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Abstract
Camamu Bay is a shallow estuarine system, and its circulation pattern is governed by tidal forcing. The system is formed

by four sectors including the main channel and three hydrodynamic regions, delimited by the influence of the five

tributaries. Water samples were collected in two different pluviometric periods (dry and rainy), at nine sampling points

over the three hydrodynamic regions, and at a mooring (13�52027.4200S, 38�57046.1900W), in the main channel, where

samples were collected every 3 h over cycles of spring tides. At each sampling station, physicochemical variables were

measured and water samples were collected for analysis of dissolved inorganic nutrients and chlorophyll a, composition

and cell density studies of microphytoplankton. A total of 201 taxa were identified, and the great majority of the taxa were

from the marine environment. The taxonomic composition varied between the hydrodynamic regions, with greater chain-

forming diatom richness, in the two study periods. Although the highest concentration of dissolved inorganic nutrients was

observed in the rainy period, microphytoplankton cell density did not increase in this period. The patterns of the estuarine

phytoplankton community in tropical oligotrophic systems are still little known when compared to the temperate regions.

Camamu Bay is one of the last known areas in the tropical South Atlantic, and this study confirms its oligotrophic

characteristics, based on abiotic and biotic conditions. We highlighted the importance of knowledge of pristine coastal

systems as a tool for the evaluation of anthropogenic changes in these areas.
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1 Introduction

The phytoplankton is a highly diverse polyphyletic group,

formed by photosynthesizing microalgae and cyanobacte-

ria, (Margalef 1978; Reynolds 2006) and accounts for

about half the primary productivity of the Earth (Cloern

and Dufford 2005; Falkowski and Raven 2007; Tilstone

et al. 2017). Between 4000 and 5000 marine species are

recognized (Sournia et al. 1991; Vaulot 2001; Granéli and

Turner 2006; Vargas et al. 2015), although there is a

general consensus that this number is underestimated for

the true phytoplankton diversity (Vaulot 2001).

The phytoplankton organisms colonize the upper part of

the water column, up to the limit of light penetration

(Vaulot 2001). The taxonomic composition, population

abundance and community structure and their distribution

patterns are strongly influenced by physical processes (e.g.,

currents and turbulence) and chemical variations (e.g.,

nutrient influx) of the water (Ghosal et al. 2000; Rabalais

2002), in addition to the between-species interactions (e.g.,

competition for resources and grazing pressure) (Margalef

1978; Litchman and Klausmeier 2008). Primary produc-

tivity in aquatic systems thus responds to the action of

bottom-up (e.g., light and nutrient availability) and top-

down factors (e.g., herbivores) that control the phyto-

plankton biomass, composition and diversity (Metaxas and

Scheibling 1996).
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The phytoplankton is the most important group of pri-

mary marine producers and makes important contributions,

especially in coastal environments such as estuaries (Boney

1975). In function of the terrestrial influx and organic

discharges of anthropogenic origin, these environments

have high support capacity for the phytoplankton com-

munity. This permits the maintenance of high primary

productivity rates (Kjerfve 1990; Attrill and Rundle 2002;

Cloern et al. 2014) and consequently of other important

ecosystemic services, because it represents the first trans-

ference link of primary energy in the aquatic food chains

sustaining the biomass of the upper trophic levels (Cloern

and Dufford 2005).

Estuaries are environments with particular characteris-

tics determined by the entry of river water and a strong

addition of mechanical energy, the tides (Simpson et al.

1990; Cloern 1991). Due to pulses of nutrients into the

water column (e.g., nutrient re-suspension to more illumi-

nated regions), the tides can cause temporal variations in

the phytoplankton community composition, structure and

distribution, especially in shallow coastal waters, where

generally this fluctuation periodicity is more

notable (Blauw et al. 2012). The patterns of the estuarine

phytoplankton community, especially in tropical olig-

otrophic systems, are still little known when compared to

the extensive number of studies carried out on estuarine

systems in temperate regions (Rochelle-Newall et al. 2011;

Manna et al. 2012; Pan et al. 2016).

Camamu Bay is a shallow estuarine system, with a

circulation pattern governed mainly by tidal forcing

(Amorim et al. 2011), with a predominance of marine

influence, most notably in periods with less rainfall when

the fluvial inputs are even less pronounced (Amorim et al.

2015). Surrounded by small towns, the bay is inserted in a

hydrographic basin which presents one of the best states of

conservation on the Brazilian coast (Hatje et al. 2008),

where effects from anthropogenic pressure that are com-

monly reported in other tropical estuaries have not yet been

observed (e.g., Figueiredo et al. 2007; Veronez Júnior et al.

2009; Thrush et al. 2013; Van Chu et al. 2014).

