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Abstract The increased incidence of herbicide-resistant

weed species, and the related biological repercussions,

poses a major threat to sustainable crop production. Inte-

grated weed management, which involves greater reliance

on non-chemical weed management tactics such as crop

interference, needs to be included in canola production

systems. Crop interference comprises both competition and

allelopathy which favour the growth of the crop. This

review examines canola plant traits associated with com-

petitiveness and allelopathy. Competitive ability is evalu-

ated by the ability of plant morphological traits to improve

access to scarce light, nutrients and water in a limited

space. Allelopathy refers to the harmful or beneficial effect

of crop biochemicals on neighbouring weed species.

Allelochemicals are a subset of secondary metabolites

produced from intact living roots and crop residues that

differ between cultivars and have specific defensive

functions in the rhizosphere. Elite allelopathic cultivars can

be identified by screening canola germplasm. The identi-

fication of the allelochemicals involved and their effects in

the field also need to be explored. The impact of genetic

variation, the mechanisms of allelopathic action, the source

and fate of allelochemicals and associated biota in the

rhizosphere all need to be considered in new cultivar

development. The breeding of weed-suppressive allelo-

pathic canola cultivars needs to be in the context of good

agronomic performance. Although allelopathic canola

cultivars are unlikely to eliminate all weed pressures in the

field, the extent to which they contribute in weed man-

agement is worthy of exploration. It remains to be known

whether combined competitive and allelopathic cultivars

can be developed to maximise overall interference. The

integration of agronomic practises with canola interference

also needs to be developed.

Keywords Competition � Allelopathy � Root exudates �
Rhizosphere � Metabolites

Introduction

Canola (Brassica napus L.) is a member of Brassicaceae

family with low glucosinolates and erucic acid content

relative to traditional rapeseed (B. napus L.). It is a major

oilseed crop, ranked as the second most important global

source of vegetable oil [131]. Canola is also a potential

source of specific protein and industrial raw materials

including biopolymers, surfactants, adhesives and, more

recently, biodiesel [170]. The annual worldwide increase in

canola production has been substantial and it is predicted to

exceed 15 million tonnes by 2015 [28, 29]. Australia is the

world’s second largest exporter of canola seed after Canada
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and canola is Australia’s third largest broad-acre crop after

wheat and barley. The Australian Oilseed Federation [5]

predicts that prospects for the Australian canola industry

are excellent due to good commodity prices, market

demand and its value in the farming system. Canola is,

therefore, an attractive alternative crop for grain growers.

The rapidly growing demand for canola worldwide implies

both greater yield and greater area of production, utilising

better management practises and improved cultivars.

Weeds commonly occur in canola crops [95] and their

infestation is a major yield-reducing factor [139]. Weeds

interfere with crop plants, causing serious impacts as a

result of competition for either above or below-ground

resources [113]. Canola is exposed to severe competition

from weeds which are often considered as the most yield

limiting factor in Canada [155]. In India, Gill et al. [63]

reported that the magnitude of loss from weeds ranged

from 30 to 50 %, depending on the growth and persistence

of the weed population in the standing crop. Grass weeds,

such as annual ryegrass (Lolium rigidum), vulpia (Vulpia

myuros) and wild oat (Avena fatua) were most abundant in

canola crop of south-eastern Australia [95]. Interference

may be through severe soil nutrient depletion [173], water

and shading.

Weed competition also reduces grain yield and quality

and market value of the canola seed. In Canada, Rose and

Bell [136] showed that presence of seeds of wild mustard

(Sinapis arvensis) and stinkweed (Thlaspi arvensis) in

canola seeds mixtures reduced the seed quality of canola by

increasing the level of erucic acid in the extracted oil and

the glucosinolate content of the remaining meal. In Aus-

tralia, heavy infestations of wild radish (Raphanus raph-

anistrum) have reduced canola yields by up to 90 % [22]

and such infestations greatly reduced the quality of canola

meal both through crop stress and direct seed contamina-

tion of harvested product [33, 101].

The use of herbicides and herbicide tolerant canola

cultivars has increased rapidly in Australia and worldwide.

