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Abstract
Rauvolfia weddeliana is an endemic species restricted to plateau landscapes in South American savannahs. Rapid loss of

habitat and expansion of agriculture in Central-West Brazil have critically reduced the original extent of savannahs,

representing a major threat to its biotic diversity. Due to the discontinuous distribution of R. weddeliana and the vul-

nerability of its habitats, it is crucial to estimate the genetic diversity of remaining populations. The application of

microsatellite markers is a useful approach with relative low cost and high informative potential for studies related to

conservation genetics and population genetics. The development of specific libraries for endangered species may aid future

studies about the connectivity of populations, reproductive biology, and genetic diversity. We developed microsatellite

markers for R. weddeliana and tested the transferability of the markers to a closely related species, R. gracilis. Ten

microsatellite markers were identified, and a set of primers for their amplification is presented. Most identified motifs were

dimers, with lengths from 18 to 74 base pairs. Nine markers presented high informative potential (PIC[ 0.5). The set of

markers developed in this study will support further investigations in population genetics of R. weddeliana and possibility

of closely related species.
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1 Introduction

Rauvolfia L. is a genus of the Apocynaceae family widely

distributed in tropical regions, with ca. 60 species, being 20

of them recorded for Brazil (Koch et al. 2015). Among the

Brazilian species, R. weddeliana Müll.Arg. has the wider

non-continuous distribution within the Brazilian savannahs

(i.e., ‘‘Cerrado’’), occurring frequently on sandy patches,

often associated with plateaus in Central-West region (Rao

1956; Koch et al. 2007). Its geographical distribution is

recorded from Chapada dos Guimarães to the Paraná Basin,

reaching northeastern Paraguay in isolated patches. Rau-

volfia weddeliana forms a taxonomic complex with two

other Brazilian species that are very similar in terms of

ecology and/or morphology: Rauvolfia anomala Rapini &

I. Koch, which co-occurs in Chapada dos Guimarães and

Rauvolfia gracilis I.Koch & Kin.-Gouv., restricted to

Chapada dos Parecis, in northwestern Brazil state of Ron-

dônia (Koch et al. 2007).

Although ‘‘Cerrado’’ constitutes the second largest

domain in South America (Pennington et al. 2009), it is
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very vulnerable in terms of conservation, being pointed out

as a conservation hot spot, mostly due to its high levels of

endemism and exceptional loss of habitat (Myers et al.

2000). Originally presenting almost 2,000,000 km2 of

extension, it is estimated that more than 80% of the original

coverage of ‘‘Cerrado’’ was lost due to human activity, and

less than 7% of the remaining vegetation can be considered

legally protected (Myers et al. 2000; Silva and Bates 2002).

Most of R. weddeliana distribution is placed within Mato

Grosso and Mato Grosso do Sul, core regions of extensive

agronomic activity in Brazil. Although R. weddeliana is

not listed as an endangered species (The IUCN Red List of

Threatened Species. Version 2016-3. www.iucnredlist.org),

this scenario of habitat vulnerability makes the assessment

of its remaining genetic diversity a fundamental evaluation

of the actual risk it is facing, since most of its remaining

area of distribution can be degraded or even disappear in a

very close future. Moreover, only a few populations of R.

weddeliana have been registered outside conservation units

in the last decade, placing as urgent an estimation of how

well preserved these remaining populations are in terms of

genetic diversity and connectivity.

Microsatellite markers (or Simple Sequence Repeats—

‘SSRs’) are among the most traditional approaches in

demographic studies, being used for exploring several

aspects of genetic diversity with great informative potential

(e.g., Zalapa et al. 2012; Hodel et al. 2016). Microsatellites

are short (1–6 bp), tandemly repeated DNA sequences

motifs found randomly throughout the genome of all

eukaryotes (Hamada et al. 1982). Since SSR markers can

provide important insights about population structure, gene

flow, and genetic diversity, they have become a major trend

in studies focused on genetic characterization of natural

populations, genome mapping, and parentage analysis

(e.g., Hodel et al. 2016). Microsatellite markers are valu-

able tools for phylogeographic and population genetic

studies, especially due to their co-dominant inheritance and

relative low cost for genotyping, when compared to SNP

markers, for example.

