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Abstract Starch, an important carbohydrate with wide-

spread applications in human foods, animal feeds, and

many industrial products, is synthesized by plants by the

action of a complex system involving many enzymes. The

differing activities of these enzymes contribute to varia-

tions in starch structure among different plant species,

botanical organs, and genetic backgrounds, and thus affect

the physicochemical properties and end-use functions of

starch. The demand for starches with particular functional

properties is increasing, but the ability to produce novel

starches is still limited. Starches with specific properties

can potentially be produced by biotechnical modification of

the starch biosynthetic pathway; however, this requires

further understanding of the starch biosynthesis–structure–

properties relationships. This review summarizes the state

of the art in the understanding of these causal relationships:

the roles of the main starch-synthesizing enzymes on starch

structure, hierarchical structure of starch, advanced

molecular structure characterization methods, and impact

of starch structure on some functional properties. A better

understanding of these relationships among starch biosyn-

thesis, structure, and properties provides direction for

genetic modification and targeted breeding programs to

produce starch with desired characteristics.
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Introduction

Starch is one of the most abundant biopolymers in nature

and is a main energy source component in the human diet

and animal feed. It serves an energy storage function in

plants and is synthesized by photosynthesis. Starch is also

used for many industrial applications: papermaking, per-

sonal hygiene, renewable packaging, etc. In higher plants,

starch granules are mainly found in seeds, roots, and tubers

as well as in stems, leaves, fruits, and pollen.

Starch is a complex branched polymer wherein the D-

glucose units are linked by a-(1?4) linkages and the branch

points are a-(1?6) linkages (Fig. 1). It is composed of two

main components. Amylose is of moderate molecular

weight (105–106) with a relatively small number of long

chain branches, and amylopectin is a highly branched

molecule with molecular weight 107–9 and short branches.

Starch structure varies among plant species, botanical

organs, and genetic variations, as well as environmental

effects. These structural differences are caused by altera-

tions in the biosynthetic pathway, involving the action of

multiple enzymes, including ADP-glucose pyrophosphor-

ylase (AGPase), starch synthases (SSs), starch branching

enzyme (SBE), and debranching enzyme (DBE). Various

isoforms have been identified for each group of enzymes,

and each isoform plays a distinct role in starch biosynthesis.

Studies on genetically modified starch have been carried out

to understand the function of each enzyme on starch bio-

synthesis [18, 53, 69]; however, the starch biosynthetic

pathway is not yet fully understood, due to its complexity

involving coordinated actions of multiple enzymes.
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Effects of starch biosynthetic enzymes on starch

properties have been studied, and various relationships

between starch biosynthesis and properties have been

proposed [93, 102]; however, these relationships are

indirect, as environmental factors including water, tem-

perature, and light are also involved in starch biosynthe-

sis. Understanding the fine structures of starch has the

potential to give in-depth information on starch biosyn-

thesis [31, 202, 204]. In addition, differences in starch

structure contribute to alterations in starch properties that

determine applications.

A better understanding of the relationships among the

biosynthetic pathway, structure, and functional properties

of starch will provide guidelines for plant breeders and

geneticists to produce starch with targeted properties.

Current knowledge about the role of starch-synthesizing

enzymes is summarized, followed by an overview of

starch hierarchical structure and molecular structure

characterization methods. An advanced mathematical

model that helps elucidate the enzymatic processes in

starch biosynthesis, and enables effective quantification

of some structural data, is briefly reviewed. We also

discuss some of the main functional properties of starch,

with an emphasis on the impact of starch structure on

these properties.

Starch Biosynthesis

Starch is synthesized in a granular form in special organ-

elles, the plastids. In chloroplasts, a temporary storage form

is produced during photosynthesis, whereas starch for long-

term storage is produced in amyloplasts [142]. Starch

biosynthesis is a complex pathway controlled by at least

four different types of enzymes: AGPase, SSs, SBE, and

DBE. SSs can be further divided into soluble SS and

granule-bound starch synthase (GBSS) (shown in Fig. 2)

[5, 75, 155, 156].

The biosynthesis of amylose is mostly controlled by

GBSS [111, 146] and to a lesser extent SBE, while that of

amylopectin is more complex, involving the combined

actions of SS, SBE, and DBE. Furthermore, the presence of

the multiple isoforms of these enzymes, with each having

pleiotropic effects on the other starch-synthesizing

enzymes, complicates the starch biosynthetic pathway.

