten indices included superoxide dismutase, peroxidase, catalase, ascorbate peroxidase and 
malondialdehyde, hydrogen peroxide, superoxide, proline, soluble protein and sugar content of leaves and roots. Based on 
the analysis of average membership functional values, the drought tolerance of C. thesioides var. australe was better than C. 
thesioides. In the future, C. thesioides var. australe should be given priority when selecting varieties for use as medicines 
in arid and semiarid areas of China.
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Abbreviations
CT  Cynanchum thesioides (Freyn) K. Schum.,
CA  Cynanchum thesioides (Freyn) K. Schum. var. aus-

trale (Maxim.) Tsiang- et P.T. Li
CK  Control
LS  Mild drought stress
MS  Moderate drought stress
SS  Severe drought stress
O2

−  Superoxide

1 Introduction

Drought is a major stress factor in plants, under drought 
stress plant morphology, physiology and gene expres-
sion changes (Comas et al. 2013; Zhang et al. 2015). For 

example, when confronted with a deficit of soil water, root 
activity drops and growth of the aerial parts of the plant 
are inhibited. However, this also promotes elongation of 
the root, increases root–shoot ratio and improves water use 
efficiency (Shan et al. 2008). Leaf color is a clear expres-
sion of the pigments present in leaves. Chlorophyll is the 
predominant pigment, and the quantity of chlorophyll deter-
mines plant growth capacity and is an indicator of stress 
level. Water stress during drought can change the quantity of 
chlorophyll a and chlorophyll b in plants leading to changes 
in photosynthesis capacity (Miao et al. 2015; Shukla et al. 
2015).

Osmotic regulation occurs in plants under water stress, 
which results in cell synthesis and the absorption and accu-
mulation of particular compounds; within-plant levels of 
these compounds are positively correlated with drought tol-
erance as they maintain cell turgor under low water potential, 
reducing wilting and maintaining the capacity for growth. At 
the same time, accumulation of solutes can protect cell pro-
teins, enzymes, organelles and cell membranes from damage 
due to dehydration. These solutes also have an anti-ageing 
function as they scavenge free radicals under conditions of 
severe drought stress (Sapeta et al. 2015; Nolan et al. 2017).

The balance between production and scavenging of reac-
tive oxygen species (ROS) is disrupted in plant cells dur-
ing drought stress, and this results in a variety of harmful 
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cytological effects (Choudhury et al. 2017; Verma et al. 
2019; Wei et al. 2019). Malondialdehyde (MDA) is an indi-
cator of lipid peroxidation and plasma membrane damage in 
plant cells (Mohammadi et al. 2011; Maqbool et al. 2017). 
The non-enzymatic and enzymatic antioxidants that scav-
enge ROS contribute to the long-term survival of plants as 
they retain ROS at a moderate level thus preventing cell 
damage (Huang et al. 2013; Zhu 2016). Recent studies have 
suggested that some antioxidative enzymes protect plants 
from damage during mild and moderate drought stress, but 
are less effective under severe drought stress (Jia et al. 2015).

Cynanchum thesioides (Freyn) K. Schum. are erect, 
xerophytic subshrubs (Chen and Qian 1959), present in arid 
and semiarid regions. C. thesioides is economically and 
ecologically important: It produces edible fruits; is used in 
the production of medicines, animal feed and industrial raw 
materials; and improves soil quality and water conservation 
in pastures (Zhang et al. 2019). In recent years, more and 
more people have become familiar with C. thesioides as a 
medicinal plant that can cure tonifying qi, lactogenesis and 
warts (Liang 2012) and have begun cultivating them.

The aim of the present study was to quantify osmoti-
cally active compounds, chlorophyll, ROS and antioxidant 
enzymes in the leaves and roots of C. thesioides under 
drought stress. We aimed to elucidate the physiological 
response mechanisms that C. thesioides uses to tolerate 
water deficit and moreover to determine whether C. the-
sioides or C. thesioides (Freyn) K. Schum. var. australe 
(Maxim.) Tsiang et P. T. Li were more drought resistant.

