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Abstract
Azospirillum brasilense Tarrand, which has the potential to stimulate plant growth, belongs to plant-growth-promoting

bacteria. Many species of azospirilla colonize the rhizosphere, the portion of soil attached to the root surface. Some species

can also enter the host root system and enhance their beneficial effects with an endophytic lifestyle. Depending on the

specific agroecological situation, the positive effect of Azospirillum on plants may be due to different mechanisms.

Azospirilla can assist in mitigation of many kinds of abiotic stress. Although they can affect antioxidant enzyme activity in

abiotically stressed plants, the underlying mechanisms are not fully understood. The surface lectins of A. brasilense strains

Sp7 and Sp245 differ in carbohydrate specificity and in the mode of plant root colonization. They promote plant growth

and enzyme activity, and they also can alter the plant cell content of stress metabolites, which attests that they can induce

adaptation processes in wheat seedling roots. Here we comparatively investigated the ability of the Sp7 and Sp245 lectins

(concentration, 5–40 lg ml-1) to regulate the activities of antioxidant enzymes in roots of 4-day-old seedlings of wheat

subjected to hypothermic (5 �C) and hyperthermic (42 �C) stress. Both lectins increased peroxidase and superoxide

dismutase activities and decreased catalase activity, but the effects lasted for different times and the concentrations

involved were also different. We conclude that the Azospirillum lectins are involved in adaptational changes in wheat

seedling roots and that this involvement promotes the normal course of metabolism and ensures regulation of the plant–

Azospirillum interaction in a wider range of soil and climatic factors.
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1 Introduction

Adverse climatic conditions, creating abiotic stresses, are

among the principal factors limiting agricultural produc-

tivity (Padgham 2009; Grayson 2013). Extreme tempera-

tures conditions can severely affect plants. Therefore, study

of the mechanisms governing tolerance and adaptation in

higher plants is of great scientific and practical signifi-

cance. Because plants lack behavioral mechanisms of

defense against unfavorable factors, the major adaptive

changes occur primarily at a biochemical level

(Tarchevskii 2001). A group of nonspecific responses to

adverse exposures have been found recently, including (1)

changes in cell membrane permeability and in intracellular

pH and (2) accumulation of protective substances such as

stress proteins, lipids, and soluble carbohydrates

(Hasanuzzaman et al. 2013). One of the earliest effects is

oxidative stress caused by the accumulation of reactive

oxygen species (ROS). To protect themselves from this

stress, plants have developed enzymatic antioxidative

systems consisting of superoxide dismutase, catalase, and

peroxidases (Almeselmani et al. 2006; Nagesh Babu and

Devraj 2008).

The role of microorganisms, with their potential meta-

bolic and genetic capabilities, in alleviating abiotic stress in

plants has been studied intensely in the past few decades

(Nadeem et al. 2007; Turner et al. 2013; Gopalakrishnan

et al. 2015; Souza et al. 2015). Many researchers have
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argued that plant-growth-promoting rhizobacteria (PGPR)

can reduce the consequences of abiotic stress in plants (El-

Komy et al. 2003; Pereyra et al. 2006; Arzanesh et al.

2009). These PGPR include Pseudomonas (Ali et al. 2009;

Sorty et al. 2016), Azotobacter (Sahoo et al. 2014),

Azospirillum (Creus et al. 2004; Omar et al. 2009), Rhi-

zobium (Remans et al. 2008; Sorty et al. 2016), Bacillus

(Vardharajula et al. 2011; Sorty et al. 2016), Enterobacter

(Nadeem et al. 2007; Sorty et al. 2016), Bradyrhizobium

(Panlada et al. 2013), Methylobacterium (Madhaiyan et al.

2007; Meena et al. 2012), and Burkholderia (Oliveira et al.

2009).

The application of PGPR to abiotically stressed plants

significantly increases the content of defense-related

enzymes such as superoxide dismutase, peroxidase, cata-

lase, polyphenol oxidase, phenylalanine ammonia-lyase,

and lipoxygenase (Liang et al. 2011; Chakraborty et al.

2015). However, few data are available about the mecha-

nisms of the bacteria-mediated antioxidative protection of

plants.