ADP-Glucose Pyrophosphorylase

The first key regulatory step in starch biosynthesis is the

formation of adenosine 50-diphosphate glucose (ADP-glu-

cose), which is the soluble precursor and substrate for SS

[63, 144]. ADP glucose is synthesized from glucose-1-

phosphate (Glu1P) by AGPase. The reaction scheme is:

Glu1Pþ ATP� ADP-glucoseþ PPi:

In in vivo systems, the plastidial reaction is shifted in

favor of ADP-glucose synthesis by converting inorganic

pyrophosphate (PPi) into inorganic phosphate (Pi) [172].

As the first rate-limiting step in starch biosynthesis, much

attention has been paid to modulating the activity of AG-

Pase to increase starch yield in plants. This can be used to

compensate for the yield loss associated with genotypes

used to produce novel functional starches.

Both plastidial and cytosolic isoforms of AGPase have

been found in cereal endosperms, meaning that AGPase

activity is located in both the plastids and cytosol of cereal

Fig. 1 a-(1?4) and a-(1?6) linkages in starch molecules

Fig. 2 Overview of starch

biosynthesis pathway. Main

enzymes involved in starch

biosynthesis are ADP-glucose

pyrophosphorylase (AGPase),

granule-bound starch synthase

(GBSS), soluble starch synthase

(SS), starch branching enzyme

(SBE), and debranching enzyme

(DBE), with the presence of

multiple isoforms of each

enzyme
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endosperms [16, 70, 89]. In the developing endosperms of

maize, rice, and barley, most AGPase activity is in the

cytosol with just a small portion of the total AGPase

activity in the plastids [36, 153, 175].

AGPase is heterotetrameric in higher plants, consisting

of two large (AGP-L) and two small (AGP-S) subunits

encoded by Shrunken-2 and Brittle-2 genes, respectively

[138, 139]. AGPase subunits are encoded by multiple

genes. For example, in rice AGP-L is encoded by four

genes: OsAGPL1, OsAGPL2, OsAGPL2, and OsAGPL4,

while AGP-S is encoded by two genes: OsAGPS1 and

OsAGPS2 [1]. These genes express differently in different

botanical organs, which means that the composition of

AGPase subunits may vary in different parts of the same

plant [129, 187]. The differential expression of subunits in

different organs results in varying degrees of sensitivity of

AGPase to allosteric effectors. The catalytic activities of

AGPase in higher plants are inhibited by Pi and increased

by 3-phosphoglyceric acid (3-PGA) [57]. The ratio of these

two allosteric effectors plays a key role in controlling

starch biosynthesis. Studies on modified AGPase in maize

and potato provide evidence for this phenomenon [154,

162]. In both studies, AGPase modification led to a reduced

sensitivity to Pi inhibition, resulting in an enhanced starch

yield by either increasing seed size or starch content.

Starch Synthases

Starch synthase catalyzes the transfer of a glucose unit

from ADP glucose to the nonreducing end of a chain of

amylose or amylopectin through the formation of a new a-

(1?4) glycosidic linkage. GBSS is responsible for amy-

lose biosynthesis and is found completely within the

granule matrix. SSs are mostly responsible for amylopectin

biosynthesis; their distribution between granular and stro-

mal fractions can vary among species, tissues, and devel-

opmental stages [4].

Granule-Bound Starch Synthase

There are two isoforms of GBSS, GBSSI, and GBSSII [38,

111, 146]. GBSSI, which is encoded by the waxy locus in

cereals [146], is mostly confined to storage tissues, whereas

GBSSII is responsible for amylose biosynthesis of transient

starch in leaves and other non-storage tissues [49, 131,

189].

GBSSI elongates a growing glucan chain progressively,

meaning that it does not dissociate from the glucan chain

after the addition of each glucose units, but can remain

associated with it to add further glucose units [37, 101].

Inhibition of GBSSI activity leads to the loss of amylose in

starch of storage tissues, creating a waxy starch [99, 188].

In addition to its role in amylose biosynthesis, GBSSI is

also involved in amylopectin biosynthesis, especially in

forming the extra-long chain fraction [3, 35, 69]. The

involvement of GBSSI in the synthesis of extra-long chains

of amylopectin is supported by the fact that the reduction of

GBSSI activity results in a decrease or loss of extra-long

chains of amylopectin [78, 103, 116, 206].

