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Abstract Callogenesis was induced from Stylosanthes

guianensis (Aubl.) Sw. cv. CIAT-184 hypocotyl explants

cultured in the presence of different concentrations of

NaCl. Whereas calluses formed at 50 mM NaCl did not

show significant changes, concentrations in the range of

100–250 mM NaCl influenced callus formation and sur-

vival. The concentrations which reduced the callus for-

mation and survival by 50 % with respect to the controls

(I50) were 190 and 225 mM NaCl, respectively. Callus

growth was also affected being 160 mM NaCl the con-

centration that reduced the fresh weight gain in 50 %, in

comparison to the control. The cell walls of calluses

formed at higher NaCl concentrations showed a lower

cellulose content, which was accompanied by an increase

in protein, phenolics, and esters, as revealed by Fourier

transform infrared spectroscopy. These overall cell wall

modifications were accompanied by the formation of cell

wall appositions enriched with homogalacturonan and

rhamnogalacturonan components, and also with an increase

of arabinogalactan proteins in cell walls. These results

evidence the ability of cells to adjust the cell wall com-

position under salt stress conditions, as part of the strategy

to sustain their growth in such environment.

Keywords Callus culture � Cell wall � FTIR �
Immunocytochemistry � Salt stress

Introduction

Stylosanthes Sw. comprises 50 species and subspecies, all

of them are perennial herb plants. Due to their vigorous

growth habit, deep rooting ability, and resistance to poor

and infertile soils, stylosanthes species, associated with a

wide range of grasses, are currently being used as protein

banks and green manure and as forage crops (Partridge

1996; Lovato and Martins 1997). Also, they are currently

used as feed for pasturing cattle and as a component for

wasteland reclamation (Chandra 2006).

In order to extend the culture of stylosanthes plants, soil

and water salinity can be regarded as one of the major

abiotic stresses susceptible to reduce their growth and crop

productivity worldwide. For this reason, the goal of

breeding for stylosanthes plants would be to develop cul-

tivars that can grow and produce economic yields under

moderately saline conditions. Among the various species,

Stylosanthes guianensis (Aubl.) Sw., taking into account its

ecological plasticity, is a good candidate to extend its

culture to a wide range of soil conditions, climate, and

altitude, including saline environments, as it has been

regarded as moderately tolerant to salinity (González et al.

2000). However, before developing a breeding program to

improve the salt tolerance of this crop, it is necessary to

gain knowledge concerning the genetics and physiology of

its tolerance mechanisms.

Stylosanthes is considered one of the least recalcitrant

legume genus regarding to regeneration via callus (Dornelas

et al. 1992; Consoli et al. 1996; Valarini et al. 1997). Fur-

thermore, organogenic calli have been referred to as a
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suitable strategy to regenerate stable stylosanthes transgenic

plants (Quecini et al. 2006). Nevertheless, the studies about

behavior under saline conditions in stylosanthes species

referred only to germination (Gonela et al. 2004, Silva et al.

2014) and plant growth (Lovato and Martins 1997; Gonzá-

lez et al. 2000; Fuentes et al. 2010). In this regard, programs

of in vitro selection for tolerance to abiotic stresses could be

a useful tool; however, this strategy is dependent on the

development of efficient and reliable callus induction and

plant regeneration systems (Benderradji et al. 2007). Fol-

lowing this orientation, callus cultures are commonly used

as an in vitro technique for biochemical and physiological

studies of the response to salt and water stress at cellular

level (Gandonou et al. 2006; Liu et al. 2006; Kaviani 2008).

In addition, several studies have established an important

role of a set of cell wall modifications produced by cells in

order to cope with different environmental constraints,

including saline stress (Iraki et al. 1989;McCann et al. 1994;

Lamport et al. 2006). Nevertheless, changes taking place in

the cell wall components in calluses under NaCl stress, are

not well known yet.