However, the over reliance on herbicides can reduce their

effectiveness and lead to the evolution of herbicide-resis-

tant weeds [12]. High population densities of some weed

species necessitate the input of more herbicides but the

high use of herbicides exacerbates the development of the

resistance problem [77, 126]. The widespread use of tri-

azine-tolerant (TT) canola cultivars has increased the use

of triazine herbicides and has led to increased triazine-

resistant populations of wild radish in Australia [72]. The

escalating problem of herbicide-resistant weeds is a chal-

lenge to farmers as is the need to manage agrochemicals to

minimise soil herbicide residues that can negatively impact

on succeeding crops.

Integrated weed management systems have the potential

to reduce herbicide use and their associated costs where

there is greater reliance on non-chemical control tactics

including enhancing crop interferences. It has been shown

that the reliability of herbicide performance can be

improved when combined with crop species or varieties of

superior competitiveness [37, 91].

Interference is the term used to describe an induced effect

by an individual plant on a neighbour through changes in the

immediate environment [70]. It comprises competition and

allelopathy. Zimdahl [173] reported that it is the total

adverse effect that both plants exert on each other when

growing in a common ecosystem. Competition is the nega-

tive interaction between two or more plant species for

existence and superiority within a limited space [47].

Competition is greatest when available resources for both

crop and weed are below the combined demand [47]. The

phenomenon occurs between individuals of the same species

(intra-species) and between individuals of different species

(inter-species). Allelopathy is distinct from other negative

plant interference in that the detrimental effect is through

release of chemicals by a donor plant [133]. Molisch [109]

indicated that this chemical interference can be both harmful

and beneficial. At high concentrations allelopathic chemi-

cals can act as inhibitors while at low concentrations they can

sometimes stimulate neighbouring plant growth [110].

Weed responses to crop allelopathy have become well

documented in recent decades [129, 135]. However, the

impact varies depending on the plant species, cultivar,

growth stage and various stress factors. In this review, we

examine both forms of canola interference, competition and

allelopathy, and discuss possible ways to maximise this

beneficial attribute for improved weed control.

Competition

Crops and weeds compete for various resources. The

competitive ability of a particular plant is a major factor in

suppressing the competitor. An increase in the biomass

and/or population density of one species is the most likely

route to increase competition for resources and thus influ-

ence the growth and survival of the affected species [154].

Competition for resources between species occurs through

both above and below-ground interaction. The competitive

ability of a plant is an integrated response over time, with

contributions from a range of traits.

Above-Ground Competition for Light and Related

Canola Traits

Light is an essential determinant of the energy balance of

the soil and plant, and it drives water and nutrient transport

[10]. Competition for light occurs in most cropping situa-

tions soon after seedling emergence [48, 131]. Plants
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intercept light using different light attributing characters

and a successful plant is not necessarily the plant with more

foliage but the plant with foliage in an advantageous

position for light interception relative to that of its com-

petitors [47]. Leaves are the principal source of assimilate

production during the vegetative phase. In rapeseed (B.

napus), the lower leaves have been shown to export

assimilates basipetally, while the upper leaves exported

assimilates almost exclusively acropetally [102]. They

translocated and re-translocated the mobile nutrients in the

plant system before they senesced [144]. Leaves of rape-

seed exerted and developed source-sink capacity during the

early growth stage, the expansion rate of leaves being

positively correlated with seed yield [38, 153]. Thus, dur-

ing early development, light interception by the rapeseed

plant influences growth rate that determines competitive-

ness with neighbours. Plant height, leaf size, number and

leaf area index are directly related to the interception of

radiation by leaves. In Canada, Beckie et al. [13] indenti-

fied from field observations that canola height was as an

important criterion of plant competitiveness for resources.

Daugovish et al. [41] confirmed that the greater competi-

tive ability of wild oat or yellow mustard over canola was

attributed to greater plant growth rate and plant height.

Other plant morphological traits such as stem elongation,

upward leaf movement [21, 61, 110, 124] and leaf layer

density [46] all contribute to competitiveness for light.