Camamu Bay is a system formed by four sectors

including the main channel, from the entrance of the Bay

with direct communication with the adjacent coastal area,

and three ramifications, delimited by the influxes of the five

tributaries that flow in from the north, south and central

sector (Menezes 2011; Amorim et al. 2015). Considering

this hydrodynamic configuration, and starting from the

hypothesis that the microphytoplankton structure and

composition vary between the regions of the bay and over

the tidal cycles, the objectives of the present study were to

(1) characterize the microphytoplankton community com-

position and structure and (2) quantify the relative impor-

tance of the environmental variables for the community

patterns, related to the hydrodynamic characteristics and

rainfall. Although it is the third largest bay in Brazil

(Souza-Lima et al. 2003), it is still one of the least-known

regions of the coast (Leão et al. 2003), and because it is a

pristine tropical estuarine system (Carreira et al. 2016), it

can serve as a model for studies of potential environmental

changes, and therefore, it is important to know about its

natural characteristics.

2 Materials and methods

Study area – Camamu Bay (Fig. 1) is situated on the

central coast of the state of Bahia, Brazil (13�40.20S to

14�12.60S and 38�55.80W to 39�9.60W), a region with a hot

and wet climate, 25 �C mean annual temperature, high

rainfall, between the isoietas 2400 and 2600 mm year-1

(CRA 2007).

The hydrodynamic circulation inside the bay is forced

by tides, with a maximum range of 2.7 m during the high

tides and speeds that range from 0.6 to 1.2 m s-1 (Amorim

et al. 2015). The main river components that make the bay

an estuarine system are: Sirinhaém River is located in the

northern part, a shallow channel with 7.3 m average depth.

The rivers Igrapiúna, Pinaré and Sorojó are in the central

part, a shallow zone, with 3.0 m average depth and maxi-

mum depth of 7.0 m, inside the river channels, and the

Maraú River is located in the southern part, with 6.2 m

average depth (Oliveira et al. 2002; Hatje et al. 2008;

Amorim et al. 2011). The Maraú channel is a partially

mixed system, the Sirinhaém channel is well mixed during

the spring tides and partially mixed during the neap tides,

and they are very mixed from the bay entrance to the

central region. The system has a seasonally controlled

cleaning/purifying capacity, and the water is renewed every

90 days in the dry periods and every 30 days in the rainfall

periods (Amorim et al. 2015).

Sampling design – Sampling was conducted during

spring tides, under two different pluviometric periods. The

first was in October 2014, after an accumulated rainfall of

198.2 mm (rainfall period), and the second was in January

2015 after a total rainfall of 93.2 mm (dry period), con-

sidering the 30-day period prior to each sampling.

The spatial samplings were made at nine sites, dis-

tributed three by three (Fig. 1), in each one of the hydro-

dynamic regions (Serinhaém, Central and Maraú) of the

Camamu Bay. Time-series sampling were made at a

mooring (13�52027.4200S 38�57046.1900W), at 3-h intervals,

covering a total variation of 12 h over two tidal cycles

(spring tides), in October 2014 and January 2015. The

mooring, at the bay entrance (Fig. 1), was chosen because
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it is representative of all the water exchange of the system,

following hydrodynamic modeling of the area, according to

Menezes (2011).

Environmental sampling – The rainfall data were

obtained from the National Meteorological Institute

(INMET 2001) from records of the automatic meteoro-

logical station (13�540S, 38�580W) in the municipality of

Maraú—Bahia. The fluvial discharges of the main tribu-

taries were calculated using the equation by Smith et al.

(1999).

At each sampling station and at each hour of the tidal

cycle, the temperature, salinity, pH and water dissolved

oxygen were measured in situ using a multiparameter

meter (Hanna HI 9829, São Paulo, Brazil). Water trans-

parence was estimated by Secchi disk disappearance depth

measurements.

Water samples (5 L) were collected (42 samples/pe-

riod), using a Van Dorn bottle, for nutrient and chlorophyll

a analyses. The samples were stored in polyethylene flasks,

previously washed with HCl and distilled water, and

samples were immediately filtered after each collection

using a vacuum pump with fiberglass filters (Whatman GF/

F—0.7 lm pore, Sigma-Aldrich, Missouri, USA) until they

were clogged. Aliquots of 250 mL of the filtrated volume

of each sample and the filters, wrapped in aluminum paper,

Fig. 1 Camamu Bay map with a

location of sampling stations in

the Maraú (points 1–3), Central

(points 4–6), Serinhaém (points

7–9) and in the mooring (point

10)
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were kept frozen for, at most, two weeks until the

respective analyses were made.

The dissolved inorganic nutrients (nitrite, nitrate,

ammonium, phosphate and silicate) were analyzed by the

spectrophotometric method according to Grasshoff et al.