The aim of this work was to study the callogenesis

response of Stylosanthes guianensis CIAT-184 under a

range of NaCl concentrations, and to monitor the cell wall

changes produced during callogenesis process. For this

purpose, after assessing the effects of NaCl concentrations

on several parameters related to callogenesis, cell wall

changes were monitored, using different approaches, such

as FTIR spectroscopy and cellulose assay in extracted cell

walls, as well as immunodetection of a set of cell wall

proteins and pectins in calluses pieces.

Materials and methods

Plant material

Seeds of Stylosanthes guianensis CIAT-184, obtained from

the ‘‘Indio Hatuey’’ Experimental Station (Cuba), were

sterilized in 70 % ethanol (1 min) and 5 % commercial

sodium hypochlorite solution (15 min) and subsequently

rinsed three times in sterile distilled water. Then, sterile

seeds were cultured in dark sterile humidity chamber on

filter paper at room temperature, and 15 days later hypo-

cotyls from seedlings were used as explants.

Calluses formation in NaCl

Hypocotyl sections of 4–6 mm were grown in Petri dishes

containing Murashige and Skoog medium (1962), 2 % (w/v)

sucrose, 7 g L-1 agar, 1 mg L-1 2,4-D (2,4-dichlorophenoxy-

acetic acid), 2 mg L-1 6-BAP (6-benzylaminopurine), and a

range ofNaCl concentrations (0, 50, 100, 150, 200, or 250 mM),

being pH adjusted to 5.6. After placing Petri dishes in growing

chamber at 25 �Cwith 16 hphotoperiod, calluses formationwas

observed after 7 days of culture.

Calluses inductive-conditions were maintained for

6 weeks in order to determine the percentage of calluses

formation. The survival percentages were calculated by

considering green explants or explants forming calli as live

ones. Five 20-day old calluses were used for cellulose

quantification, FTIR, and immunolocation analyses.

The initial fresh weight (Wi) of each callus was recor-

ded just before the beginning of treatment, and the final

fresh weight (Wf) was measured after 10, 20, and 30 days

of growth. The daily increase in relative weight (RWI)

during the culturing period was calculated using the fol-

lowing formula: RWI = (Wf - Wi) Wi-1 and the I50 was

calculated as the concentration of NaCl able to inhibit fresh

weight increase by 50 % with respect to the control.

Preparation of cell walls

Calluses were homogenized to a fine powder in liquid

nitrogen using a mortar and pestle and were treated with

2.5 U mL-1 a-amylase obtained from porcine pancreas

(Sigma, type VI-A) in 0.01 M phosphate buffer pH 7.0 for

24 h at 37 �C. The mixture was centrifuged at 10009g for

15 min and the pellet was washed (10 mL g-1) with water

(93), acetone (93), methanol–chloroform (1:1 v/v, 93),

and diethyl ether (92), and air-dried. Final pellet was

considered as cell walls (Talmadge et al. 1973).

Cell wall analyses

FTIR spectroscopy

Tablets for FTIR spectroscopy were prepared in a Graseby-

Specac Press, using cell walls (2 mg) mixed with KBr

(1:100). Ten spectra were obtained from each tablet on a

Perkin-Elmer instrument at a resolution of 1 cm-1 and the

average spectrum was used thereafter. A window between

800 and 1800 cm-1, containing information on character-

istic polysaccharides, was selected in order to monitor cell

wall structure modifications. All spectra were normalized

and baseline-corrected with the Perkin-Elmer Spectra v.5.3

software. The data were then exported to Microsoft Excel

and all spectra were area-normalized.

Cellulose quantification

Cellulose in cell walls was quantified by the Updegraff

method (1969) using the hydrolytic conditions described by

Saeman et al. (1963) and quantifying the glucose released

by the anthrone method, using a suitable calibration curve

(Dische 1962).
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Immunolocation of cell wall components