Azospirillum spp. are the most studied PGPR and are a

common model for research on plant–bacterial interactions.

These bacteria take advantage of many plant-growth-pro-

moting mechanisms (Bashan et al. 2014) and have been

used as inoculants in crop production, initially with cereals

but later with other plants. They stimulate plant growth

through fixation of N2, synthesis of phytohormones, solu-

bilization of phosphates, improvement of plant water and

mineral status, production of compounds that increase

membrane activity and proliferation of root tissues, and

decrease in stressor influence (Bashan et al. 2004; Baldani

and Baldani 2005; Alen’kina et al. 2006). Although

research in this area is active, an open question remains on

which of the above factors, explaining the benefit of N2-

fixing bacteria to plant growth and performance, has pri-

ority over the others.

Azospirillum can colonize roots externally and/or inter-

nally, or it can colonize the stem as an endophyte, as seen

in rice (Oryza sativa L.), with some strains doing both

(Ramos et al. 2002; Xie and Yokota 2005). By use of

fluorescently labeled probes and monoclonal antibodies,

Assmus et al. (1995) and Schloter et al. (1997) detected

Azospirillum in both the plant interior and the rhizosphere.

Specifically, A. brasilense Tarrand Sp245 (Tarrand et al.

1978) was found in the root xylem, whereas Sp7 (Tarrand

et al. 1978) was detected only on the root surface (Schloter

et al. 1997). Endophytic bacteria are of particular research

interest, because they can lead a mutualistic life in the plant

tissue interior. This ability permits them to depend less on

extrinsic environmental factors, as compared with other

microorganisms, and to manifest a complex of economi-

cally useful properties. When inside the plant tissue,

endophytes contribute to sustained plant defense against

environmental stress.

Among the high molecular weight and specific sub-

stances implicated in interorganismal communication, an

important part is played by lectins, glycoproteins that bind

strictly specified carbohydrate groups on the surface of a

target cell. There is ample evidence that plant lectins are

implicated in bacterial colonization of plants and in the

restructuring of the metabolism of the bacterial symbiont.

Plant lectins act as adaptogens for plants; for example,

wheat germ agglutinin changes antioxidant enzyme activity

in seeds and broadens plant adaptability (Kruhova et al.

1999). Less is known about the role of bacterial lectins,

which nonetheless are involved in the important ‘‘molec-

ular dialog’’ during the development of a symbiosis (Nik-

itina et al. 1996; Castellanos et al. 1998).

Previously, we have reported the isolation of surface

lectins from two A. brasilense strains, Sp7 (epiphyte) and

Sp245 (endophyte), differing in the mode of plant colo-

nization. The lectins have been found to be glycoproteins

with different molecular masses and carbohydrate speci-

ficities (Nikitina et al. 2005; Shelud’ko et al. 2009). The

36-kDa Sp7 lectin was specific for L-fucose (1.87 mM) and

D-galactose (20 mM). The Sp245 lectin had an affinity for

the bacterium’s own polysaccharide, an acidic D-rhamnan,

and had a molecular mass of 67 kDa.

Both Sp7 and Sp245 lectins are polyfunctional. Apart

from functioning as adhesins, they can influence plant cell

metabolism by promoting seed germination (Nikitina et al.

2004) and by expressing mitogenic and enzyme-modifying

activities toward the plant cell (Chernyshova et al. 2005;

Alen’kina et al. 2006; Alen’kina and Nikitina 2015, 2017).

In addition, they can alter the plant cell content of stress

metabolites (Alen’kina et al. 2014). Finally, lectin activity

in Azospirillum can be promoted by adverse effects and

even by stress, possibly also owing to the adaptogenic

function of lectins (Nikitina et al. 2005).

Here we comparatively evaluated the ability of the

lectins from A. brasilense Sp7 and Sp245 to regulate the

activities of peroxidase, catalase, and superoxide dismutase

in roots of wheat seedlings subjected to short-term

hypothermic and hyperthermic stress.

2 Materials and methods

Strains and growth conditions – Azospirillum brasilense

Sp7 (epiphytic strain) was obtained from the culture col-

lection of Winogradsky Institute of Microbiology, Russian

Academy of Sciences, Moscow. A. brasilense Sp245

(IBPPM 219; endophytic strain) was from the IBPPM RAS

Collection of Rhizosphere Microorganisms (http://collec

tion.ibppm.ru). The cultures were grown in the minimal
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salts medium described by Sadasivan and Neyra (1985) at

37 �C for 18 h.