2  Materials and methods

Plant materials and experimental design – Seeds of both C. 
thesioides and C. thesioides var. australe were collected in 
Chifeng city in the Inner Mongolia Autonomous Region of 
China. The seeds were surface-sterilized in 2% (v/v) NaOCl 
for 15 min, rinsed three times in distilled water and pre-
germinated at 25 °C in darkness for 3 days on wet filter 
paper. Germinated seeds were sown 2-3 cm deep in plastic 
pots (260 cm height × 180 cm diameter, 0.9 kg weight) each 
containing 2.4 kg of compost that was comprised of a mix-
ture of sand, soil and fermented sheep dung (7:5:2; v/v/v); 
eight seeds were sown in each pot. Seedlings were grown in 
a greenhouse (mean temperatures of 26/19 °C [day/night]) 
at the Inner Mongolia Agricultural University, Huhhot, Inner 
Mongolia Province, Northwest China (111°69′E,40°80′N).

At the ten-leaf stage, morphologically uniform seedlings 
were selected for experimentation. Seedlings were ran-
domly divided into four groups (n = 20 per treatment group 
for both C. thesioides and C. thesioides var. australe) and 
assigned to different drought stress treatments as described 
by Hsiao (1973). The four drought stresses were related to 

soil moisture content and represented different percentages 
of the maximum water holding capacity (24.4%) of the 
soil, specifically: 65-70% (control), 45-50% (mild drought), 
25-30% (moderate drought) and 5-10% (severe drought), 
respectively. To achieve the different drought treatments, 
we first saturated each pot with water and then let them dry 
naturally until they reached the required moisture levels, as 
determined by weighing, drying and re-drying samples of 
the soil to determine water content. Every day at 5 p.m., 
the soil moisture content was determined in the same way, 
and any water lost was replaced to ensure the moisture con-
tent was maintained at the required level for each treatment. 
After 5 days the leaves and roots were harvested and the 
related physiological indices were determined, each experi-
mental data were repeated four times.

Estimation of relative water content and water saturation 
deficit – Relative water content and water saturation deficit 
were measured four replicates in each treatment, following 
Barrs and Weatherley (1962). Fresh leaves were weighed 
(Wf) and soaked in water overnight until the weight of leaves 
was constant. The saturated leaves were weighed (Wt) and 
then dried for 24 h at 80 °C to determine the dry weight 
(Wd). The RWC and WSD were calculated using the formula:

Quantifying photosynthetic pigments – Photosynthetic pig-
ments were extracted by soaking 0.2 g of fresh leaves in 
25 mL of 95% ethanol. The absorbance of each extract was 
measured at 665 nm, 649 nm and 470 nm using a spectro-
photometer (Li 2000). Chlorophyll a (Chl a), chlorophyll 
b (Chl b), total chlorophyll (T-Chl) and carotenoids (Cx.c) 
were calculated using the equations of Li (2000).

Estimation of root vitality and root–cap ratio – The 2,3,5-tri-
phenyltetrazolium chloride (TTC) method was used to deter-
mine the root vitality. Root vitality was calculated using the 
equations of Li (2000), and RCR was calculated as the ratio 
of root dry weight to shoot dry weight.

Determining the content of the osmolytes: soluble protein 
and soluble sugar – To measure the soluble sugar content, 
0.3 g fresh leaves from each replicate was homogenized in 
10 mL distilled water. The samples were stirred and main-
tained in a water bath at 100 °C for 30 min. Extract was 
merged and made a total volume to 25 mL. Total soluble 
protein was extracted from 0.25 g leaf with 5 mL of distilled 
water and then 5 mL Coomassie brilliant blue G-250 after 
centrifugation 3000 r  min−1 for 10 min. Protein and sugar 
content was determined by the procedure of Li (2000).
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Extraction and quantification of  H2O2, malondialdehyde 
(MDA) and  O2 – From each replicate, 0.25 g of fresh leaves 
was immersed in liquid nitrogen to which 20% polyvinyl-
polypyrrolidone (PVPP) had been added. The mixture was 
homogenized with 5 mL 0.1% trichloroacetic acid (TCA) 
and centrifuged at 10000 g for 10 min at 4 °C. The super-
natant was used to determine hydrogen peroxide and MDA 
concentrations.  H2O2 was measured using an ultraviolet–vis-
ible spectrophotometer in accordance with Patterson et al. 
(1984). MDA concentration was determined following the 
method of Li (2000) and used as a measure of the level of 
membrane damage. The production ratio of superoxide (O2