Callus pieces were fixed in 2.5 % paraformaldehyde in

0.1 M phosphate buffer pH 7.5 at 4 �C overnight. After

washing with phosphate buffer, cells were dehydrated in an

ethanol series prior to embedding in resin (LR White,

London Resin, Reading, UK), then placed in gelatin cap-

sules containing resin, and allowed to polymerize at 37 �C
for 5 days. One micrometer-thick sections were obtained in

a Ultracut microtome LKB 2088 (Reichert-Jung, Austria)

and applied to multi-well slides (ICN Biomedicals,

Cleveland, OH, USA) coated with Vectabond reagent

(Vector Laboratories, Burlingame, CA, USA). Sec-

tions were incubated for 2 h with primary antibody in a

1/10 dilution of phosphate-buffered saline (PBS: 0.14 M

NaCl, 2.7 mM KCl, 7.8 mM Na2HPO4�12H2O, 1.5 mM

KH2PO4, pH 7.2) containing 4 % fat-free milk powder

(MPBS). After being washing exhaustively with PBS, the

sections were incubated in darkness for 2 h with a 1/100

dilution of an anti-rat immunoglobulin G linked to fluo-

rescence in isothiocyanate (Sigma) in MPBS at room

temperature. Sections were washed with PBS and stained

in darkness with Calcofluor for 5 min. Finally, after being

washed with PBS, the sections were mounted in a glycerol/

PBS-based antifade solution (Citifluor AF1; Agar Scien-

tific, London, UK) and observed on an Olympus BH-2

microscope equipped with epifluorescence irradiation.

Sections were tested with monoclonal antibodies

(mAbs) specific for homogalacturonan (HG) with a low

(JIM5) or high (JIM7) degree of methyl esterification, 1,4-

b-galactan (LM5), 1,5-a-arabinan (LM6), or arabino-

galactan proteins (AGPs) (LM2, JIM8, and MAC207).

These mAbs were purchased from PlantProbes (Leeds,

UK), except JIM8 and MAC207 which were obtained from

the John Innes Institute (Norwich, UK).

Statistical analysis

Experiments were set up in completely randomized design

and repeated three times. When indicated, ANOVA followed

by a Tukey test (P\ 0.05) was used for variance analysis. All

analyseswere performed using Statistica (Stat-Soft) software.

Results and discussion

Effect of NaCl concentration on explants survival,

callus formation, and calluses growth

The Stylosanthes guianensis CIAT-184 hypocotyls

explants survival and calluses formation percentages were

evaluated after growing in media with increasing NaCl

concentrations. Both parameters were reduced when the

NaCl content in cell culture medium was higher than

100 mM (Fig. 1a). Concentrations of 190 and 225 mM

NaCl reduced in a 50 % with respect to the controls the

calluses formation and survival, respectively (I50). These

values are in the same range in relation to other species,

such as the maize Tripsacum hybrid, in which organogenic

calluses survival and regeneration percentages were

reduced to half in 140 mM NaCl (Pesqueira et al. 2006), or

different tomato varieties in which the I50 for calluses

formation was 83.5 mM NaCl (El-Aref 2002).

The inhibitory-growth effect of NaCl on stylosanthes

calluses was tested on fresh weight gain (Fig. 1b). This

fresh weight gain gradually decreased as NaCl concentra-

tion increased, 160 mM being the required concentration to

reduce it by 50 %, with respect to the control. So, sty-

losanthes calluses were more resistant to saline stress than

those from other legumes, i.e., they were 6.4-fold more

resistant than bean calluses (I50: 25 mM; Garcı́a-Angulo,

personal communication). In this sense, they were more

resistant to salinity than calluses of other species, such as

the maizeTripsacum hybrid, in which the relative weight

increment was strongly affected by NaCl concentrations

higher than 70 mM (Pesqueira et al. 2006). On the other

hand, stylosanthes calluses were resistant in the same range

as that of cell cultures of different halophytes, such as

calluses of Suaeda maritima (L.) Dumort. (I50: 170 mM)

(von Hedenström and Breckle 1974), or cell suspensions of

Atriplex nummularia Lindl. (I50: 200 mM) (Casas et al.

1991). Curiously, they were even more resistant than cal-

luses cultures of other halophytes, such as Suaeda nudiflora

(Willd.) Moq. (I50: 63 mM) (Cherian and Reddy 2003).