These plant components usually relate to shade avoidance,

allowing plants to photosynthesise and grow to become

more competitive [11, 21, 124]. Further, the variation in

morphological sensitivity of plants to light signals is known

to vary among cultivars [86]. Thus, choice of a suitable

shade-avoidance cultivar, combined with agronomic tactics

(e.g. crop density and row arrangement), also helps to

manipulate crop plant photomorphogenesis. In Australia,

vigorous hybrid canolas have generally been shown to

compete more successfully with, for example, annual rye-

grass than did TT canola varieties [93]. The plant biomass

measures of both cultivar types were negatively correlated

with weed plant biomass [93]. The study was consistent

with Canadian results that suitable vigorous hybrid geno-

types provide more competition against weeds [68, 69,

171]. Vigorous hybrids produce tall plants with much foli-

age, thereby reducing light penetration to the weed canopy.

Choice of vigorous cultivars can be an effective crop

interference tactic for weed management especially in the

early establishment phase of a canola crop.

Below-Ground Competition for Nutrients and Water

and Associated Canola Traits

Competition for below-ground resources constitutes an

important aspect of crop-weed interaction. This below-

ground interference has been reported to reduce plant

performance more than do above-ground relations [165].

Below-ground competition usually occurs for space, soil

nutrients and water. Plants take up soil nutrients mainly by

diffusion and mass flow mechanisms from the depletion

zone (the concentration gradient surrounding the roots)

[118]. The competitive ability of a crop plant is likely

determined by its capacity to make use of nutrients from

this zone [47] and plants usually invest relatively more

resources into roots compared with shoots for below-

ground competition [125]. Efficient nutrient acquisition by

roots becomes an important key for plant competitive

ability. Characteristics related to nutrient and water uptake

include plant root size and depth, relative growth rate,

biomass, root density and total surface area [1, 2, 31, 55].

The canola plant has an extensive root system [161] with

abundant root hairs [66] to give it high root surface area

and large potential to extract nutrients from the soil [66].

Strong and Soper [152] reported that roots of Brassica

plants proliferate in areas of high nutrient concentration,

although differences exist among genotypes in their ability

for nutrient acquisition. Nitrogen uptake by canola, for

example, has been linked to total root biomass rather than

higher uptake per unit of length [81]. However, Laine et al.

[89] demonstrated that if one half of the canola root system

was starved of nitrogen, the other half was still able to

supply the shoot with sufficient nitrogen through increased

uptake per unit of root length. The optimisation of canola

root traits for nutrient acquisition may link with its com-

petitive ability against different weed species.

The conversion of soil resources to plant biomass

(referred to as nutrient use efficiency) differs between

species and cultivars [31]. A typical canola plant usually

has a higher demand for phosphorus and potassium than

does a wheat plant [29, 137, 152]. These demands may

influence success in gaining a greater share of the other

nutrients to establish dominance over a less successful

weed species. Duan et al. [50] reported that the rate of root

biomass accumulation in canola was positively correlated

with increased lateral root length [50] while, in another

study, canola biomass was negatively correlated with weed

biomass [92]. The biomass of canola was regulated by the

reduced pH in the rhizosphere resulting from the release of

organic acids by its roots [50]. In soil, insoluble phosphorus

usually becomes more readily available to canola roots

through the acidification of soil near the rhizosphere [2, 73,

138]. Understanding the process involved in the acquisition

of soil resources, and the associated mechanisms by which

canola competes, may help improve the below-ground

competitive ability of canola for nutrient acquisition in the

presence of weeds.

Plants provide a pathway for water movement between

the soil and the atmosphere. This path begins in the soil
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with water uptake and is influenced by numerous biotic and

abiotic factors [31]. Plants experience competition for

water when the moisture supply in the soil environment is

reduced (e.g. uptake by neighbour) or is exceeded by the

evaporative demand [130]. Donald [47] asserted that the

success of any cereal plant for water competition depends

on the rate and completeness with which it can make use of

the soil water supply. This capacity for water uptake by

crops is determined by several attributes within the envi-

ronment such as transpiration rate and stomatal resistance

capacity [31, 78] and the efficiency of water use by plant

roots and leaves [75]. Poor stomatal control, for example,

results in relatively high plant water use and this may

increase competitiveness if the plant neighbours are

water conservers [130]. In canola, it is assumed that

hybrid cultivars with early vigour use available soil

water more quickly, thereby making it relatively

unavailable for use by neighbouring weeds. The com-

petitive ability of a cultivar may increase in a specific

location due to the environmental influence on evapo-

transpiration. Although the mechanisms were not clear, it

has been suggested that in cool environments hybrid

canola induces non-favorable conditions for weed growth

by reducing soil resources [68]. Essential nutrients, once

inside the canola plant, can be relocated to support

growth and, advantageously, they are, therefore, not

available to neighbouring weed species.