.−) 
was measured according to the methods of Elstner and Heu-
pel (1976).

Enzymatic activity – ÒEnzymes were extracted by immers-
ing 0.5 g of leaves from each replicate in liquid nitrogen, to 
which 1.5 mL of extraction buffer had been added; extrac-
tion buffer was comprised of 100 mM potassium phosphate 
buffer (pH 7.0), 1  mM ethylenediaminetetraacetic acid 
(EDTA), 2 mM dithiothreitol (DTT), 0.8 mM phenylmethyl-
sulfonyl fluoride (PMSF), 1% PVPP and 1 mM ascorbic 
acid (ASA). The mixture was centrifuged at 14000 rpm per 
30 min at 4 °C, and the supernatant was collected and stored 
at -80 °C prior to analysis. Each supernatant was evaluated 
for activity of all the enzymes of interest as described below.

The activity of superoxide dismutase (SOD) was deter-
mined using the method of Giannopolitis and Ries (1977) 
with some modifications. The absorbance of each solu-
tion was determined at 560 nm using an ultraviolet–vis-
ible spectrophotometer. One unit of enzyme activity was 
defined as the amount of enzyme that would inhibit 50% 
of blue tetrazolium (NBT) photoreduction.

The activity of catalase (CAT) was determined in rela-
tion to its ability to oxidize  H2O2 using the method of 
Chance and Maehly (1955). Changes in absorbance at 
240 nm were read every 1 min for 3 min using an ultra-
violet–visible spectrophotometer. One unit of CAT activity 
was defined as a change in absorbance of 0.01 units per 
minute.

The activity of peroxidase (POD) was evaluated in rela-
tion to its ability to oxidize guaiacol. Changes in absorb-
ance at 470 nm were read every 1 min for 3 min using an 
ultraviolet–visible spectrophotometer. One unit of POD 
activity was defined as a change in absorbance of 0.01 
units per minute.

Ascorbate peroxidase (APX) activity was measured in 
relation to its ability to oxidize ascorbate using the meth-
ods of Nakano and Asada (1981). Changes in absorbance at 
290 nm were read every 1 min for 5 min using an ultravio-
let–visible spectrophotometer. One unit of APX activity was 
defined as a change in absorbance of 0.01 units per minute.

Statistical methods – Data were presented as mean val-
ues ± SE. Significant differences among different water 
stress treatments were determined by ANOVA. All data were 
analyzed using the statistical software package SAS version 
9.0. The least significant difference (LSD) was used to com-
pare means at P ≤ 0.05. Drought resistance evaluation was 
adopted by membership function (Chen et al. 2012; Zhang 
et al. 2017) and principal components analysis (Shen 2018).

3  Results

Relative water content and water saturation deficit of 
leaves – As drought stress increased, the relative water 
content of C. thesioides leaves first increased and then 
decreased; it was largest under mild drought conditions, 
followed by the control and then moderate drought and 
smallest under severe drought. Relative water content of 
CT and CA plants under severe drought was reduced by 
46.45% and 69.25%, respectively, compared with the con-
trol, and this was statistically significant (P ≤ 0.05). Under 
mild drought, relative water content was significantly higher 
than in all other treatments (P ≤ 0.05). However, changes in 
water saturation deficit followed the opposite trend to the 
relative water content of leaves. Under mild drought, water 
saturation deficit was significantly lower than in all other 
treatments (P ≤ 0.05) and reached the maximum value under 
severe drought (Table 1).