The relative weight increase was reduced in the presence

of NaCl throughout the culture cycle (Fig. 1c), especially

at concentrations higher than 100 mM. As expected, seed

germination and seedling growth processes were less

affected by salt stress than calluses growth; it was previ-

ously reported that the I50 for the reduction in root and

shoot fresh weight gain of Stylosanthes guianensis seed-

lings in presence of NaCl reached values higher than

200 mM NaCl (Fuentes et al. 2010). In addition, the esti-

mated concentration which reduced the germination per-

centage to 50 % in different Stylosanthes humilis Kunth

seed populations varied between 200 and 295 mM NaCl

(Lovato et al. 1994), and the concentrations which reduced

shoot dry mass by 50 % during the initial growth stage

varied from 84 to 108 mM NaCl (Lovato et al. 1999). The

differences in sensitivity toward salt stress between cellular

level and whole plant level showed by plants have been

frequently described in several species, and it depends on

physiological specializations operating in both levels (for a

review, see Sahi et al. 2006).
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Monitoring of cell wall changes during callogenesis

in presence of NaCl

In order to monitor cell wall changes during the calloge-

nesis process in presence of NaCl, three approaches were

followed: FTIR spectroscopy and cellulose assay, both in

cell walls, and immunolocation of cell wall proteins and

pectins, in calluses pieces.

FTIR spectroscopy

The FTIR spectra from cell walls showed a notable vari-

ability regarding NaCl concentration, especially for two

regions: the fingerprint (800–1200 cm-1) and

1575–1450 cm-1 regions (Fig. 2). The fingerprint area of

spectra from cell walls of calluses grown in the presence of

50 mM NaCl increased with respect to that of the controls

one. However, in other NaCl concentrations, the area of

this region decreased, especially for cell wall spectra from

calluses grown in the presence of 200 mM NaCl.

The difference spectra obtained by digital subtraction

constitute a useful tool for unravelling differences between

two FTIR spectra as well as for establishing the contribu-

tion of certain wavenumbers to them (Largo-Gosens et al.

2014). Marked differences among FTIR spectra obtained

from cell walls of calluses formed in the presence of 50,

100, and 200 mM NaCl and control were observed

(Fig. 3). Cell wall spectra from calluses exposed to 50 mM

NaCl showed a broader fingerprint area than control

spectra (Fig. 3). In spectra from 100 mM NaCl-grown

calluses, there appeared some changes that were empha-

sized in calluses formed at 200 mM NaCl. First, cell wall

spectra from 100 to 200 mM NaCl-calluses showed much

narrower fingerprint area than control spectra. Second, cell

walls from calluses formed in the presence of 200 mM

NaCl showed a decrease of bands assigned to cellulose,
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such as 900, 1040, 1060, 1160, 1320, 1370 cm-1 (Alonso-

Simón et al. 2011; Largo-Gosens et al. 2014), and

1430 cm-1 (Wilson et al. 2000). Additionally, increases of

bands assigned to polyphenols (1515 cm-1 –aromatic

rings– and 1470 cm-1 –methyl groups of lignin–) and

proteins (1550 cm-1) were observed. These results are in

concordance with those observed in NaCl-adapted tobacco

cells, which exhibit a substantial increase of bands corre-

sponding to protein- (amide stretches at 1650 and

1550 cm-1) and polyphenols (1620 and 1515 cm-1)-as-

signed bands (McCann et al. 1994). This observed increase

of bands corresponding to polyphenols-assigned bands

points to an initial lignification process. Recently, a set of

works have established a consistent correlation between

cellulose reduction and lignin or a lignin-like polymer

enrichment, not only in secondary cell walls, but also in

cell walls of cell cultures, indicating a contribution of this

phenolic polymer in cell wall stiffening (Shen et al. 2013;

Mélida et al. 2015). It is significant that the transcriptomic

analysis of roots of Salicornia europaea L. under saline

conditions showed a down-regulation of genes involved in

cellulose synthesis, joined to an up-regulation of many of

the genes implied in lignin biosynthesis (Fan et al. 2013).