Plant avoidance and tolerance mechanisms to soil water

stress are related to its root morphology and distribution.

Pavlychenko and Harrington [122] found that the consid-

erable depth of the root systems of wheat provided good

adaption for drought tolerance and weed competition.

Likewise in canola, a deep root system is likely a key trait

of the plant’s ability to access sufficient water. Canola

roots have been shown to extract water from a depth of

150 cm although up to 95 % of the total seasonal uptake

was removed from the top 105 cm of the soil profile [114].

Thus, cultivars with a deep root system trait may become

more competitive by being able to adjust their avoidance or

tolerance of soil water stress. Roots of canola and other

Brassica species, however, are poorly adapted to dry

regions and so agronomic adjustment of these early-seed-

ing or early-maturing cultivars may be needed to improve

tolerance to competition through better water use efficiency

during the seed filling stage. In Western Australia, the early

sowing and early flowering cultivars of B. napus produced

the greatest total dry weight and seed yield due to efficient

water use compared with a late sowing [153]. Early flow-

ering cultivars also showed better competitive ability in

Canada because they proliferated their root systems as soon

as they sensed a water source, enabling them to fully utilise

those resources [32]. These data demonstrate key aspects of

canola roots in competitive interference: tolerance of water

stress without changes in physiological adaption; and

canola root architecture and cellular mechanisms.

Selecting a Competitive Canola Ideotype

The crop ideotype consists of morphological and physio-

logical traits which contribute to enhanced yield relative to

currently prevalent crop cultivars. Such a plant will make

minimum demand on resources per unit of dry matter

production [48]. The design of crop ideotypes, however,

may likely involve modifications related to the environ-

ment. An evaluation of the competitive ability of different

cereal crops, such as rice, wheat and barley, clearly showed

that no one ideotype was appropriate for every environ-

ment [168]. Different combinations of plant traits could

confer the best competitive advantage depending on

growing season, climatic conditions and competitiveness

with weed species as well as the timing of the competition

[168]. Olofsdotter et al. [119] reported that the best com-

petitive plants also have good biotic and abiotic stress

resistance. Little consideration has been given to the

inclusion of specific plant traits for strong competiveness

with weeds to enhance yield stability. Understanding which

traits are most strongly associated with competitive

advantage of canola is important for developing new cul-

tivars and should include allelopathy in the development of

a canola ideotype.

Allelopathy

The term allelopathy originated from the Greek word

‘‘allelon’’ meaning each other and ‘‘pathos’’ meaning suf-

fering and was first introduced by Austrian plant physiol-

ogist Molisch [109]. The word ‘‘pathos’’ also means

‘‘feeling’’ or ‘‘sensitive’’ and could, therefore, be used to

describe both positive (sympathetic) and negative

(pathetic) interactions [65]. The concept of allelopathy

received further attention by Rice [132]. He defined alle-

lopathy as an important mechanism of plant interference

mediated by the addition of plant-produced secondary

products into the rhizosphere [133]. The organic secondary

products involved in inhibitory or stimulatory effects are

referred to as allelochemicals and these can be released

through volatilisation, leaching from plant leaves, residue

decomposition and active root exudation [36, 133].

Chemicals with allelopathic potential are present in nearly

all plants and their respective tissues [164]. Under the

appropriate environmental conditions, these phytotoxic

compounds may be released into the environment in suf-

ficient quantities to affect the growth of neighbouring

plants [163]. Allelopathy is a significant component of

crop/weed interference and, therefore, a potential weed
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management tool [15, 82, 117]. Allelopathy includes the

use of phytotoxic chemicals released from crop residues as

well as from intact roots of living plants [163, 164].