Quantity of photosynthetic pigments – As drought stress 
increased, the quantity of photosynthetic pigments increased 
(Table 2). This increase is not significantly different between 
the control and mild drought stress conditions. Compared 
with the control, the increases in chlorophyll a, chlorophyll 
b, total chlorophyll and carotenoids in CT and CA plants 

Table 1  Relative water content and water saturation deficit in leaves 
of two varieties of C. thesioides grown under drought stress

CT: C. thesioides; CA: C. thesioides var. australe; RWC: relative 
water content; and WSD: water saturation deficit
For each plant variety, different letters within the same column show 
significant difference among treatments at P ≤ 0.05
Values represent mean ± standard deviation

Material Treatments RWC/% WSD/%

CT CK 60.30 ± 2.53b 39.70 ± 2.53b
Mild 65.04 ± 1.31a 34.96 ± 1.31c
Moderate 61.00 ± 3.13b 39.00 ± 3.13b
Severe 32.29 ± 3.01c 67.71 ± 3.01a

CA CK 66.48 ± 4.00b 33.52 ± 4.00bc
Mild 71.74 ± 1.52a 28.26 ± 1.52c
Moderate 62.92 ± 3.58b 37.08 ± 3.58b
Severe 20.44 ± 8.79c 79.56 ± 8.79a
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under severe drought stress were 44.07%, 35.44%, 67.88%, 
18.23%, 50.54% and 37.72%, respectively. The ratio of total 
chlorophyll/carotenoid in CT plants increased with increas-
ing drought stress; it was 7.67, 7.70, 9.08 and 10.13, respec-
tively, under the different drought conditions. However, this 
ratio in CA plants increased initially, but then decreased; it 
was 8.52, 8.61, 8.72 and 8.15, respectively, under the differ-
ent drought conditions.

Root vitality and root–cap ratio – As drought stress 
increased, the root vitality of CT plants gradually decreased; 
compared with the control, root vitality under mild, moder-
ate and severe drought decreased by 45.40%, 44.90% and 
46.37%, respectively, and this was statistically significant 
(P ≤ 0.05). As drought stress increased, the root vitality and 
root–cap ratio of CA plants increased; compared with the 
control, they increased 1 and 0.4 times under severe water 
stress, respectively. The root–cap ratio of CT plants was 
higher than that of CA plants (Table 3).

Quantity of osmolytes – The soluble sugar in leaves of CT 
plants decreased under drought stress, but it increased in CA 
plants (Fig. 1a). Soluble sugar content of roots under severe 
drought was two times higher than that in leaves under the 
same conditions. The soluble protein content of leaves of 
CT and CA plants under severe drought was higher than in 
roots (Fig. 1b). The proline content did not change signifi-
cantly in leaves of CT plants under drought stress (Fig. 1c). 
Compared with the control, the proline content of leaves 
from CA plants and roots from CT and CA plants increased 
significantly (Fig. 1c).

Quantity of  H2O2, MDA and  O2 – As drought stress increased, 
the production ratio of superoxide  (O2

−) in leaves and roots 
of CT and CA plants increased; compared with the con-
trol, it increased by 35.69% (CT leaves), 36.87% (CT roots), 

23.88% (CA leaves) and 54.99% (CA roots) under severe 
drought stress. In leaves, it was at least two times higher than 
in roots (Fig. 2a). As drought stress increased,  H2O2 content 
in roots and leaves of CT and CA plants also increased.  H2O2 
content of leaves was higher than in roots under different 
drought stress conditions.  H2O2 content of leaves from CT 
plants was higher than that in leaves from CA plants in the 
same treatment, while that in roots of CT plants was lower 
than in roots of CA plants in the same treatment (Fig. 2b). 
MDA content in leaves and roots of CT and CA plants 
increased as drought stress increased; compared with the 
control, it increased by 31.91% (CT leaves), 54.30% (CT 
roots), 37.17% (CA leaves) and 31.72% (CA roots) under 
severe drought stress. MDA content of CT plants was higher 
than in CA plants (Fig. 2c).