Different opinions have been expressed regarding the

impact of GBSS on starch crystalline structure. Evidence

obtained in vitro [183, 195] and in vivo [12, 54, 116]

suggests that GBSSI participates in the building of semi-

crystalline polysaccharides. For instance, in Chlamydo-

monas, GBSSI activity leads to the formation of a low but

significant number of B-type crystallites [195]. However,

Kozlov et al. [106] suggest that GBSS has no impact on the

size of amylopectin clusters, the thickness of crystalline

lamellae, or the structure of amylopectin defects.

In addition, starch granule shape and morphology are

altered by GBSS [54, 195]. One study of potato starch has

shown that in the SSIII antisense background, GBSS can

have a profound influence on the structure of tuber gran-

ules, resulting in fissuring of the starch granules [54].

Soluble Starch Synthase

All known SS classes are found in the plastid stroma, and

are believed to be primarily responsible for amylopectin

biosynthesis [101]. Four classes of SS have been identified:

SSI, SSII, SSIII, and SSIV [4, 128, 177]. There is evidence

that each class has a specific role in the biosynthesis of

starch, and that the activity of each class cannot be fully

complemented by one or more of the remaining classes

[113]. These enzyme classes appear to have different rel-

ative activities, depending on plant species and tissues,

even though all appear to be ubiquitous in starch-synthe-

sizing cells [157]. For instance, the activity of SSI is higher

than that of SSIII in developing rice endosperms [51],

whereas SSII and SSIII have higher activities in potato

tubers [118] and pea embryos [178] than does SSI.

SSI probably plays an important role in starch biosyn-

thesis in plants and has no known isoforms [96]. SSI is

primarily responsible for synthesizing the short chains of

amylopectin [34, 51, 64], with a preference for the shortest

amylopectin chains as substrates [28]. Further research

confirms that SSI generates short A and B1 chains (A

chains carry no side branches, while B1 chains carry one or

more chains without extending beyond one cluster [77,

141]), after which SSI becomes tightly bound to longer

amylopectin chains and is trapped in the starch granules.

Thus, further glucan chain elongation is most likely to be

catalyzed by other SS enzymes [89].

The specific role of SSI in the elongation of short

branches has been established in vitro as well as in vivo in
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mutants of Arabidopsis [34] and rice [51]. The amylopectin

synthesized in SSI-deficient Arabidopsis leaves has a

diminished proportion of branches with a degree of poly-

merization (DP) 8–12 and an increased proportion of

branches with DP 17–20 [34]. Similar results were reported

for the amylopectin in the endosperm of an SSI-deficient

rice mutant. This study showed that the proportion of

branches with DP 8–12 were decreased, whereas branches

with DP 6–7 and DP 16–19 were increased, implying that

SSI generates branches of DP 8–12 from short branches of

DP 6–7, and some of the available branches of DP 8–12 are

converted into longer chains by other SS enzymes (prob-

ably SSII and/or SSIII). However, the complete absence of

SSI has no effect on the size and shape of seeds and starch

granules or the crystallinity of endosperm starch, suggest-

ing that other SS isoforms are capable of partly compen-

sating for the absence of SSI function [51]. Kossmann et al.

[104] reported that the reduction of potato SSI in antisense

plants did not lead to detectable changes in starch structure.

They suggested that this lack of change was because potato

SSI was predominantly expressed in leaves and only rep-

resented a minor activity in potato tubers, where SSII and

SSIII were the major isoforms expressed.

SSII plays an essential role in the synthesis of interme-

diate-length branches of amylopectin in cereal endosperms.

Two classes of SSII genes are present in monocots: SSIIa

and SSIIb. The role SSIIb plays in starch biosynthesis is

unknown, as no mutants have been identified, whereas

genes coding for SSIIa in storage starch tissues have been

identified by mutations in multiple species, including

maize, rice, wheat, barley, and pea [20, 30, 181, 205, 212].