The major drawback in the usage of microsatellite

markers used to be the development of libraries, which

involves several steps and substantial laboratory effort

(Squirrell et al. 2003). However, recent advances in

sequencing technologies and improvements on methodol-

ogy have allowed for a more accessible use of these

markers in non-model species (Zalapa et al. 2012). Because

of its high informative power and relative cost efficiency,

microsatellite markers became very popular among studies

in population genetics and are currently a major choice in

the field (e.g., Hodel et al. 2016). Advantages involved in

adopting the use of SSRs include their abundance, repro-

ducibility, co-dominant heritage, multi-allelic nature, and

high coverage of the genome (Powell et al. 1996; Kalia

et al. 2011; Hodel et al. 2016). Microsatellites are usually

transferable between closely related species. In fact, more

than 70% of microsatellite markers designed for eudicot

species are amplified positively in sister species (Barbará

et al. 2007). Of these, 10% were also transferrable to clo-

sely related genera (Barbará et al. 2007). Therefore,

microsatellites have a potential application in multispecies

studies regardless limitations due to high interspecific

polymorphism.

Despite their popularity, only a few studies involving

microsatellite markers have been developed for the tribe

Vinceae from the Rauvolfioid grade of the Apocynaceae,

mostly directed to Catharanthus roseus (L.) G.Don (Sho-

keen et al. 2007). So far, there has been no account of any

similar study with other groups of the Rauvolfioid grade. In

the present study, we fill in this gap. We developed and

applied a set of SSR markers for R. weddeliana and esti-

mated diversity-related parameters, as a first step to char-

acterize the genetic diversity and structure of populations

within this species.

2 Materials and methods

Population sampling and DNA extraction – We sampled

an individual of R. weddeliana in Rondonópolis, Mato

Grosso (12�3103100S/60�2300900W), collecting young leaves

in silica, which were later stored under 4 �C. We depos-

ited voucher material for the sample in the herbarium UEC

(BRAZIL, Mato Grosso: Rondonópolis, 18 km a norte do

municı́pio, nas margens da BR 364, sentido Jaciara,

12�3103100S, 60�2300900W, 16-IX-2015, Vidal, J.D. 197639

(UEC) ‘‘[BRAZIL, Mato Grosso State: Rondonópolis

(city), 18 km north from the city, along route BR 364,

Jaciara (city) bound, 12�3103100S, 60�2300900W, 16-IX-

2015, Vidal, J.D. 197639 (UEC)]’’). We extracted total

DNA with Qiagen DNeasy Plant Mini (Qiagen, Valencia,

CA, USA). In addition, 70 other samples from different

populations along the distribution of the species (Table 1)

were genotyped to characterize the polymorphism of the

recovered loci. We also genotyped a population of eight

individuals of Rauvolfia gracilis to test for primer

transferability.

Microsatellite library development – We developed an

enriched library of SSR following the protocol described

by Billotte et al. (1999). The first step consisted in the

fragmentation of extracted DNA with the restriction

enzyme RsaI, in order to generate fragments of lengths

between 280 and 600 bps. We then hybridized these frag-

ments with biotinylated oligonucleotides complementary to

repetitive sequences (CT)8 and (GT)8, aiming to select SSR

rich fragments. Once hybridized, we were able to recover
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these fragments with magnetic streptavidin-coated beads

(Streptavidin MagneSphere Paramagnetic Particles, Pro-

mega, Madison, WI). To develop enriched libraries, we

inserted recovered fragments into plasmid vectors and

controlled their replication with x-gal and IPTG indicators.

Positive clones (i.e., non-recombining colonies) were sub-

mitted to an alkaline lysis in order to recover plasmidial

DNA. Next, we sequenced the recovered inserts in an

automatic sequencer ABI3500 XL Genetic Analyzer (Ap-

plied Biosystems, Foster City, CA, EUA) and analyzed

sequences using the software Geneious 9.0 (http://www.

geneious.com, Kearse et al. 2012). We trimmed low-

quality ends and vector contamination from sequences

using Geneious plug-in of NCBI’s VecScreen (http://www.

ncbi.nlm. nih.gov/VecScreen/VecScreen.html). We

screened trimmed sequences for tandem repeats with

Phobos plug-in (Mayer 2010). For amplification of recov-

ered regions, we designed complementary primers to

flanking regions using the software Primer3 (Rozen and

Skaletsky 2000). To optimize genotyping, we adopted the

following parameters for primer design: 18–22 bp primers;

Tm between 45 and 65 �C, with up to 3 �C of difference

between each oligo in a pair of primers; salt concentration

of 50 mM; GC content between 40 and 60%; and frag-

ments’ length between 100 and 360 bp. We deposited

resulting sequences and annotations in GenBank

(MF447169-MF447178).

Polymerase Chain Reaction (PCR) – We amplified the

selected regions through polymerase chain reaction (PCR)

according to the following protocol: PCR mix was as fol-

lows: 50 mM KCl, 20 mM Tris–HCl (pH 8.4), 2 mM

MgCl2, 0.2 mM dNTP, 0.19 mg/mL BSA (bovine serum

albumin), 0.15 mM of each primer, 1 U of Taq DNA

polymerase, 2.5 ng template DNA. We completed final

volume of reactions to 10 lL with ultrapure water. We

applied the following temperature cycle: initial denaturing

at 94 �C for 5 min, followed by 30 cycles of 94 �C
(1 min), Tm 62 �C (1 min), 72 �C (2 min), and final elon-

gation at 72 �C for 5 min.