Activity of antioxidant enzymes – The activities of SOD, 
CAT, POD and APX were all affected by drought stress. 

Table 2  Content of 
photosynthetic pigments in 
leaves of two varieties of C. 
thesioides grown under drought 
stress

CT: C. thesioides; CA: C. thesioides var. australe; Chl a: chlorophyll a; Chl b: chlorophyll b; T-Chl : total 
chlorophyll; and Cx.c : carotenoids
For each plant variety, different letters within the same column show significant difference among treat-
ments at P ≤ 0.05
Values represent mean ± standard deviation

Material Treatments Chl a/mg g−1 Chl b/mg g−1 Cx.c/mg g−1 T-Chl/m ·g−1

CT CK 0.387 ± 0.01c 0.165 ± 0.001c 0.072 ± 0.001a 0.552 ± 0.005c
Mild 0.418 ± 0.003c 0.175 ± 0.001c 0.077 ± 0.001a 0.593 ± 0.003c
Moderate 0.487 ± 0.003b 0.227 ± 0.001b 0.078 ± 0.001a 0.708 ± 0.004b
Severe 0.560 ± 0.004a 0.277 ± 0.004a 0.082 ± 0.004a 0.831 ± 0.01a

CA CK 0.395 ± 0.047b 0.203 ± 0.047b 0.066 ± 0.010c 0.562 ± 0.065b
Mild 0.408 ± 0.029b 0.167 ± 0.029b 0.071 ± 0.058c 0.611 ± 0.042b
Moderate 0.492 ± 0.041a 0.222 ± 0.041a 0.082 ± 0.009b 0.715 ± 0.054a
Severe 0.535 ± 0.025a 0.240 ± 0.025a 0.095 ± 0.064a 0.774 ± 0.037a

Table 3  Root vitality and root–cap ratio of two varieties of C. the-
sioides grown under drought stress

CT: C. thesioides; CA: C. thesioides var. australe; RV: root vitality; 
and RCR: root–cap ratio
For each plant variety, different letters within the same column show 
significant difference among treatments at P ≤ 0.05
Values represent mean ± standard deviation

Material Treatments RV/mg g−1 h−1 RCR 

CT CK 1.337 ± 0.245a 0.528 ± 0.051c
Mild 0.730 ± 0.04b 0.580 ± 0.033c
Moderate 0.737 ± 0.085b 0.662 ± 0.066b
Severe 0.717 ± 0.537b 0.725 ± 0.188a

CA CK 0.757 ± 0.072c 0.207 ± 0.037c
Mild 0.927 ± 0.136b 0.248 ± 0.030b
Moderate 1.187 ± 0.211b 0.235 ± 0.041bc
Severe 1.517 ± 0.146a 0.295 ± 0.048a
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CAT activity in leaves and roots of C. thesioides increased 
slightly compared with the control, peaking under moder-
ate drought stress conditions; while it declined under severe 
drought (Fig. 3a).

As drought stress increased, SOD activity in roots and leaves 
of CT plants first increased and then decreased; however, in 
roots and leaves of CA plants, it increased gradually. SOD 
activity of leaves from CT plants was higher than in leaves 
from CA plants, but its activity in roots of CT plants was 
higher than in roots of CA plants under low drought stress 
conditions and lower in severe drought stress conditions 
(Fig. 3b).

POD activity in CT and CA plants was at least 2.65 
and 1.77 times higher in roots than in leaves, respectively. 
In roots of CT and CA plants, POD activity reached its 

maximum under severe drought (2.67 U mg−1 min−1) and 
moderate drought (3.61 U mg−1 min−1) conditions, respec-
tively. In leaves of CT and CA plants, it reached its maxi-
mum under control and severe water stress conditions, 
respectively (Fig. 3c).

APX activity in leaves of CT and CA plants was at least 
3.52- and 4.09-fold higher than in roots, respectively, and 
CA plants had greater activity than CT plants. The highest 
specific activity of APX was observed under severe drought 
stress conditions in leaves and roots of CT plants and in the 
roots of CA plants (Fig. 3d).