(1983). To analyze the chlorophyll a, the trichromatic

method was performed in acetone extracts and the con-

centrations were calculated according to Jeffrey and

Humphrey (1975).

Microphytoplankton sampling – At each sampling

station and at each hour of the tidal cycles (time-series

sampling), 250 mL water samples (14 samples/period)

were collected by a horizontal tows using a plankton net

(20 lm mesh opening) to study the microphytoplankton

community composition, and 1 L water samples (42 sam-

ples/period) were collected from the subsurface (* half a

meter deep) with Van Dorn bottle, for quantitative analy-

ses. All samples were stored in dark polyethylene flasks

and fixed with 1% lugol.

The qualitative analyses were carried out by observa-

tions on slides, under a light microscope (Olympus CX31,

Tokyo, Japan). The taxa were identified using the follow-

ing references: Cupp 1943; Cleve-Euler 1955; Wood 1968;

Dodge 1985; Balech 1988; Hernández-Becerril 1996;

Tomas 1997; Tiffany and Hernández-Becerril 2005;

Tenenbaum 2006; Throndsen et al. 2007.

Quantitative analyses to determine microphytoplankton

cell densities (cell L-1) were made according to the

Utermöhl (1958), using 50- or 100-mL sedimentation

chambers, depending on the sample, with counting of the

bottom of the chamber using an inverted microscope

(Motic AE 2000, Hong Kong, China) at 2009 to 4009

magnification.

Statistical analyses – The environmental variables were

analyzed with the Kruskal–Wallis analysis of variance,

after checking the assumptions for parametric analyses

(normality and homoscedasticity) using the Shapiro–Wilk

and Levene test followed by the value multiple comparison

test to assess the occurrence of significant differences

(P\ 0.05) in the physiochemical variables, dissolved

inorganic nutrients and chlorophyll a (1) between the

hydrodynamic regions of the bay and (2) between the tidal

cycles.

The microphytoplankton community of Camamu Bay

was characterized from measurements of species richness

(S), the Shannon diversity index (H0) and the Pielou species
evenness (J0).

To observe the ranking of the samples as functions of

the dissimilarity in species composition and abundance (1)

between the hydrodynamic regions of the bay and (2) over

the tidal cycles, non-metric multidimensional scaling

(NMDS) was carried out based on distance matrixes, cal-

culated from the Bray–Curtis index. The occurrence of

significant differences in community composition (1)

between the hydrodynamic regions of the bay and (2) the

times of the tidal cycle, in the two sampling periods, was

tested by permutational multivariate analysis of variance

(PERMANOVA, 999 randomizations, P\ 0.05) based on

the Bray–Curtis dissimilarity index.

Analyses of variance of the microphytoplankton density

were made using two-way ANOVA, verifying the prereq-

uisites for parametric analysis (normality and

homoscedasticity), with the Shapiro–Wilk and Levene

tests, respectively, and the value multiple comparison test

P (P\ 0.05) a posteriori to assess the occurrence of sig-

nificant differences (1) between the hydrodynamic regions

of the bay and (2) during the tidal cycles.

To quantify the relative contributions of the environ-

mental variables in explaining the patterns of species

composition and cell density in function (1) of the spatial

distribution in the bay and (2) over the tidal cycles, a

variation partitioning analysis was performed (Borcard

et al. 1992; Peres-Neto et al. 2006), using the analyzed

environmental data, separated into four groups: (1) tide

height; (2) riverine discharges; (3) dissolved nutrients (i.e.,

nitrite, nitrate, phosphate, silicate); and (4) physicochemi-

cal (i.e., temperature, salinity, transparency, pH and dis-

solved oxygen). The environmental data were standardized

because of their different measurement units, and the

Hellinger transformation was used for the cell density data

(Legendre and Gallagher 2001). All the statistical analyses

were carried out in an R environment (R Core Team 2016).

3 Results

Environmental variables – The fluvial discharges ran-

ged from 0.70 to 5.56 m3 s-1 during the two sampling

periods, higher in the rainy season (Table 1). The Camamu

Bay estuarine system was characterized by mean trans-

parency values in the water column of 1.3 (± 0.6) m to 2

(± 1) m, water temperature ranging from 26 (± 0.2) �C to

30 (± 0.5) �C and salinity of 32 (± 1.6) in the two periods.

The mean pH values of the water were 8.2 (± 0.1) in the

two periods. The water physicochemical variables did not

vary significantly between the hydrodynamic regions, nor

at the mooring, in tidal cycles.

Dissolved oxygen and temperature were the only vari-

ables that presented significant differences between the

sampling periods. Dissolved oxygen saturation rates were

above 100% in the first (rainy) sampling period

(106.6 ± 31%) and below 50% (42 ± 3%) in the second

(dry) sampling period, significantly higher (P = 0.004) in
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the rainy sampling period. The temperature showed sig-

nificantly higher values in the second (dry) sampling period

(P = 0.0003).