A clear trend regarding diagnostic band of pectins was

not observed, because some bands assigned to them, such

as 1104 and 1250 cm-1, or those corresponding to unes-

terified uronic acids (1610 and 1420 cm-1) and galactose

(950 cm-1) decreased, whereas other ones, such as those

assigned to esters (1725 cm-1) tended to increase, pointing

to different contributions of pectic polysaccharides

according to their particular composition. Comparing the

opposite trend of bands corresponding to unesterified uro-

nic acids and esters, a higher degree of methyl esterifica-

tion would be deduced in calluses under higher NaCl

concentrations.

A part of the bands assigned to xyloglucan, the most

abundant hemicellulose in dicot cell walls (i.e., 1040, 1317,

1371 cm-1, Largo-Gosens et al. 2014), are usually masked

by those of cellulose making it difficult to recognize their

contribution to saline stress; however, other bands specific

for xyloglucan, such as 1078 or 1120 cm-1 (Largo-Gosens

et al. 2014), are not clearly apparent in cell walls of cal-

luses subjected to saline stress, pointing to a minor con-

tribution of hemicelluloses to cell walls modifications

during callogenesis in the presence of saline

concentrations.
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Assay of the cellulose content

Cellulose content in the cell walls of control calluses,

assessed by the Updegraff method, (13 %), was somewhat

lower than that reported for other in vitro cultures of spe-

cies with type I cell walls such as bean (25 % Encina et al.

2001), tomato (18 % Shedletzky et al. 1990), or tobacco

(26 % Shedletzky et al. 1992).

Cellulose content significantly increased in cell walls of

calluses growing in the presence of 50 mM NaCl. This

cellulose increase was correlated with an increment in the

area corresponding to the fingerprint region of the FTIR

spectra (Figs. 2, 3a), and also of a set of bands assigned to

cellulose, namely 1040, 1060, and 1160 cm-1. However,

calluses formed in 100 and 200 mM NaCl showed a

reduction in cellulose amount of 23 and 44 %, respectively,

regarding control (Fig. 4), that correlated with a reduction

in the fingerprint area of FTIR spectra from these cell walls

(Figs. 2, 3b, c), and also of bands assigned to cellulose. A

similar reduction in cellulose content promoted by saline

conditions has been previously reported in tobacco cells

adapted to grow in 0.428 M NaCl, in which the proportion

of cellulose was only 50 % that of unadapted cells (Iraki

et al. 1989), as well as in cell walls of cotton seedlings

(Zhong and Läuchli 1993) and maize leaves (Uddin et al.

2013) under saline stress. The change of trend in the cel-

lulose content observed when calluses are subjected to

concentrations of NaCl well below the I50 (in this case,

50 mM, whereas the I50 is 160 mM) might be attributed to

a subtoxic effect promoted by the saline conditions. Serra

et al. (2015) have shown that subtoxic levels of chemical

stressors are able to cause unexpected metabolic shifts,

with different impacts on growth and metabolic composi-

tion of plant organs.

The differences in cellulose content were not appreci-

ated in calluses sections by means of their staining with

calcofluor (Figs. 17 vs. 18). In both analyzed lines (con-

trols and 200 mM NaCl-calluses), the fluorescence due to

calcofluor appeared in a continuous layer outlining cell

wall. However, it is not appropriate to quantify changes in

fluorescence intensity if the fluorochrome saturates the

cellulose.

It has been repeatedly observed that cell cultures sub-

jected or adapted to high NaCl concentrations, such as

tobacco (Iraki et al. 1989; Bressan et al. 1990), or Suaeda

nudifolia (Cherian and Reddy 2003) reduce their volume in

order to maintain the turgor pressure, in a process mediated

by changes in cell wall properties, affecting cell wall

extensibility and as a consequence, cell expansion. How-

ever, microscopy analysis of our cells did not reveal dif-

ferences in size or volume between control calluses and

those obtained and maintained at 200 mM NaCl (Figs. 5–

18). A similar lack of reduction in cell volume or shape has

been described in other calluses cultures, such as citrus

ones (Ben-Hayyim 1987), pointing to NaCl effects on

calluses growth are not necessarily correlated with a

reduction in cell volume. However, our cells maintained at

200 mM NaCl seem a bit more heterogeneous both in size

and shape. This observation is also extended to the cell

walls: walls from cells maintained at 200 mM NaCl had a

more variable width than controls, and showed occasional

thickenings (see i.e., Figs. 6, 8, 12).