Drought resistance evaluation – In this experiment, the 
cumulative rates of variance for the first five components 
measured accounted for more than 80% of the total vari-
ance: 39.79%, 26.04%, 15.08%, 9.20% and 6.07% (Table 4). 

Fig. 1  Soluble sugar (a), protein (b) and proline (c) content of the leaves and roots of two varieties of C. thesioides grown under drought stress. 
CTL: leaves of C. thesioides; CAL: leaves of C. thesioides var. australe; CTR: roots of C. thesioides; and CAR: roots of C. thesioides var. aus-
trale. Different lowercase letters indicate significant difference for the same organs and plant variety at P ≤ 0.05 level among treatments
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The absolute value was greater than 0.8 in the five principal 
component matrix following fuzzy membership function 
analysis. The average of membership function of CA plants 
was 0.4713, which was greater than CT plants (Table 4).

4  Discussion

In recent years, water shortages have become increasingly 
more serious throughout the world; it is thus very important 
to determine how to achieve normal plant growth without 
excessive water use. The relative water content and water 
saturation deficit of leaves reflect the water holding capacity 
of plants and are the link between physiological character-
istics and levels of drought tolerance (Marshall et al. 2000; 
Farooq et al. 2009). Maintaining an appropriate water state 
in plant tissues helps them avoid dehydration and protects 

against inactivation and denaturation of carboxylase and 
other enzymes (Sanchez-Rodriguez et al. 2010). The oppo-
site trend is observed under drought stress, as demonstrated 
in Sorghum bicolor L. Moench and blackberry (Rubus L.) 
(Ogbaga et al. 2014; Zhang et al. 2017). A strong capacity 
for water retention in plants allows them to limit the extent 
of decreased relative water content and increase the water 
saturation deficit. Thus, it can be seen that water capacity 
of C. thesioides was better than that of C. thesioides var. 
australe. Chlorophyll a, chlorophyll b, total chlorophyll and 
carotenoids all increased to various degrees under drought 
stress; this may be as a result of compensation and over-
compensation effects and was similar to the results of Zhang 
et al. (2017).

Previous studies have shown that an increase in osmotic 
regulators can improve water use efficiency, eliminate 
oxidative stress and improve drought resistance in plants 

Fig. 2  O2
.−generation rate (a),  H2O2 (b) and MDA (c) content in leaves and roots of two varieties of C. thesioides grown under drought stress. 

CTL: leaves of C. thesioides; CAL: leaves of C. thesioides var. australe; CTR: roots of C. thesioides; CAR: roots of C. thesioides var. australe; 
O2

.−: superoxide radical;  H2O2: hydrogen peroxide; and MDA: malondialdehyde. Different lowercase letters indicate significant difference for the 
same organs and plant variety at P ≤ 0.05 level among treatments
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(Elansary and Yessoufou 2015). So, proline accumulation 
in C. thesioides suggests that it plays an important role in 
osmotic protection. In our research, proline levels increased 
more in leaves than in roots under severe drought, but when 
there was a water deficit, there was no significant accumu-
lation in leaves. Peak levels were observed in roots of C. 
thesioides and in leaves of C. thesioides var. australe under 

severe drought. Recent evidence suggests that proline syn-
thesis may occur in the shoots and is probably transported 
to the roots in order to sustain normal root growth under low 
water potential (Sharma et al. 2011).

Accumulation of ROS is induced by various stresses 
but is scavenged by other components, such as antioxi-
dant enzymes, non-enzymatic antioxidants and secondary 

Fig. 3  CAT (a), SOD (b), POD (c), APX (d) activity in leaves and roots of two varieties of C. thesioides grown under drought stress. CTL: 
leaves of C. thesioides; CAL: leaves of C. thesioides var. australe; CTR: roots of C. thesioides; CAR: roots of C. thesioides var. australe; CAT: 
catalase; SOD: superoxide dismutase; POD: peroxidase; and APX ascorbate peroxidase. Different lowercase letters indicate significant differ-
ence for the same organs and plant variety at P ≤ 0.05 level among treatments