Allelopathy of Canola Residues

Crop allelopathy evidence initially came from studies of the

use of organic mulches and cover crops to suppress weed

emergence. The presence of growth inhibiting substances in

plant residues was reported by Collinson [39]. The

decomposition products of residues can exert effects on

weed germination and establishment [14, 107, 127, 128,

163] either taken up by the recipient singly, additively or

synergistically [54], adsorbed onto soil colloids [40],

modified or reduced or biochemically modified (including

non-toxic chemicals into toxic chemicals) by soil organisms

[58, 147]. These inhibitory allelopathic effects of residues

of both native and cultivated Brassica spp and their rela-

tives have been reported for weed suppression. Boydston

and Hang [24] reported that residues of soil-incorporated

foliage of canola suppressed plant populations of common

lambsquarters (Chenopodium album), redroot pigweed

(Amaranthus retroflexus), barnyard grass (Echinochloa.

crus-galli), hairy nightshade (Solanum sarrachoides) and

longspine sandbur (Cenchrus longispinus [Hack.] Fern.)

[24]. In Australia, Jones et al. [80] reported that residues of

barley, wheat and canola showed adverse effects on the

survivability, growth and dry matter production of paradox

grass (Phalaris paradoxa), wild oat (A. fatua) and turnip

weed (Rapistrum rugosum). Several subsequent weed sup-

pression studies showed that Brassica cover crops, such as

rapeseed and mustard, have high potential to be used in an

alternative weed management system. The researchers

concluded that an allelopathic mechanism was involved [3,

24, 25, 85, 158]. Tissue damage and then hydrolysis of the

Brassica plants released glucosinolate breakdown products,

including isothiocyanates, oxazolidinethiones, ionic thio-

cyanate (SCN-) and organic cyanides [25, 67]. Most

breakdown products of glucosinolates are volatile, whereas

hydroxamic acids are water-soluble. In the soil, hydroxamic

acids can be transformed into more toxic compounds by

neighbouring weed species [59, 62]. Although the specific

modes of action of these compounds on target weed species

have not been thoroughly investigated, most compounds

showed inhibitory effects on other species through reduced

and delayed germination or inhibition of seedling emer-

gence [115, 116]. The level and the time course of allelo-

chemical release and of other residue-mediated alterations

in the soil are largely dependent on the amount and

decomposability of the residue, on soil biological, chemical

and physical characteristics [34, 96] or on residue man-

agement practises [88]. It is unclear whether canola living

roots release these compounds in exudation or whether

release occurs only during decomposition, and it is worthy

of further investigation.

Biofumigation

Biofumigation is defined as the use of biocidal compounds,

primarily isothiocyanates, used as commercial fumigants,

or released by Brassicaceous plants used as green manure

or rotation crops, for suppression of soil-borne pests and

pathogen [4, 83]. Such compounds have relatively high

vapour pressure and are thoroughly dispersed throughout

the surrounding soil where they may affect soil-borne

fungi, pathogen, insects and nematodes [111]. This finding

has led to an increased interest in the development of

biofumigation strategies, where naturally formed isothio-

cyanates could be used as a control measures. Incorpora-

tion of Brassicaceous plants in order to control pathogens

and nematodes has proven to be effective in several studies

[108, 112]. The use of canola as a break crop to help

control take-all fungus (Gaeumannomyces graminis) in

cereal rotations in Australia is also an example of this

biofumigation effect. However, the inconsistent results in

biofumigation studies (reviewed by Matthiessen and

Kirkegaard) [103] implied that other factors were involved.

The profile of isothiocyanate production varies between

Brassica species [84, 142, 143, 149, 159], between indi-

viduals of the same genotype [53, 84], and even within

different plant tissues of a single individual [57, 104].

Furthermore, it needs to be considered that there are ben-

eficial organisms including biocontrol agents, that are also

affected by glucosinolate breakdown products and their

presence may have consequences for pest control in an

integrated pest management (IPM) agro-ecosystem. The

existence of the biofumigation capability, however, is

demonstrative of the potential of root exudation for crop

management. Their role for weed control remains to be

evaluated fully.