Immunolocation of cell wall proteins and pectins

Since both FTIR spectra and cellulose content analysis of

cell walls showed strong differences with respect to the

control in calluses formed in 200 mM NaCl, and since

previous studies have reported salt stress-related changes in

several cell wall components, mainly pectins and proteins

(Iraki et al. 1989; McCann et al. 1994), in order to examine

further changes in cell wall components, sections and

immunolocation with different antibodies (mAbs) for

pectins (Figs. 5–12) and arabinogalactan proteins

(Figs. 13–16) from stylosanthes calluses were made.

Pectin domains were probed with four mAbs with

specificity for homogalacturonan with different degrees of

methyl esterification: low (JIM5 Figs. 5, 6) and high (JIM7

Figs. 7, 8), respectively, whereas the side chains of

rhamnogalacturonan I were probed with mAbs LM5

(Figs. 9, 10) and LM6 (Figs. 11, 12), with specificity for

1,4-b-galactan and 1,5-a-arabinan side chains, respectively

(Jones et al. 1997; Willats et al. 1999).

It has been proposed that homogalacturonan polymers

are deposited in the cell wall in a highly methyl-esterified
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form. Then, the homogalacturonan is demethylated by the

action of pectin methylesterases, and this increases the

capacity to form calcium cross-links (Grant et al. 1973).

In control calluses, JIM5 epitopes (Fig. 5) were dis-

persed throughout the cell wall whereas JIM7 epitopes

(Fig. 7) were homogeneously localized, especially in cell

junctions. Immunofluorescence labeling of calluses both

with JIM5 (Figs. 5 vs 6) and JIM7 (Figs. 7 vs 8) probes

showed a more intense and homogeneous labeling in

200 mM NaCl-calluses than in controls. In cell walls from

NaCl-adapted tobacco calluses, immune-gold detection of

JIM7 epitopes showed a stronger labeling compared with

unadapted cells, but that of JIM5 showed a weaker labeling

(McCann et al. 1994), whereas in petioles of aspen plants

JIM5

Control 200mM NaCl-callus

JIM7

LM5

LM6

5 6

7 8

9 10

11 12

Figs. 5–12 Immunolocation of

cell wall pectin epitopes in

sections of resin-embedded

control calluses (5, 7, 9, 11) and

calluses growing in the presence

of 200 mM NaCl (6, 8, 10, 12).

Sections were probed with

monoclonal antibodies specific

for homogalacturonan with a

low (JIM5, 5 and 6) and high

(JIM7, 7 and 8) degree of

methyl esterification, 1,4-b-
galactan (LM5, 9, and 10), and

1,5-a-arabinan (LM6, 11, and

12). Bars 10 lm (8), all others,

20 lm. Arrows point to cell wall

appositions
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treated with saline solutions, stronger labeling with JIM7

and no differences in the labeling with JIM5 were observed

(Muszynska et al. 2014), which contrasts with our results.

However, we have to keep in mind that tobacco calluses

were adapted to NaCl conditions, whereas our stylosanthes

calluses were only treated with, but not adapted to salt.

FTIR monitoring showed that our cell walls of stylosanthes

calluses in the presence of 200 mM NaCl exhibited a

higher degree of methylesterification. This is correlated to

the more intense labeling with JIM7 observed in 200 mM

NaCl-treated calluses, but it is not necessary an objection

to the observed intense labeling with JIM5 in the same

calluses. In fact, cellulose-impoverished cell walls as those

of tomato dichlobenil-habituated are characterized by a

general increment of pectic polysaccharides (both esterified

and non-esterified) (Wells et al. 1994), and those of dif-

ferent maize hybrids subjected to salt stress (Uddin et al.