Table 4  Comparison of the 
drought membership function 
of two varieties of C. thesioides 
grown under drought stress

CT: C. thesioides; CA: C. thesioides var. australe; RWC: relative water content; WSD: water saturation 
deficit; Chl a: chlorophyll a; Cx.c: carotenoid; T-Chl: total chlorophyll; RCR: root-cap ratio; SS: soluble 
sugar; SOD: superoxide dismutase; APX: ascorbate peroxide; and O2

.−: superoxide radical

Material Membership function value of each index Average of 
membership 
functionRWC WSD Chl a Cx.c T-Chl RCR SS SOD APX O2

.−

CT 0.667 0.667 0.439 0.388 0.427 0.508 0.36 0.239 0.405 0.408 0.4508
CA 0.681 0.544 0.408 0.431 0.407 0.043 0.23 0.818 0.812 0.339 0.4713
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metabolites (Gill et al. 2011; Wei et al. 2019), as has been 
demonstrated recently in Diospyros L. (Wei et al. 2015) and 
blackberry (Rubus sp.) (Yang et al. 2015). Drought resist-
ance of Rubus sp. ‘Ningzhi 1’ increased due to a decrease 
in lipid peroxidation and larger quantities of antioxidant 
enzymes (Yang et al. 2015). An increase in antioxidant 
enzyme activity is a common adaptive response of plants 
to drought stress (Gill and Tuteja 2010). The main function 
of SOD is to transform O2

.− into  O2 and  H2O2, which are 
toxic lipid peroxidation, but can be eliminated by POD and 
CAT (Sabine et al. 2004). We observed increased POD and 
CAT activity as a result of drought stress, which may protect 
plants from oxidation. POD also plays an important role in 
eliminating MDA, thus protecting the permeability of cell 
membranes (Hojati et al. 2011). In our study, POD activ-
ity was increased under mild, moderate and severe drought 
stress, which may limit any increases in MDA incurred as 
a result of drought stress. Our results for increased POD 
activity were similar to studies on Carthamus tinctorius L. 
(Hojati et al. 2011). In our study, SOD activity increased in 
response to mild and moderate drought stress, which con-
firmed previous reports by Lum et al. (2014) and Pandey and 
Shukla (2015). APX is a component of the AsA–GSH cycle, 
which can efficiently protect plants from ROS. In our study, 
APX levels significantly increased under drought stress and 
compared with the control; in leaves of C. thesioides and C. 
thesioides var. australe, it was at 3.52 and 4.09 times higher 
levels than in roots, respectively. This suggested that APX in 
the AsA–GSH cycle could contribute to antioxidant activity 
during drought stress and that leaves were more sensitive 
than roots. We also observed decreases in the activity of 
most enzymes under severe drought, because the synthe-
sis of ROS exceeded the capacity of the enzyme protection 
system, resulting in extensive membrane lipid peroxidation. 
Moreover, the relative water content decreased and MDA 
levels increased, peaking under severe drought conditions. 
We observed that antioxidant enzymes could reduce ROS, 
under certain drought conditions, unless the production 
rate of antioxidant enzymes was less than that of ROS. The 
plants were capable of appropriate responses to adapt to 
drought environments.

The membership function gave a comprehensive assess-
ment based on the theory of fuzzy mathematics. In this 
study, drought-affected physiological responses differed 
between C. thesioides and C. thesioides var. australe; we 
described drought tolerance by evaluating the membership 
function of C. thesioides based on physiological indices. The 
greater membership function represented the higher drought 
resistance. The drought resistance of C. thesioides var. aus-
trale was better than C. thesioides.

In conclusion, C. thesioides demonstrated comprehen-
sive drought tolerance features including accumulation of 
osmotic regulators and activation of enzymatic antioxidant 

systems. These actions prevented tissue damage under 
drought stress. This is the first paper to report changes in 
physiological indices in two varieties of C. thesioides under 
drought stress.
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