Ammonium concentrations were lower than the detec-

tion level of the method (\ 0.01 lM) throughout the study,

and there were low concentrations, both of the other

nitrogen forms (nitrite and nitrate) and also of phosphate

and silicate (Table 1). The dissolved inorganic nutrient

concentrations did not differ significantly between the

hydrodynamic regions, nor at the mooring, in tidal cycles.

But nitrite (P = 0.0002), nitrate (P = 0.0003) and silicate

(P = 0.0003) exhibited significantly larger concentrations

in the first (rainy) sampling period, as did chlorophyll

a (P = 0.0004).

Microphytoplankton – A total of 201 taxa were identi-

fied during the study (Table S1). Diatoms (ca. 70%) and

dinoflagellates (ca. 25%) were the most abundant groups in

the specific composition and marine species predominated.

Only 15 taxa identified (ca. 7%) are of freshwater habitat.

The species diversity index in the bay was always

around 3 bits ind-1, and there was no dominance of any

taxon (J0 = 0.7 a 0.8) under the conditions of the study

(Fig. 2a, b)

Organisms with tycoplanktonic habit represented about

13% of the taxa, and benthic species were also identified:

Ostreopsis cf. ovata J. Schmidt, Prorocentrum cf.

emarginatum Y. Fukuyo, Prorocentrum cf. rhathymum

A.R. Loebl. et al. and Lyngbya majuscula Harvey ex

Gomont.

Chain-forming diatoms, including Bacillaria paxillifera

(Müller) Hendey, Paralia sulcata (Ehrenberg) Cleve and

Odontella aurita (Lyngbye) C. Agardh, were the most

abundant taxa in the community.

The mean cell density in the bay, considering the three

hydrodynamic regions and the mooring, was 1.0 9 104

(± 3.8 9 103) cells L-1 in the first (rainy) sampling and

1.3 9 104 (± 3.8 9 103) cells L-1 in the second (dry)

sampling period, and there were no significant differences

between these periods (P = 0.5).

Spatial variations – A total of 144 taxa were identified

in the northern part of the bay (Serinhaém—Ser), with 16

taxa occurring exclusively in this region, while 139 taxa

were identified in both the central (Cen) and southern

Table 1 Environmental variables (dissolved oxygen percentage (DO %), pH, temperature (�C), salinity, water transparency (m), concentration of

dissolved inorganic nutrients (lM L-1), chlorophyll a concentration (lg L-1) and fluvial discharges (m3 s-1) in the I—first (rainy) sampling

period (October 2014) and II—second (dry) sampling period (January 2015) in the three hydrodynamic regions of Camamu Bay: Serinhaém

(SER), Central (CEN) and Maraú (MAR) and mooring (tidal cycles—TC) *mean (± standard deviation)

Sampling I II

Region SER CEN MAR TC SER CEN MAR TC

DO (%) 117.73

(± 9.48)

128.5

(± 8.96)

121.07

(± 6.73)

107.04

(± 5.37)

43.07

(± 0.68)

46.21

(± 1.07)

47.00

(± 0.50)

40.48

(± 1.18)

pH 8.13

(± 0.11)

8.16

(± 0.01)

8.15

(± 0.02)

8.17

(± 0.15)

8.18

(± 0.38)

8.27

(± 0.16)

8.29

(± 0.05)

8.10

(± 0.16)

Temperature (�C) 25.88

(± 0.10)

25.85

(± 0.04)

26.03

(± 0.12)

25.81

(± 0.30)

29.87

(± 0.07)

30.00

(± 0.18)

30.05

(± 0.24)

29.13

(± 0.42)

Salinity 30.07

(± 1.18)

31.27

(± 0.91)

30.97

(± 0.64)

32.26

(± 4.50)

30.94

(± 0.55)

30.65

(± 0.50)

30.77

(± 0.79)

32.71

(± 1.64)

Transparency (m) 1.33

(± 0.31)

1.60

(± 0.44)

1.53

(± 0.15)

1.14

(± 0.68)

2.17

(± 0.29)

1.47

(± 0.21)

2.20

(± 0.62)

2.52

(± 1.31)

Nitrite (lM L-1) 0.56

(± 0.02)

0.57

(± 0.02)

0.56

(± 0.01)

0.56

(± 0.01)

0.51

(± 0.00)

0.52

(± 0.00)

0.52

(± 0.00)

0.52

(± 0.01)

Nitrate (lM L-1) 1.04

(± 0.09)

1.04

(± 0.10)

1.07

(± 0.03)

1.19

(± 0.11)

0.79

(± 0.09)

0.79

(± 0.12)

0.85

(± 0.09)

0.86

(± 0.07)