Canola Allelopathy by Intact Roots of Living Plants

Weed suppression via living plant exudation is considered

a promising approach to exploit allelopathy in annual crops

[7, 51, 52, 134]. Belz [15, 16] claimed that weed sup-

pression by crop plant root exudation is a valuable mech-

anism if this trait can be exploited in much the same way as

defence mechanisms against insects or pathogens. The

approach has already been reviewed for major grain crops

including rice [45, 145], wheat [17, 169] and barley [17,

18, 97]. Those reviews showed that the allelopathic ability

of a crop plant to defend itself against weeds was possible

and there was considerable genetic variability to exploit

such mechanism among cultivars. The family Brassicaceae
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is often reported as having allelopathic properties that can

affect establishment and growth of other species by root

exudation [14, 98, 156]. An intercropping study between

wild mustard and broccoli demonstrated that broccoli yield

was reduced by 50 % due to the phytotoxic effect of plant

exudation from wild mustard [79]. In the USA, cultivated

or naturally occurring mustards often formed relatively

pure stands when well established and, in the wild, they can

be successful invaders of native grasslands [14, 163]. In

Turkey, Uremis et al. [156] found that root exudates of the

rapeseed cultivar Westar influenced the root growth of

redroot pigweed (A. retroflexus L.), black nightshade

(Solanum nigrum L.), common purslane (Portulaca oler-

acea L.), cutleaf ground cherry (Physalis angulata L.) and

jungle rice (Echinochloa colonum) more than shoot

growth, whereas other cultivars Jumbuck, Tobin, Lisoune

and Galant showed less allelopathic activity through their

root-secreted chemicals. This suggests that canola plants

are also likely to show allelopathy through root exudation

and raises the prospects of creating elite allelopathic canola

genotypes with improved weed-suppressive capability.

Canola Root Exudates and Phyto-Chemistry

Plant living root hairs and actively growing primary and

secondary roots typically release large quantities of sec-

ondary metabolites (known as root exudates) [19]. This

phenomenon has long been regarded as a passive process

of secreted photosynthetically fixed carbon into the soil [9].

Root exudates or secondary metabolites represent one of

the largest direct inputs of plant chemicals into the rhizo-

sphere and almost certainly root exudates comprise the

major sources of allelochemicals [19]. Stressed plants

secrete particular secondary metabolites for their defensive

activity [6, 162]. For example, Arabidopsis thaliana

(Brassicaceae) secretes a large number of defence metab-

olites when grown alone [6]. However, once a plant

neighbour is identified, the repertoire of metabolites is

reduced but overall their secretion increases significantly

[6]. In addition to the role in plant defence, some metab-

olites have physiological functions by serving as mobile

and toxic nitrogen transport and storage compounds [166,

167]. However, these multiple functions do not compro-

mise the main role of secondary metabolites as chemical

defence and signalling compounds [166].

Exuded compounds are highly species-specific. They

move safely into the environment through a variety of

plant sequestration (e.g. sub-cellular vesicles) and trans-

port mechanisms (e.g. protein embedded) [9, 19, 162].

Allelopathy in Brassica spp. appears to be associated with

the presence of several groups of exudated metabolites

such as phenylpropanoid, flavonoids, isothiocyanates and

glucosinolates [26, 85, 90, 115, 116, 119, 121, 166].

These sulphur-containing compounds are indole deriva-

tives at the C-3 position of the indole ring [44, 123].

Phenylpropanoids have a wide variety of functions

including defence against microbial attack and other

sources of injury [74]. Glucosinolates provide pathogenic

organism defence [106] and can accumulate and modify

to yield a variety of products including isothiocyanates,

thiocyanates and nitriles but this depends on the nature of

glucosinolates and the stress imposed [35, 105]. Choesin

and Boerner [35] measured the direct release of isothio-

cyanate from growing the root of B. napus but they did

not evaluate its effect on weed species.

Research is needed to clarify the type of chemicals

released by intact canola roots and their role in weed

inhibition. Such findings would facilitate investigation of

the biochemistry and metabolomic pathways of these

chemicals in plants in respect of canola allelopathy. It

would also provide opportunities for new weed controlling

cultivars.

Root Exudates and Rhizosphere Communication

The rhizosphere is the narrow region of soil directly

influenced by root secretions and associated soil biota [19,

157]. In this zone, plant root-secreted chemicals can

influence several processes such as resources (e.g. soil

nutrients) and non-resource plant-mediated interaction

[133], microbial communities and their populations [9] and

neighbouring plant species [147]. These influences may

play an important role in communication between other

plants in the rhizosphere [160].