Polymorphism evaluation – We amplified all ten recov-

ered loci for 71 individuals of different populations of

R. weddeliana and eight individuals of R. gracillis to

estimate their polymorphism levels. Once amplified, we

manually evaluated the polymorphism of these products

through electrophoresis in polyacrylamide 6% gel stained

with silver nitrate (Creste et al. 2001).

Also, since no information about ploidy was currently

available for neither R. weddeliana nor R. gracillis, we

analyzed band patterns for all loci to indirectly assess

ploidy of species. We calculated basic allelic richness

parameters (number of alleles, observed and expected

heterozygosity) with adegenet R-package (Jombart 2008).

Polymorphism information content (PIC) was calculated

with R-package PopGenKit (Paquette 2012), according to

the formulae proposed by Botstein et al. (1980). We also

calculated F-statistics per loci (Weir and Cockerham 1984)

with R-package pegas (Paradis 2010) for R. weddeliana.

F-statistics were not calculated for R. gracilis due to lim-

ited sample (eight individuals from a single population).

Package pegas was also applied to test deviations from

Hardy–Weinberg Equilibrium (HWE). We calculated two

estimates for HWE: Chi-square test based on allele fre-

quencies and exact test with Monte Carlo permutation of

alleles (1000 repetitions). We calculated the frequency

estimates of null alleles (Dempster et al. 1977) with

FreeNA software (Chapuis and Estoup 2007).

3 Results and discussion

We recovered a total of ten microsatellite markers from a

set of 200 sequenced clones (Table 2). Motif recovery in

clone amplification (5%) was higher than the average ratio

in plants (2.3%; Zane et al 2002). Nine recovered loci were

composed of dinucleotides and one was made of a tetra-/

dinucleotide motif (SSR02). The occurrence of non-ex-

clusively dinucleotide microsatellites is an expected pro-

duct of enriched libraries since probe hybridization with

Table 1 Sampled populations

of Rauvolfia weddeliana and

respective localities

Locality Population ID N Latitude Longitude

Mato Grosso, Chapada dos Guimarães* Faz. Chafariz CP 14 15�1705400S 55�5003700W
Mato Grosso, Chapada dos Guimarães* Véu de Noiva VN 29 15�2403600S 55�4905000W
Mato Grosso, Serra de São Vicente Jaciara SV 5 15�4900600S 55�2003800W
Mato Grosso, Rondonópolis Rondonópolis RP 5 12�3103100S 60�2300900W
Goiás, PARNA das Emas* Mineiros CD 10 18�1703500S 52�5304400W
Goiás, RPPN Pousada das Araras* Serranópolis PA 10 18�2700300S 52�0002200W
Rondônia, Vilhena** Vilhena VL 8 18�2700300S 52�0002200W

Locality sampling locality. Population Name attributed to the population, ID Abbreviation of population

names. N number of individuals sampled on population. (*): Location placed inside conservation units. (**)

Rauvolfia gracilis population
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heterogeneous microsatellite regions is expected (Refseth

et al. 1997). All loci were polymorphic and showed con-

sistent amplifications following optimization. Microsatel-

lite lengths varied from 18 to 74 base pairs, GT being the

most common motif (60% of the motifs). The lengths of

the amplified products ranged from 126 (SSR05) to 286

(SSR10) base pairs. Primers designed for R. weddeliana

can be transferred between to R. gracilis samples, as we

recovered positive cross-amplifications for all of them. All

ten amplified markers were also polymorphic for both

species. The number of alleles per locus ranged from five

to 27, with an average of 14 and 5 alleles per locus in R.

weddeliana and R. gracilis, respectively (Table 3).

Expected heterozygosity (HE) values for each locus in R.

weddelliana ranged from 0.52 to 0.93 (mean value = 0.76),

while observed heterozygosity (HO) ranged from 0.34 to

0.82 (mean value = 0.55, Table 3). We also observed a

deficit of heterozygotes observed for most loci (FIS[ 0,

except SSR04 and SSR09). On contrast, negative FIS val-

ues observed for SS04 and SSR09 represent an excess of

heterozygotes in comparison with the expectation under

HWE. This latter pattern may be consistent with a differ-

ential survival advantage observed for heterozygotes in

plants, especially for small populations (Lesica and

Allendorf 1992). We identified deviation in HWE

(Table 4) in locus SSR09, both for the Chi-square (p = 0.8)

and exact tests (p = 0.67).