Silicate (lM L-1) 3.59

(± 0.45)

3.51

(± 0.50)

3.79

(± 0.21)

2.29

(± 0.61)

2.19

(± 0.35)

2.42

(± 0.51)

1.60

(± 0.24)

1.27

(± 0.41)

Phosphate (lM L-1) 0.46

(± 0.06)

0.41

(± 0.03)

0.46

(± 0.03)

0.43

(± 0.03)

0.40

(± 0.00)

0.44

(± 0.03)

0.41

(± 0.00)

0.41

(± 0.01)

Chlorophyll

a (lg L-1)

3.00

(± 0.67)

2.52

(± 0.71)

2.16

(± 0.04)

2.69

(± 0.57)

0.64

(± 0.42)

0.56

(± 0.31)

1.13

(± 0.74)

0.47

(± 0.21)

Fluvial discharges

(m3 s-1)

3.72 5.56 4.19 – 0.70 1.05 0.79 –
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(Maraú—Mar) portions; the central region had 12, and

Maraú had 13 exclusive taxa (Table S1).

Based on the abundance of the identified taxa, the pat-

tern observed in the NMDS (stress = 0.16), indicated an

ordination of the samples as a function of the significant

differences of the composition (PERMANOVA r2 = 0.27,

P = 0.001) between the hydrodynamic regions of the bay

and the significant species substitution (PERMANOVA

r2 = 0.71, P = 0.001) in each region between the two

sampling periods (Fig. 3a).

The larger richness and taxonomic diversities were

recorded in the Serinhaém region (Fig. 2a) in both the

sampling periods. The most abundant species in this region

were Paralia sulcata and Bacillaria paxillifera in the first

(rainy) sampling period and P. sulcata and Guinardia

striata (Stolterfoth) Hasle in the second (dry) sampling

period. In the central region, the lowest species richness in

the study was recorded in the first sampling period

(Fig. 2a), with larger abundances of the species B. paxil-

lifera and Odontella aurita, while in the second sampling

period B. paxillifera and Navicula sp. were the most

abundant species in the region. The Maraú region exhibited

the lowest variation in species richness and diversity

between the sampling periods (Fig. 2a), with the species O.

aurita and Rhabdonema adriaticum Kützing occurring in

larger abundances in the first sampling period, and O.

aurita and Navicula sp. in the second sampling period.

The microphytoplankton cell density (Table 2) between

the hydrodynamic regions ranged from 3.2 9 103 -

cells L-1 in Maraú (rainfall period) to 2 9 104 cells L-1

in Serinhaém (dry period) and did not differ significantly

between the three regions (P = 0.19), or between the

sampling periods (P = 0.58).

Fig. 2 Variation the species

richness (S), Shannon–Weaver

Index (H0) and Pielou equability

(J0) a in the three hydrodynamic

regions of Camamu Bay: SER

(Serinhaém), CEN (Central) and

MAR (Maraú), and b in the

mooring (tidal cycles) in the

first (I—October 2014) and

second (dry) sampling period

(II—January 2015)
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The variance partition indicated that the environmental

variables explained about 76% of the specific composition

of the microphytoplankton community. The isolated tidal

variation fraction explained 19% of the variation, followed

by the isolated fractions of the nutrient and physicochem-

ical variables that each explained 14% (Fig. 4a).

For cell density, the variance partition explained 83% of

the total variance, represented mainly by the nutrients

fraction (41%), followed by the water physicochemical

factors fraction that explained 16% (Fig. 4b).

Tidal cycles variations – A total of 118 taxa were

identified at the mooring (Table 2). Considering their

abundance during the tidal cycles, the samples could be

ranked as a function of the differences in the specific

composition between the two cycles (Fig. 3b). The pattern

observed in the NMDS ranking (stress = 0.15) was sup-

ported by the significant difference between the two sam-

pling periods (PERMANOVA r2 = 0.42, P = 0.001), and

there were no significant differences in composition

between the periods of the same tidal cycle (PERMA-

NOVA r2 = 0.10, P = 0.078).

Paralia sulcata and Thalassionema nitzschioides (Gru-

now) Mereschkowsky were the most abundant species

during the tidal cycle in the rainy period, between 07:00 h

and 16:00 h, and in terms of greater abundance, P. sulcata

was replaced by Melosira moniliformes (O.F. Müller) C.

Agardh at 19:00 h. Chaetoceros decipiens Cleve and

Pseudo-nitzschia sp. were the most abundant species dur-

ing the tidal cycle in the dry period, between 07:00 h and

16:00 h, while at 19:00 h P. sulcata was the most abundant

species.

Species richness varied more in the rainy period tidal

cycle (44–66) than in the dry period (57–67). The species

diversity ranged from 2.68 to 3.18 bits ind-1 in the rainy

period tidal cycle and from 2.85 to 3.28 bits ind-1 in the

dry period, but no taxon dominated (J0) in any tidal cycle

(Fig. 2b).