Lectin isolation – Lectins were isolated from the surface

of Sp7 and Sp245 and were purified by gel filtration on a

30 9 2.2-cm column of Sephadex G-75 (particle diameter,

40–120 lm). The emergence of protein fractions was fol-

lowed at 278 nm with a Uvicord SII apparatus (LKB,

Sweden). The eluents were 0.1 M CH3COOH (pH 4.8) and

0.05 M phosphate-buffered saline (PBS; pH 7.0) contain-

ing 0.15 M NaCl. The flow rate was 1.5 ml min-1

(Alen’kina et al. 2006). To confirm the lectin nature of the

purified material, we conducted a hemagglutination assay

as described by Lakhtin (1989). Fifty-microliter portions of

successive twofold dilutions of lectin solutions were added

to the wells of a microtitration plate, with PBS as a control.

Washed trypsin-treated rabbit erythrocytes were added at a

concentration of 2% in PBS and were incubated at room

temperature for 2 h. The hemagglutination titer was the

minimum lectin concentration that gave hemagglutination.

Animals were cared for and handled in compliance with

the Guide for the Care and Use of Laboratory Animals, the

European Convention for the Protection of Vertebrate

Animals Used for Experimental and Other Scientific Pur-

poses, and the legislation of the Russian Federation. The

use of the animals was also approved by the institution

where the experiments were done.

Protein assay – Protein was estimated by the Bradford

method (1976).

Seedling growth and stress treatments – Seeds of wheat

(Triticum aestivum L. cv. Saratovskaya 29) [Agricultural

Research Institute for South-East Region (ARISER),

Saratov, Russia] were surface-sterilized in 70% (v/v)

ethanol for 1 min and were washed five times with sterile

water. For seedling roots, seeds were grown aseptically in

petri dishes on sterile distilled water and were incubated in

the dark at 25 �C. Seedlings used for experiments were 4

days old. In all experimental treatments, the initial and

experimental seedlings were adjusted for physiological

age. A root length of 25–30 mm was the criterion that the

initial plant material was homogeneous.

For stress experiments, roots were simultaneously

exposed for 2 h to either Sp7 or Sp245 lectin (concentra-

tion, 5–40 lg ml-1) and temperatures of 42 and 5 �C. The
roots were then homogenized in 0.15 M PBS (pH 7.8), the

homogenate was centrifuged at 70009 g for 10 min, and

the supernatant liquid was used to determine enzyme

activities. Seedlings grown at 25 �C were the control

group.

Peroxidase assay – Peroxidase (EC 1.11.1.7.) was

assayed by Khairullin et al.’s (2001) micromethod, based

on the oxidation of o-phenylenediamine (OPD). A 50-ll
portion of supernatant liquid prediluted 20-fold with PBS

(pH 5.6) and 25 ll of OPD solution (concentration,

0.5 mg ml-1) were added to each well of a flat-bottomed

immunoassay plate (Nunc, USA). Two min after 25 ll of
0.43 mM H2O2 was added, color development was stopped

with 50 ll of 4 N H2SO4. The absorption of the samples

was measured at 492 nm with an AIF-Ts-01S ELISA

reader (ZAO ILIP, St. Petersburg, Russia). Peroxidase

activity was expressed as absorption units per g of root wet

weight and, for comparative purposes, as relative units.

Catalase assay – Catalase (EC 1.11.1.6) activity was

assayed as described by Aebi (1984). The decrease in H2O2

was measured at 240 nm, and the activity was calculated as

units (lM H2O2 consumed per min) per g of root weight

(extinction coefficient, 39.4 mM-1 cm-1). For compara-

tive purposes, it was also expressed as relative units.

Superoxide dismutase assay – The activity of superoxide

dismutase (SOD; EC 1.15.1.11) was assayed by the inhi-

bition of the reduction rate for tetrazolium nitroblue in a

nonenzymatic system containing phenazine methosulfate

and NADH (Alscher et al. 2002). The absorbance of for-

mazan (oxidation product of tetrazolium nitroblue) was

measured at 560 nm and was used to calculate the enzyme

activity. The results are presented as relative units.