2013).

The labeling with LM5 -with specificity for 1,4-b-
galactan- was weak and no differences were detected

between control and 200 mM NaCl-grown calluses (Figs. 9

vs. 10). However, LM6 arabinan epitopes were more

abundant in calluses formed in 200 mM NaCl than in

controls (Figs. 12 vs. 11). Both epitopes have been corre-

lated with cell expansion and proliferation processes in

carrot cell suspensions (Kikuchi et al. 1996; Iwai et al.

2001). When carrot cells were induced to elongation in a

cell culture medium lacking 2,4-D, LM6 arabinan epitopes

disappeared whereas LM5 galactan epitopes increased

(Willats et al. 1999). Our calluses formed in the presence of

NaCl grew and elongated lesser than controls, which is

consistent with the higher amount of LM6 epitopes.

Stylosanthes calluses formed in 200 mM NaCl showed

cell wall appositions containing homogalacturonan with

low (JIM5) and high (JIM7) degree of methyl esterifica-

tion, and rhamnogalacturonan I (LM6) (Figs. 6, 8, 12). Cell

wall appositions have been described in other cell cultures

with reduced cellulose content, such as tobacco (Sabba

et al. 1999), arabidopsis (Manfield et al. 2004), and French

bean (Garcı́a-Angulo et al. 2006) cultured cells habituated

Control 200mM NaCl-callus

LM2

MAC 207

Calcofluor

13 14

15

17 18

16

Figs. 13–18 Immunolocation

of cell wall arabinogalactan

protein epitopes in sections of

resin-embedded control calluses

(13, 15) and calluses growing in

the presence of 200 mM NaCl

(14, 16). Sections were probed

with monoclonal antibodies

LM2 (13, 14) and MAC207 (15,

16), or stained with calcofluor

(17, 18). Bars 20 lm
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to different cellulose biosynthesis inhibitors, suggesting

that impairment in cellulose deposition affects the correct

assembly of matrix polysaccharides: these habituated cell

cultures have in common a decreased amount of hemicel-

luloses, and an increased amount of esterified and unes-

terified pectins. Moreover, in tobacco cells, pectins are

crosslinked with extensions to form the main cell wall

network (Sabba et al. 1999), whereas in tomato cells,

pectins are crosslinked via phenolic-ester and/or phenolic

ether linkages (Shedletzky et al. 1990, 1992).

AGPs have been described as important signaling

molecules in different developmental and stress processes

(Ellis et al. 2010; Tan et al. 2012) including salt stress

(Zagorchev et al. 2014). AGPs were probed with mAbs

LM2 (Smallwood et al. 1996), JIM8 (Pennell et al. 1991),

and MAC207 (Pennell et al. 1989) (Figs. 13–16). No dif-

ferences in JIM8 epitopes were detected (data not shown).

In other cases, the binding of mAbs to the glycan epitopes

of AGPs appeared as discrete dots located throughout the

cell wall and the outer zone of cytoplasm. Calluses formed

in 200 mM NaCl showed more intense labeling, especially

with MAC207 (Figs. 15 vs 16).

As glycoproteins of the plant cell surface, AGPs are

glycosylated in Golgi apparatus and then are transported by

vesicles to the cell wall (Gaspar et al. 2001). In stylosan-

thes calluses growing in the presence of 200 mM NaCl, the

LM2 and MAC207 epitopes seem to be localized in the

cytoplasm vesicles during their transport (Figs. 13–16). In

salt-stressed rice plants (Ma et al. 2010) as well as in

tobacco cell suspensions (Lamport et al. 2006) a set of

AGPs were up-regulated; however, tobacco cells contained

lower levels of plasma membrane-bound AGPs because the

AGP release rate was much higher than in control cells

(Lamport et al. 2006). Our cells grown on a solid medium,

and probably their AGP release rate was lower than in

tobacco cell suspension, in which the culture medium could

be considered as an extension of the apoplast. These could

explain the presence of more transport vesicles and more

AGP epitopes in the cell walls of 200 mM NaCl-grown

calluses.