Root-Microbes Communication

Survival of a plant species in a particular rhizosphere

depends on the mechanisms of adaption to interaction with

biotic and abiotic components. The root rhizosphere is

considered the place that provides habitat for plant roots

and microorganisms and is inhabited by a wide range of

microorganisms, including bacteria, fungi, algae, viruses

and protozoa. These microbes may have a profound effect

on allelopathic activity by altering and/or transforming the

amount of allelochemicals [153]. On the other hand, alle-

lochemicals may also influence the microbial community

[71, 87] and these mechanisms can involve both stimula-

tion (by providing nutrient sources) and inhibition (by

interfering with nutrients) [124]. Various soil-borne

organisms are highly sensitive to the Brassica plant-

secreted 2-phenylethyl isothiocyanate, with bacteria being

more tolerant than eukaryotic organisms [150]. In contrast,
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growth of ectomycorrhizal fungi was found to be stimu-

lated by root exudates of various Brassica spp. [172].

Rumberger and Marschner [140, 141] reported that canola

roots released sufficient amounts of 2-phenylethyl isothi-

ocyanate into the soil rhizosphere to have a selective effect

on the bacterial community. Bacterial community compo-

sition was significantly correlated with phenylethyl isothi-

ocyanate concentration and moreover changed with plant

growth stage [140, 141]. However, despite high residence

time of this chemical, Choesin and Boerner [35] found in

their study that this root secretion did not have an inhibi-

tory effect on Medicago sativa L. This suggests that spe-

cific signals might be exchanged between Brassica plants

and microorganisms, although this is not yet clear. It would

be also interesting to know whether the possible allelo-

pathic chemicals described for canola roots act directly

against the neighbouring plants or indirectly through

modifications by soil microorganisms.

Root-Root Communication

Crop plant roots are continually interacting with roots of

neighbouring plant species; and are capable of detecting

and responding in multiple ways [20, 42, 56, 99, 148].

Roots may communicate with other roots with the help of

various secondary metabolites, which are secreted into the

rhizosphere in response to biotic and abiotic stresses.

Several research studies suggest that such a response of

roots to their neighbours is not only explained by nutrients

but also involves non-nutrient causes [8, 9]. Cahill and

McNickle [27] divided these apparent non-nutrient root

responses into three classes: (a) segregation (root growth

away from neighbours), (b) neutral (no specific direction-

ality of root growth) and (c) aggregation (root growth

towards neighbouring roots). The actual sensing of the

neighbour presence might be based on either physical

touching of roots [100] or without physical touching via

chemicals signals released by roots [6, 76]. For chemical

signals, secondary metabolites have been largely credited

with being involved in plant–plant interaction on the

assumption that these compounds tend to be phytotoxic and

persist in the soil [6]. Of course, such compounds could be

hormonal or pseudo-hormonal in their influence on non-

same neighbours. Pierik et al. [124] reported that the high

specificity of root exudates has the potential to transport

such specific signals into the rhizosphere. It has been

reported that the proteins in the root exudates are secreted

differently depending upon the presence and identity of the

neighbouring root [6, 43]. Such canola-neighbour root

interactions have not been elucidated. Establishing these

interactive mechanisms by canola exudates will elucidate

the true complexity of the competitive arena (Fig. 1).

Conclusions

Herbicide-resistant weeds can increase the cost of canola

production and reduce yields. Weeds may become a greater

economic issue, if non-chemical weed management tactics

are ignored. To maintain a sustainable production system

and effectively manage the weed burden, an integrated

weed management program incorporating crop interference

needs to be included in the canola crop production system.

The implementation of a high interference strategy for

canola in the field requires a fuller understanding of canola

competition and allelopathy on weeds. This includes a

greater knowledge of the response of plants to their envi-

ronment and to the stresses created by neighbouring weeds.

Such elucidation will help to understand which traits matter

under which conditions. Understanding the regulatory

mechanisms that enable an individual canola plant to

optimise these traits is a key to understanding canola-weed

competition. The need for further experimentation to esti-

mate accurately the relative ranking of current canola

varieties for competitive ability at regional level is desir-

able. Evidence thus far suggests that some varieties are

consistently more competitive than others, but considerable

environmental variation exists, making reliable recom-

mendations for farmers difficult. Growing vigorous crops

by the many means possible is the challenge [94].