SSIIa predominates in cereal endosperms, while SSIIb is

mostly confined to photosynthetic tissues [172]. Loss of

SSIIa activity results in shorter amylopectin branch chain

lengths, lower starch content, reduced crystallinity, and

altered granule morphology [30, 121, 180]. In contrast, loss

of SSII in potato causes no reduction in the starch content

[42]. SSIIa appears to play a specific role in the synthesis of

the intermediate-size branches with DP 12–24 by elongat-

ing short branches [30, 121, 181]; as a result, SSIIa-defi-

cient mutants in rice show a larger proportion of short

amylopectin branches (A and B1 chains) and a smaller

proportion of medium-size amylopectin branches, conse-

quently leading to a lower gelatinization temperature of

starch granules [181]. It has been proposed that SSIIa is

responsible for the natural variation in the gelatinization

temperature of starch. Umemoto et al. [182] reported three

single nucleotide polymorphisms (SNPs) causing amino

acid substitution of the gene that codes for SSIIa of rice, two

of which are critical to the chain length distribution (CLD)

of amylopectin and gelatinization properties of starch.

Waters et al. [194] later confirmed the role of the two SNPs,

and reported another functional SNP in exon 8. This

additional SNP differentiates the tested rice samples into

two groups with low and high gelatinization temperatures.

The main soluble SS isoform in tubers is SSIII, which

after SSI has the second-most abundant measurable activity

in maize and rice endosperms [21, 51]. Two genes are

responsible for the expression of SSIII in the endosperms

and leaves of rice [39, 76]. A transgenic reduction of SSIII

leads to a loss of 80 % of total SS activities in potato tubers

and produces fissures on starch granules [42]. Loss of SSIII

activity leads to alterations in starch structure and physical

properties. Starches from SSIII-deficient maize and rice

mutants show a decrease in long branches (DP C 30) as

well as altered crystallinity and granule morphology [52]. It

has been proposed that SSIII is responsible for the syn-

thesis of longer amylopectin chains extending between

clusters [89]. In addition, loss of SSIII in the maize

endosperm may also have pleiotropic effects on other

starch-synthesizing enzymes, causing decreased activity of

SBEIIa [11] and an increase in other SS activities [21].

Little is known regarding the contribution of SSIV in

starch biosynthesis. It has been reported that two isoforms

of SSIV exist in plants: SSIVa and SSIVb, which are

expressed in the endosperm and leaves, respectively [39,

112, 158]. Recently, the role for the SSIV class has been

primarily shown to be in starch granule initiation in

Arabidopsis, although it may also be involved in producing

short branches [145]. However, no SSIV-deficient mutant

has yet been characterized in cereal plants, and Arabidopsis

SSIV are the only mutants so far identified [96, 145]. More

identification and characterization of SSIV-deficient

mutants is needed to determine the exact role of SSIV

isoforms in starch biosynthesis.

In general, the inhibition of predominantly SS isoforms

either singly or in combination results in only minor

changes to the amylose content, although the branch CLD

of amylopectin is altered dramatically [99]. Each class of

SS genes appears to play a distinct role in the synthesis of

amylopectin: SSI, SSIIa, and SSIII specifically contribute

to synthesis of short chains, intermediate chains, and long

B1 and B2 chains of amylopectin, respectively [128].

Starch Branching Enzymes

Starch branching enzyme introduces new branches on

starch molecules, mainly amylopectin, by cleaving the

internal a-(1?4) glycosidic linkage of a branch chain and

connecting the reducing ends of the released chains to the

C6 hydroxyl groups, creating a new a-(1?6) glycosidic

linkage. SBE activity is a function of multiple isoforms,

grouped into subcategories SBEI and SBEII, which have

been reported to differ in terms of the length of the glucan

chain transferred from in vitro studies and their substrate

specificities. SBEI isoforms show higher rates of activity

18 Springer Science Reviews (2014) 2:15–33
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on amylose and preferentially transfer longer branches,

while SBEII isoforms transfer shorter branches and show a

higher activity on amylopectin [65, 66, 125, 147, 169, 173].

In some plants, the SBEII family can be further divided

into SBEIIa and SBEIIb isoforms, where SBEIIb is usually

specifically expressed in endosperm, and SBEIIa is present

in almost every tissue. The activity of SBEIIb is higher on

the amylopectin of maize than that of SBEIIa, and there are

also differences in the optimum temperatures of SBEIIa

and SBEIIb [65, 169]. It has been proposed that the specific

function of SBEIIa might be unimportant, because no

significant differences in the amylopectin structure and

physicochemical properties of starch granules are found

between the endosperms of wild type and SBEIIa-deficient

mutants [128, 149]. The role of SBEIIa is suggested to

support, at least partially, the functions of SBEI and

SBEIIb. Although the activity of SBEIIa accounts for only

about 20 % of the total SBE activity in the rice endosperm,

it plays the predominant part in leaves, in which SBEIIb is

not expressed [133].