AGPs are implicated in cell expansion (Park et al. 2003),

and it has been proposed that the up-regulation of AGPs

should enhance cell expansion by affecting the porosity of

the pectin network in muro, decreasing pectin alignment

and cross-linking (Lamport et al. 2006).

Occasional thickenings were observed in walls from

cells maintained at 200 mM NaCl (see Figs. 6, 8, 12), and

these seem to be mainly due to localized cellulose accu-

mulations (Figs. 17, 18), but also to the accumulation of the

same components of appositions, that is homogalacturonan

-both with low and high level of methylesterification-,

rhamnogalacturonan I as well as AGPs components

(Figs. 13–16).

Taking into account the bulk of results, our study reflects

that the structure and composition of cell walls were mod-

ified in stylosanthes calluses when they were maintained at

high (200 mM) concentrations of NaCl. Modifications in

cell walls have been regarded as a common feature of the

response to salinity in plants (Le Gall et al. 2015). A

reduction of cellulose levels was compensated with other

cell wall components, such as pectins like homogalacturo-

nan and rhamnogalacturonan I as well as AGPs.

Other components may also play important roles in the

modifications experienced by stylosanthes cell walls in

saline conditions, such as lignin or other lignin-like phe-

nolic polymers as well as other proteins -evidenced by

FTIR monitoring– without excluding hemicellulosic

polysaccharides like xyloglucan, given the inherent limi-

tations to FTIR monitoring.
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D, Domı́nguez D, Mesa AR (2010) Physiological and biochem-

ical response of Stylosanthes guianensis cv. CIAT-184 and

Centrosema molle to sodium chloride stress. Pastos y Forrajes

3:173–186

Gandonou CB, Errabii T, Abrini J, Idaomar M, Senhaji NS (2006)

Selection of callus cultures of sugarcane (Saccharum sp.)

tolerant to NaCl and their response to salt tolerance. Plant Cell

Tissue Organ Cult 87:9–16

Garcı́a-Angulo P, Willats WGT, Encina AE, Alonso-Simón A,
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González LM, López RC, Fonseca I, Ramı́rez R (2000) Growth

stomatal frequency, DM yield and accumulation of ions in nine

species of grassland legumes grown under saline conditions.

Pastos y Forrajes 23:299–308

Grant GT, Morris ER, Rees DA, Smith PJC, Thorn D (1973)

Biological interactions between polysaccharides and divalent

cations: the egg-box model. FEBS Lett 32:195–198

Iraki NM, Singh N, Bressan RA, Carpita NC (1989) Cell walls of

tobacco cells and changes in composition associated with

reduced growth upon adaptation to water and saline stress. Plant

Physiol 91:48–53

Iwai H, Ishii T, Satoh S (2001) Absence of arabinan in the side chains

of the pectic polysaccharides strongly associated with cell walls

of Nicotiana plumbaginifolia non-organic callus with loosely

attached constituent cell. Planta 213:907–915

Jones L, Seymour GB, Knox JP (1997) Localization of pectic

galactan in tomato cell walls using a monoclonal antibody

specific to (1-4)-b-D-galactan. Plant Physiol 113:1405–1412
Kaviani B (2008) Proline accumulation and growth of soybean callus

under salt and water stress. Int J Agric Biol 10:221–223

Kikuchi A, Edashige Y, Ishii T, Fujii T, Satoh S (1996) Variations in

the structure of neutral sugar chains in the pectic polysaccharides

of morphologically different carrot calli and correlation with the

size of cell clusters. Planta 198:634–639

Lamport DTA, Kieliszewski MJ, Showalter AM (2006) Salt stress

upregulates periplasmic arabinogalactan proteins: using salt

stress to analyse AGP function. New Phytol 169:479–492

Largo-Gosens A, Hernandez-Altamirano M, Garcia-Calvo L, Alonso-
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