Changing farming practises, such as the move from con-

ventional cultivation to reduced tillage and stubble reten-

tion systems, may influence weed growth and population

dynamics [30]. More research is needed to determine the

Fig. 1 Canola-weed below-ground interactions (resources and non-

resources based) involve various signals, such as variations in nutrient

concentrations, soluble root exudates and the activities of soil

microbes
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impact of variety competitive ability on weed seed pro-

duction for population dynamics modelling, particularly

with respect to closely related weed species such as wild

radish and wild mustard, to assist in predicting the long-

term benefits of integrated weed management in a canola

production system.

Communication between canola shoots and the roots is

also important to ensure the shoot is adequately receiving

below-ground resources for enhancing above-ground

competition. Potential already seems to exist for breeding

enhanced canola competitive ability through greater early

vigour and below-ground root characteristics. Competi-

tiveness of canola can be increased by breeding for suitable

plant traits and by manipulation of the management system

but the benefits and costs of crop competitive ability need

to be evaluated. The competitive ability of a specific

genotype in a particular environment may be much lower

in another environment.

Increasingly, studies reveal that non-resources crop

interference such as allelopathy plays an important role in

some crop species. This opens the possibility to explore

and utilise canola allelopathy. Below-ground plant–plant

competition is more complex than above-ground and

interdisciplinary research is needed to enable thorough

understanding of canola allelopathy.

The role of chemical signals between canola and other

organism in the rhizosphere needs further study. The same

chemical signal may deter one organism while attracting

another [7]. Plants rarely secrete just one substance and so

there may be a blend of potential signals from molecules

which are highly selective [49, 124]. In addition, ecological

knowledge indicates that below-ground interactions could

potentially be transformed to above-ground responses in

plants. Integration of the different technology platforms are

needed to understand the complex network of canola plant

responses to various external factors including regulation

via various signalling pathways.

In order to evaluate to what extent canola contributes in

the crop-weed interference mechanism, the first task is to

evaluate the existence of genetic variation of allelopathy in

canola under laboratory conditions. Crop laboratory bio-

assays can demonstrate the potential chemical interference

among crop cultivars within a limited time frame. Inter-

estingly, much effort has been put into the development of

sound screening protocols and most existing screening

techniques are reliable, fast, cheap and space limited.

Laboratory bioassays are also suitable for understanding

different aspects of allelopathy (e.g. release of chemicals

from the donor plant, fate and persistence in soil, growth

and uptake of allelochemicals) [23, 60] but it is also

important to know the fate of these chemical compounds in

the soil and their interaction with abiotic and biotic influ-

ences. The outcomes of this research should address the

sources of variation in allelopathy between cultivars. The

bioactivity of the chemicals released by intact roots,

however, may be compromised by an allelopathic species

and could be rendered unavailable by the combined inter-

actions of soil texture, organic matter, temperature and soil

microbes [9, 64, 151]. The exudation of these compounds

will determine the allelopathic effect. In the field, allelo-

pathic effects are difficult to measure [120] and depen-

dence on parallel in vitro experiments is required. Seal

et al. [146] found that laboratory screened allelopathic rice

cultivars performed well in the field and proved to be active

against multiple weed species. More recently, field testing

has been expanded from rice to wheat and barley.

Discovery of the allelochemicals involved in interfer-

ence is essential by both traditional and advanced meta-

bolomics methods (with HPLC, IR, GC/LC MS-QTOF and

NMR etc.). Metabolomics is an important tool for an

unbiased view of metabolites with combined principal

components analysis. If canola cultivars produce and

release sufficient amounts of herbicidal compounds, then

the biochemistry of the exudation process needs to be

understood.

Study of the genetic control of the allelopathic traits is

important for the development of competitive canola

varieties. In a study of allelopathic activity of population of

400 F2 rice plants on duck salad (Heteranthera limosa),

Dilday et al. [45] found that rice allelopathic activity was

normally distributed, suggesting that the rice allelopathic

trait was quantitatively inherited. The genetic study of

allelopathy is still in its infancy but it does represent a

promising new frontier for future research. Modern meth-

odologies in molecular genetics and biochemistry have

made this type of research more rapid and more direct than

in the past. To develop high-yielding commercial canola

cultivars with elevated allelopathic activity without sacri-

ficing other agronomic traits, breeders’ time and resources

should be allocated after confirmation of significant crop

allelopathic performance in the field. Allelopathy alone is

unlikely to control all weeds but its enhancement will be a

potential contributor for a sustainable integrated weed

management system.
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