The microphytoplankton cell density variation over the

tidal cycles was from 6.0 9 103 to 1.2 9 104 cells L-1 in

the rainy period and 8.3 9 103 to 2.0 9 104 cells L-1

(Table 3) in the dry period, but they were not significantly

different (P = 0.3) each other. During the rainy period

tidal cycle, at 13:00 h, the microphytoplankton density was

significantly lower (P\ 0.001) than at the other times of

the cycle. During the dry period tidal cycle, the micro-

phytoplankton density varied more, differing significantly

(P\ 0.001) between all the sampling times, except

between 10:00 h and 13:00 h.

The variance partition showed that the variation in

species composition during the tidal cycles was explained

by environmental conditions at 78%, mainly by the isolated

fraction of the physical–chemical variables (37%), fol-

lowed by the shared fractions of the physical–chemical

variables and nutrients, that explained 30% (Fig. 5a).

For the microphytoplankton density variation in the tidal

cycles, the variance partition exhibited a total explanation

Fig. 3 Non-metric multidimensional scaling (NMDS) analysis of the

taxa abundance a in the three hydrodynamic regions of Camamu Bay.

Up pointing triangle = Serinhaém, circle = Central and rectan-

gle = Maraú, and b in the mooring (tidal cycles). Down pointing

triangle = 7:00 a.m., Circle = 10:00 a.m., square = 1:00 p.m.,

diamond = 4:00 p.m., up pointing triangle = 7:00 p.m. Black

symbols = first (rainy) sampling period (October 2014); gray sym-

bols = second (dry) sampling period (January 2015)

Table 2 Microphytoplankton cell density variation (cell L-1) minimum–maximum (mean ± standard deviation) in the I—first (rainy) sampling

period (October 2014) and II—second (dry) sampling period (January 2015), in the three hydrodynamic regions of Camamu Bay: Serinhaém

(SER), Central (CEN) and Maraú (MAR)

I II

SER 1.1 9 104 a 2 9 104 (1.5 9 104 ± 4 9 103) 6.7 9 103 a 2.0 9 104 (1.2 9 104 ± 6.80 9 103)

CEN 4.5 9 103 a 1.1 9 104 (7.6 9 103 ± 3.4 9 103) 9.0 9 103 a 1.5 9 104 (1.3 9 104 ± 3.08 9 103)

MAR 3.2 9 103 a 1.6 9 104 (9.1 9 103 ± 6.3 9 103) 8.6 9 103 a 1.4 9 104 (1.0 9 104 ± 2.72 9 103)

Microphytoplankton in a tropical oligotrophic estuarine system: spatial variations and tidal… 343

123



of 84.5%, and the physiochemical variables fraction

accounted for 63% of the explanation (Fig. 5b).

4 Discussion

Environmental variables – In tropical (and subtropical)

environments, the rainfall is a fundamental modulator of

the availability of dissolved nutrients and optical qualities

of water (Bastos et al. 2005), and consequently, the larger

determinant of chlorophyll a concentrations in the aquatic

systems (Losada et al. 2003). In the Camamu Bay, region

with an annual mean rainfall of approximately 1480 mm

and monthly mean of 123 mm, it was observed that the

water physicochemical variables were influenced by the

larger riverine discharges in the rainy period (198.2 mm),

causing increased in the nutrient concentrations in the

system. This entry of fresh water allowed an increase in the

chlorophyll a biomass, keeping the waters in the bay well

oxygenated and saturated ([ 100%) in dissolved oxygen.

In contrast, in the dry period (93.2 mm), the smaller

river influxes were reflected in lower nutrient and chloro-

phyll a concentrations and the establishment of hetero-

trophic conditions reflected the subsaturated dissolved

oxygen (* 50%). The dissolved oxygen saturation may

indicate an increase in primary productivity rates in the

systems (Campelo et al. 1999), so it, in future studies, is

important to include measures of primary productivity in

the Camamu Bay in order to better characterize this system

condition.