Statistics – The analysis was run with the AGROS pro-

gram package for statistical and biometrical–genetic anal-

ysis in plant breeding and selection (version 2.09;

Department of Statistical Analysis, Russian Academy of

Agricultural Sciences). Least significant differences

(LSD0.05) were determined at a significance level of

P = 0.05. Values followed by different letters (a, b, c, d)

differ significantly at P B 0.05, according to Duncan’s

multiple range test. The figures show arithmetic

mean ± standard error (SE) of three independent experi-

ments, done in five biological replications.

3 Results

Lectin effects on antioxidant enzyme activity in wheat

seedling roots exposed to hypothermic and hyperthermic

stress were investigated with three enzymes. These inclu-

ded (1) SOD, catalyzes the dismutation of superoxide

radicals to hydrogen peroxide and molecular oxygen and

(2) peroxidase and catalase, which degrade hydrogen

peroxide.

Both Sp7 and Sp245 lectins increased peroxidase

activity in roots exposed to hypothermic and hyperthermic

stress. The picture was the same under both types of stress.

With all four concentrations of the Sp7 lectin, the activity
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rose after 30 min of incubation, peaking at 20 lg ml-1,

and then declined gradually to the control value. With the

Sp245 lectin, peroxidase activity increased after 60 min of

incubation and the increase was proportional to the lectin

concentration (Fig. 1).

Both lectins also enhanced the activity of SOD in the

stressed roots (Fig. 2). Under hypothermic conditions, the

activity of SOD increased with all concentrations of either

lectin after the roots were exposed for 1 h. The most

effective lectin concentrations were 20 lg ml-1 (Sp7 lec-

tin) and 10 lg ml-1 (Sp245 lectin). The same picture

emerged under hyperthermic conditions: the enzyme

activity rose after the roots were incubated with the lectins

for 1 h. The most effective lectin concentrations were

10 lg ml-1 (Sp7 lectin) and 5 lg ml-1 (Sp245 lectin).

Under hypothermic conditions, both Sp7 and Sp245

lectins decreased root catalase activity. The inhibition

peaked as early as 15 min after exposure. Thirty min into

exposure, the inhibition slowly decreased, and by 1 h of

incubation, it was back to the control value. The effect was

maximal with 5 lg ml-1 of either lectin (Fig. 3). The same

was observed when the stress was changed to hyperther-

mic: catalase activity declined with both lectins, and the

effect was maximal with 5 lg ml-1 (Fig. 3).

The Sp7 and Sp245 lectins regulated the enzyme

activities differently. Under both types of stress, the Sp245

lectin promoted peroxidase and SOD activities more than

did the Sp7 lectin.

As noted above, both lectins decreased catalase activity

in the temperature-stressed roots. Under both types of

stress, the inhibition achieved with the Sp245 lectin was

greater than that attained with the Sp7 lectin.
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Fig. 1 Effect of the

Azospirillum brasilense Sp7 and

Sp245 lectins on the activities of

peroxidase in wheat seedling

roots exposed to 5 and 42 �C.
Results are expressed as

mean ± SE (n = 5). Mean

separation among treatments

was done by Duncan test at

P B 0.05. Mean values

followed by different letters are

significantly different
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4 Discussion

Temperatures stress is a serious problem in agriculture and

a critical factor for plant survival. Both high and low

temperatures affect plant metabolism: high temperature

disrupts the quaternary structure of protein complexes,

whereas low temperature greatly decreases plant perfor-

mance (Timperio et al. 2008; Zhestkova et al. 2009).

For most wheat cultivars, the highest germination tem-

perature is, on average, 38� and the best germination

temperature lies between 20 and 32 �C. Temperatures

beyond these limits are considered unfavorable and have

adverse effects on plants, including decreased yields and

grain quality.

PGPR have been used mostly to promote plant growth,

because they can stimulate plants through different means,

including production of plant growth regulators and

fixation of N2 (Bashan et al. 2014). Studies have reported

additional beneficial effects of PGPR on plants through

their ability to improve tolerance for abiotic (including

temperature) stress (El-Komy et al. 2003; Pereyra et al.