It has been reported that the minimum chain length for

the branching actions by rice and potato SBEI are DP *50

and 40, respectively. SBEIIa and SBEIIb, however, are

considered to be ineffective on synthetic amylose with a

DP smaller than *100, whereas they can attack ae-amy-

lopectin (the amylopectin isolated from an SBEIIb-defi-

cient rice mutant [135]) with the most abundant branches

of DP around 15 [133]. SBEII isoforms form shorter chains

of DP 3–12, while SBEI isoforms tend to produce short to

intermediate chains ranging from DP 6 to above 30 [66,

169]. Similar results were also reported by several other

groups [67, 120, 137, 147]. Recently, it has been reported

that SBEI forms not only short chains of DP 6–15 with

double peaks at DP 11 and DP 6 but also intermediate-size

branches of DP 26–39, implying that SBEI can attack the

inner region of long branches of DP C 41 to produce the

intermediate-size branches. On the other hand, the inner

branches cannot be cleaved by SBEIIb, although SBEIIa

can only partly act on the inner branches [133]. SBE only

creates branches greater than a maximum DP (denoted by

Xmin) and the branches remaining after the branching action

of SBE must be more than some minimum DP (denoted by

X0). This means SBE only acts on chains of

DP C Xmin ? X0 [202, 204]. The values of Xmin and X0

differ between species but they are typically 10–11 [133]

and 6 [134], respectively.

Starch Debranching Enzymes

Debranching enzyme refers to the group of enzymes that

hydrolyze (debranch) the a-(1?6) glycosidic linkages of

polyglucans. They probably have an important role in

trimming excess branches during amylopectin biosynthesis

[126, 128]. Two classes of DBE have been identified in

plants: the isoamylase-type (ISA) and the pullulanase-type

(PUL, also known as limit dextrinases) [41]. ISA, of which

at least three forms exist (ISA-1, ISA-2, and ISA-3), can

debranch the branches of amylopectin and phytoglycogen;

whereas PUL can act on the branches of pullulan and

amylopectin, but not on those of phytoglycogen [128].

In the absence of ISA activities, the highly ordered

structure of amylopectin is replaced by phytoglycogen or

modified amylopectin [128]. Different levels of reduction

in ISA activity, such as in sugary1 (su1) maize, barley, and

rice mutants, result in a range of endosperm phenotypes,

from a mild phenotype such as sugary amylopectin with

more short chains to a more severe phenotype of phyto-

glycogen involving highly and randomly branched poly-

glucans [15, 88, 107, 130]. As the result of the mutations,

the physicochemical properties of starch in the grains are

greatly altered. Starch from anti-ISA1 mutant shows lower

viscosity and gelatinization temperature, reduced and less

stable crystalline structure, and altered granule structure

[50, 201]. In addition, in order to examine the role of ISA1

in amylopectin biosynthesis in plants, Kubo et al. [108]

introduced a genomic DNA fragment from a wheat ISA

gene into ISA1-deficient rice mutants, and found that

phytoglycogen synthesis was substantially replaced by

amylopectin synthesis.

In contrast to ISA1-deficient mutants, the absence of

ISA2 in a maize mutant leads to normal or near-normal

kernels [109]. However, this enzyme has been reported to

be involved in starch biosynthesis in leaves [33, 196] and

potato tuber [17], and together with ISA1, they are required

for activity of the ISA heteromeric enzyme [82]. The

function of ISA3 in storage starch biosynthesis remains

unclear, as no mutants are known to exist, while it appears

to be necessary for starch degradation at night in Arabi-

dopsis leaves [196].

Compared with ISA, the function of PUL is less

understood. PUL is believed to be involved in the degra-

dation of starch during kernel germination. However,

substantial PUL activity has been detected in developing

rice, maize, pea, and barley endosperms [6, 14, 127, 216].