The increase in the nutrient concentrations during rainy

periods is a condition commonly observed in a variety of

Fig. 4 Variance partition a of the microphytoplankton composition and b of the microphytoplankton cell density in the three hydrodynamic

regions at the Camamu Bay

Table 3 Microphytoplankton cell density variation (cell L-1) in the mooring at Camamu Bay, in tidal cycles—minimum–maximum

(mean ± standard deviation) in the I—first (rainy) sampling period (October 2014) and II—second (dry) sampling period (January 2015)

I II

07:00 h 8.9 9 103 a 1.0 9 104 (9.4 9 103 ± 5.6 9 102) 1.8 9 104 a 2 9 104 (1.9 9 104 ± 3.2 9 102)

10:00 h 9.8 9 103 a 1.2 9 104 (1.1 9 104 ± 8 9 102) 1.1 9 104 a 1.2 9 104 (1.2 9 104 ± 6.6 9 102)

13:00 h 6 9 103 a 6.8 9 103 (6.4 9 103 ± 4.9 9 102) 1.2 9 104 a 1.3 9 104 (1.2 9 104 ± 4.4 9 102)

16:00 h 9.2 9 103 a 1 9 104 (9.8 9 103 ± 6.49 102) 1.4 9 104 a 1.5 9 104 (1.5 9 104 ± 4.4 9 102)

19:00 h 8.3 9 103 a 8.5 9 103 (8.5 9 103 ± 8.9 9 101) 8.6 9 103 a 8.4 9 103 (8.3 9 103 ± 7.3 9 101)
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tropical estuaries (e.g., Dittmar et al. 2001; Sarma et al.

2010; Bastos et al. 2011). However, in spite of the

enrichment of the system in the period with more rain, the

waters in Camamu Bay remained characteristically olig-

otrophic (Niencheski et al. 1999; Knoppers et al. 2002).

Similar results were observed in oyster cropping areas in

the bay by Affe and Santana (2016), due to small riverine

discharges because of very small discharges from the

tributaries that did not change significantly between the

rainy and dry seasons (Amorim et al. 2011). The low

anthropogenic impact was shown, for example, by the

absence of influences from domestic sewage in the area

(Carreira et al. 2016).

Despite the three subsystems (hydrodynamic regions)

with different hydrodynamic characteristics (i.e., riverine

discharges, residence time and water renewal) (Menezes

2011), significant variations were not observed in the

environmental characteristics between the three hydrody-

namic regions during the study periods, reflecting the great

influence from the marine influx into the bay and the high

mixture in the water column (Amorim et al. 2015).

Microphytoplankton – The microphytoplankton com-

position, during the two sampling periods, illustrated the

hydrodynamic forcing in the estuarine system, and espe-

cially, the strong influence from the marine influx, shown

by the species predominant in this habitat. The predomi-

nance of diatoms (i.e., larger species richness and abun-

dance) in the bay followed a typical coastal water pattern

(e.g., Garg and Bhaskar 2000; Gin et al. 2000; Procopiak

et al. 2006; Silva et al. 2009; Rochelle-Newall et al. 2011;

Rezende et al. 2015; Carvalho et al. 2016) as did the

occurrence of tycoplanktonic species that are re-suspended

by the action of turbulence in the water column (Tilstone

et al. 2000; Odebrecht et al. 2002; Smayda 2002).

The diatoms comprised an important fraction (70%) of

the community in the bay, as already observed in other

coastal and estuarine environments (e.g., Fernandes and

Brandini 2004; Lacerda et al. 2004; Silva et al. 2009). The

high number of chain-forming diatoms perhaps is related to

(e.g., Paralia sulcata, Bacillaria paxillifera, Guinardia

striata, Odontella aurita), greater efficiency in light cap-

ture and greater nutrient storage capacity, given the higher

surface/volume ratios of cells (Villareal et al. 1993;

Hutchings et al. 1995; Sunda and Huntsman 1995; Klaus-

meier and Litchman 2001), in addition to the greater

capacity to regulate fluctuation that favors their predomi-

nance in turbulent waters (Round et al. 1990).

Different depths were not compared in the present study,

but the conditions of the high mixture in Camamu Bay

have been reported previously by Affe and Santana (2016)

due to the absence of differences in temperature and

salinity in the water column. According to Amorim et al.

(2015), there is partial stratification during neap tides, with

differences in salinity smaller than two between the surface

and the bottom, but during spring tides the water column is

very mixed throughout the bay. In this region of Brazil, the

semiarid climate of the interior of the state at the heads of

the hydrographic regions, and the small discharges

(* 10 m3 s-1) from the tributaries, associated with the

tide intervals, result in very mixed water columns, as

Fig. 5 Variance partition a of the microphytoplankton composition and b of the microphytoplankton cell density in the mooring (tidal cycles) at

the Camamu Bay
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occurred in Todos os Santos Bay (Cirano and Lessa 2007),

situated between 13�S and 22�S on the Brazilian eastern

platform (Knoppers et al. 2002).

The marine influx was the main force in the micro-

phytoplankton composition in the Camamu Bay, repeating

a pattern found in tidal forced estuarine systems (Bazin

et al. 2014), resulting in a high diversity of marine species

in the system, during the two sampling periods. In tropical

estuaries, there is alternation between periods of high

rainfall, with greater riverine discharges and periods when

marine influxes dominate and there is less rainfall, as these

parameters most influence the species richness distribution

of the phytoplankton community (Lacerda et al. 2004;

Silva et al. 2009).