Each individual presented up to two alleles, which

strongly suggests that both species are diploid, as previ-

ously reported for other Rauvolfia species (Carr 1978;

Lewis 1980; Banerjee and Sharma 1989). Diploidy was

reported for the Asian species Rauvolfia serpentina (L.)

Benth. ex Kurz, the African species Rauvolfia vomitoria

Afzel. (Banerjee and Sharma 1989) and the Hawaiian

species Rauvolfia sandwicensis A.DC. (Carr 1978). Tetra-

ploid and hexaploid species were also described for Rau-

volfia verticillata (Lour.) Baill. and Rauvolfia tetraphylla

L., respectively (Raghavan 1957). This study provides the

first estimation of ploidy for Brazilian species of the genus.

Polymorphism information content varied from 0.22

(SSR08) to 0.83 (SSR03) (Table 3). The most informative

locus (SSR02; PIC = 0.931) was also the one with largest

repetition size, which is associated with higher mutation

rate for microsatellites (Schug et al. 1998; Bhargava and

Fuentes 2010). Higher frequencies of null alleles (29%)

were observed for locus SSR05 in Serra de São Vicente

population (SV) and for loci SSR06 and SSR08 in Ron-

donópolis population (RP). The presence of null alleles

Table 2 Set of microsatellite markers recovered for Rauvolfia weddeliana with respective primers and properties

Locus Sequence (50–[30) % GC Tm (�C) H (�C) P.size (bp) Motif GenBank accession

SSR01 F: ACAGGAGTGTCAAAATCCAA 40 54.8 – 250 (GT)9 MF447171

R: CTTGTTTCGAGGCAGTGATG 50 57.1 –

SSR02 F: AGAAATGCGTATCCAATGCG 45 57 – 210 (GTGA)4(GA)19(CA)10 MF447170

R: AAAGATGTCAGGTCCCACTG 50 57.1 –

SSR03 F: ATCTATTCTCCAGCCTGTGC 50 57.1 38.0 220 (TG)9 MF447173

R: GGCCCTAACAATTGGTCTCT 50 57 –

SSR04 F: GCACACCATACACTGCTCTA 50 57.3 – 151 (TG)8(GT)9 MF447174

R: GAGGTCAAAAAGCTGTTCCC 50 56.9 35.3

SSR05 F: TTTCCAAAGCTGCCTCAAAG 45 56.8 – 126 (AC)7 MF447169

R: AAACATGGTTCTCACACCCT 45 56.9 35.7

SSR06 F: GAGTGTGGAACCTGTCATGA 50 57.2 – 252 (AC)15 MF447177

R: GCTCCTGATGTCTGTTCAGA 50 57 42.6

SSR07 F: AACAGCCCCTTCATCATCAA 45 57.1 – 210 (GT)8 MF447175

R: GGACAAGTTTTTCTCCCTGC 50 56.9 –

SSR08 F: AGGCTGAAAGTAACGACTGA 45 56.5 35.5 144 (TG)8 MF447172

R: TCTGTCTCTCAGTCCCAGAA 50 57 44.0

SSR09 F: ACCTCCGTAATTGTGGAACA 45 56.8 32.9 161 (AC)13 MF447176

R: CGGTTCAGGAGAGAGAAACA 50 56.9 31.0

SSR10 F: AAAGTGCAGACTACCGACAA 45 57.1 – 286 (GA)20 MF447178

R: TTGAACAGTTTTTGCCGGTT 40 57 –

Locus name attributed to the locus, Sequence sequence of bases of the primer (50–[30 sense—F forward, R reverse), %GC percentage of G

(guanine) and C (cytosine) in the primer composition. Tm primer melting temperature, H primer hairpin, P.size size of the whole amplified

fragment, Motif microsatellite basic unity of repetition and number of repeats
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may impact estimates of genetic diversity and population

structure (Chakraborty et al. 1992). Due to mutations in the

annealing site of primers, some alleles fail to amplify in

PCR, resulting in a null allele (Chapuis and Estoup 2007).

Nonetheless, it is also important to point that null alleles

may also result from amplification errors, usually related to

template quality (Foucault et al. 1996).

Most population parameters were consistent with a

scenario of reduced gene flow. Populations of R. weddel-

liana and R. gracilis indeed present low densities of indi-

viduals and reduced sizes, suggesting that demographic

stochasticity may play a major role in defining the structure

of genetic diversity (Schaal and Leverich 1996; Honnay

and Jacquemyn 2007). However, genetic diversity param-

eters were based on a reduced sample size and, therefore,

require careful interpretation as low sample size may

obscure their biological meaning. Statistics here presented

are preliminary and just an illustration of the potential of

the new markers. Complementary population genetic

studies are being developed to elucidate key historical

demographic processes within R. weddeliana as well to

contribute with conservation policies for ‘‘Cerrado.’’
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