2006; Arzanesh et al. 2009).

Several abiotic stresses are related to the accumulation

of ROS in plant cells. Reactions of these compounds with

proteins, membrane lipids, and DNA may cause severe

oxidative damage. Avoiding oxidative stress is necessary

for plant survival under temperature stress. ROS are

removed by several enzymes such as catalase, peroxidases,

and SOD, which together form the plant antioxidant sys-

tem. However, few data are available about the mecha-

nisms of the bacteria-mediated antioxidative protection of

plants (Reddy et al. 2004).

Temperature stress affects the growth of plants

throughout their ontogeny, although the threshold level
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Fig. 2 Effect of the

Azospirillum brasilense Sp7 and

Sp245 lectins on the activities of

SOD in wheat seedling roots

exposed to 5 and 42 �C. Results
are expressed as mean ± SE

(n = 3). Mean separation among

treatments was done by Duncan

test at P B 0.05. Mean values

followed by different letters are

significantly different
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varies considerably at different developmental stages. For

instance, during seed germination, high and low tempera-

tures may slow down or totally inhibit germination,

depending on the plant species and the stress intensity. The

events determining the entire course of resistance devel-

opment occur in this very period of adaptation to unfa-

vorable factors.

The large body of experimental data in the literature

indicates that lectins are polyfunctional proteins. In addi-

tion to being able to reversibly and specifically bind to

target cells, they can express biological activity. This

means that low concentrations of lectins can induce cellular

responses (Messina et al. 1987; Antonyuk et al. 1993). This

ability was confirmed in our previous work on the effect of

Azospirillum lectins on seed germination (Nikitina et al.

2004), mitogenic and enzyme-modifying activities (Ch-

ernyshova et al. 2005; Alen’kina et al. 2006; Alen’kina and

Nikitina 2015, 2017), and alteration of the plant cell con-

tent of stress metabolites (Alen’kina et al. 2014). The lectin

effects found in this work were recorded in the same

concentration range as used in those previous studies.

Our research has shown that both Sp7 and Sp245 lectins

substantially modified the enzyme activities as early as

several minutes into stress. Both lectins increased peroxi-

dase and SOD activities but decreased catalase activity in

the stressed roots. In all cases, the two lectins regulated the

enzyme activities differently, a finding in good agreement

with our earlier results (Alen’kina et al. 2006, 2010, 2014;

Alen’kina and Nikitina 2015, 2017). These differences may

have been caused by the differences in structure and in

carbohydrate specificity (Nikitina et al. 2005; Shelud’ko

et al. 2009), resulting in differences in the interaction with

the plant cell surface, which are of deciding importance for

the ‘‘switch on’’ of the subsequent stages.

The differences in the concentration at which the lectins

were effective may have been due to the action of adverse

temperatures on lectin binding to the root receptors. Our

data attest to the complex character of growth regulation,

which is reflected in the complex concentration effects.
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Fig. 3 Effect of the

Azospirillum brasilense Sp7 and

Sp245 lectins on the activities of
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exposed to 5 and 42 �C. Results
are expressed as mean ± SE

(n = 3). Mean separation among

treatments was done by Duncan

test at P B 0.05. Mean values

followed by different letters are
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Concentration dependences may be conducive to high

physiological heterogeneity even when concentrations vary

slightly for natural reasons. In view of this, concentration

dependence studies are important for understanding the

processes occurring during plant adaptation to environ-

mental conditions and for the correct application of lectins

as plant growth regulators.

Our data confirm the results of Arzanesh et al. (2009)

and Baniaghil et al. (2013) that azospirilla can increase the

activities of plant peroxidase and SOD at different abiotic

stresses. The decrease in catalase activity could have been

due to the effect of salicylic acid, whose synthesis is

induced by Azospirillum lectins (Scandalios 2005).

Together with our earlier data, the findings of this study

indicate that the Azospirillum lectins are implicated in plant

adaptation and can induce plant defense mechanisms.

These lectin properties, in combination with the growth-

promoting activity of Azospirillum bacteria, conduce to

plant resistance to adverse factors and to increased plant

productivity.
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