During the tidal cycles, the predominance of chain-

forming diatoms was also observed in both the study

periods. In the rainy period, Paralia sulcata was the most

abundant species during the day (07:00–16:00 h), with an

inverse pattern in the night sampling (19:00 h), when

decreased that species density. The sharp reduction in

salinity at night (35.5–24) possibly influenced this change,

as in other systems, in which reductions in abundance of

P. sulcata were also recorded for low-salinity conditions at

the water surface (McQuoida and Nordberg 2003; Gebühr

et al. 2009; Guo et al. 2014). In contrast, during the second

tidal cycle (dry period) the P. sulcata cell density remained

approximately the same throughout the day, increasing at

night, when the water salinity remained high (* 31)

throughout the cycle. Because it is a tycoplanktonic spe-

cies, P. sulcata can be considered as an example of a tur-

bulence indicator species in the bay, and its occurrence is

common in brackish and marine environments, with

intense vertical mixing (McQuoida and Nordberg 2003;

Gebühr et al. 2009).

The microphytoplankton community in the Camamu

Bay estuarine system exhibited a similar pattern between

the hydrodynamic regions. The indices of phytoplankton

diversity characterize the system as of being of high

diversity (H0 [ 2.5), according to the Margalef (1978)

classification, and these indices were similar to those found

in other coastal regions in northeastern Brazil, even the

most eutrophied (e.g., Silva et al. 2009; Santiago et al.

2010). Maintaining this high diversity, considering the few

resources available (i.e., dissolved nutrients) depends on

processes that prevent the community from reaching

competitive equilibrium, as discussed by Hutchinson

(1961). Again, turbulence is indicated as a very important

process, also for the phytoplankton community structure,

especially in regions with relatively low nutrient concen-

trations (Barton et al. 2014), with turbulence facilitating

nutrient re-suspension to the photic layer and maintaining

phytoplankton suspension (Round et al. 1990; Ghosal et al.

2000; Barton et al. 2010; Pan et al. 2016).

Although there was enrichment of dissolved nutrients in

the system in the rainy period, a corresponding increase

was not observed in the microphytoplankton cell density.

This result contradicts that observed in tropical estuaries

that have seasonal rainfall variation, where the episodic

pulses of fresh water are preponderant in the hydrodynamic

and larger nutrient influx in the rainy period tends to lead to

higher phytoplankton densities and biomass (Sassi et al.

1991; Eskinazi-Leça et al. 2004; Lancelot and Muylaert

2011), even in the most eutrophied (e.g., Grego et al. 2004;

Honorato-da-Silva et al. 2004; Sousa et al. 2008; Costa

et al. 2011; Matos et al. 2011, 2012). In Camamu Bay, the

greater marine influence in the dry period and increases in

the riverine discharges in the inland regions in the rainfall

periods (Amorim et al. 2015) bring changes that, although

they were shown in the environmental variability (i.e.,

differences in temperature, salinity) between the two

periods analyzed did not determine significant alterations

in the community structure and composition. The influence

of the Brazil Current that flows all year along the Bahia

coast (Signorini et al. 1989), and the predominance of

marine influx in the estuarine system, may be the main

factors in maintaining the oligotrophic character of the bay,

even under different rainfall conditions.

Camamu Bay was shown to be a fairly mixed system in

spring tides, with low nutrient concentrations even in

conditions of greater riverine discharges in the rainy per-

iod. In summary, the data acquired in this study revealed

the great tropical shelf water intrusions, which confers

oligotrophic characteristics and marine species predomi-

nance in the three hydrodynamic regions of the system.

The sampling in tidal cycles evidenced the importance of

this forcing to the maintenance of the dynamic and high

diversity observed in the microphytoplankton community.

Microphytoplankton cell density did not vary significantly,

but there were changes in species composition between the

pluviometric periods, as a function of the variation of the

abiotic (although discrete) conditions.

We highlighted the importance of this knowledge given

the conservation conditions of the system in the face of the

global climate change scenario and growing anthropogenic

pressure that alters the dynamic and quality of the water in

tropical estuarine systems. Camamu Bay is suggested as a

potential model for studies of the ecology of the phyto-

plankton community, since observing community patterns

in preserved oligotrophic environments serve as a basis for

studies of the potential environmental changes on many

systems.
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Newmann-Leitão S, Costa MF (org.) Oceanografia um cenário

tropical. Edições Bagaço Recife, pp 353–373

Falkowski PG, Raven JA (2007) Aquatic photosynthesis. University

Press, Princeton, p 458

Fernandes LF, Brandini FP (2004) Diatom associations in the shelf
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Ilhetas e Mamucaba (Tamandaré-PE) relacionada com parâmet-
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