In the maize and pea endosperm, PUL has a bifunctional

role, assisting in both starch biosynthesis and degradation

[40, 216]. Although a PUL-deficient maize mutant shows

no significant alterations in the structure and composition

of the endosperm starch when compared with the wild type,

a deficiency of both ISA1 and PUL leads to a significant

accumulation of phytoglycogen in the endosperm—sug-

gesting that PUL can partially compensate for the loss of

ISA activity for the starch biosynthesis in cereal endo-

sperms [40].

Two models have been proposed for the roles of DBE in

amylopectin biosynthesis. One is the ‘‘glucan-trimming
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model,’’ which is a discontinuous cycle of events involving

elongation by SS, branching by SBE, selective debranching

by DBE, and the formation of crystalline lamellae [126].

This model proposes that inappropriately positioned bran-

ches are removed from a precursor (termed pre-amylo-

pectin) by DBE; the debranched structure then favors the

formation of parallel double helices, leading to polysac-

charide aggregation into an insoluble granular structure [5,

126]. Widely spaced branches are more likely to be cleaved

by DBE than those located closer, resulting in the asym-

metrical distribution of unbranched and branched areas

which are required for the clusters of amylopectin branches

[126]. The other model proposes that the function of DBE

in starch biosynthesis is in a ‘‘clearing’’ role. It is assumed

in this model that DBE is not directly involved in the

biosynthesis of amylopectin; instead, it prevents the for-

mation of phytoglycogen by removing soluble glucans,

which are the substrates for the amylopectin biosynthetic

enzymes, from the stroma. Being distinct from the ‘‘glu-

can-trimming model,’’ it is proposed in this model that

phytoglycogen is a separate soluble product synthesized in

the stroma rather than an intermediate of amylopectin

biosynthesis [172, 210].

Other Starch Synthesis-Related Enzymes

In addition to the enzymes described above, it is likely

that some other enzymes are also involved in the syn-

thesis of starch. For instance, there are other enzymes

involved in starch degradation such as amylase, starch

phosphorylase, and disproportionation enzyme (e.g., D-

enzymes). It is known that starch is degraded in the

amyloplasts of cereal endosperms and in the chloroplasts

of leaves; however, the roles of these degradative

enzymes in starch biosynthesis, particularly in cereal

endosperms, are largely unknown due to the difficulty of

independently manipulating the levels of their expression

in a controlled manner [211].

Coordination of Enzymes

The core enzymes described above play distinct roles in

starch biosynthesis and might function separately or inde-

pendently; however, starch biosynthesis is more likely to

be the result of the coordinated actions of multiple

enzymes. Therefore, to fully understand starch biosynthe-

sis, the interactions between starch-synthesizing enzymes

need to be assessed.

The absence of SBEIIb in the rice endosperm leads to a

drop in SSI activity [135]. A study of a maize mutant

showed that the loss of DBE isoforms reduced SBEIIa

activity, while deficiency in ISA activity was partly com-

pensated by PUL [40]. In Arabidopsis leaves, the activity

of ISA1 can be partially fulfilled by ISA3 for starch bio-

synthesis [197]. It has been proposed that the coordination

of SS, SBE, and DBE enzymes is accomplished by phys-

ical association of these proteins in a complex or com-

plexes within the amyloplasts [4].

Direct evidence from biochemical analysis of plastid

extracts has proven the existence of protein–protein inter-

actions between starch-synthesizing enzymes [73, 173,

174]. Multienzyme complexes have been identified in

wheat and maize endosperms. These complexes contain

multiple enzymes including SS and SBE isoforms as well

as some previously unknown enzymes [73]. A study of the

amyloplasts in wheat endosperm has shown the existence

of enzyme complexes, and suggests that the formation of

these complexes is dependent on the phosphorylation sta-

tus. Protein phosphorylation modifies the activities of SBE

isoforms. Conversely, dephosphorylation of complex

components by the addition of alkaline phosphatase can

result in the disassociation of enzyme complexes [173].

Complexes found in cereal endosperms often contain SSIII

that has a coiled-coil protein domain, which is thought to

be responsible for protein–protein interactions [73, 105].

Apart from starch-synthesizing enzymes, some other

proteins such as pyruvate orthophosphate dikinase and

sucrose synthase have been detected in the complexes and

may have a previously unknown role in starch biosynthesis

[73]. This reveals that specific enzymes from apparently

distinct metabolic pathways interact with starch-synthe-

sizing enzymes, suggesting potential means of coordinating

and regulating carbon metabolism during grain filling.

The formation of protein complexes between these

enzymes is not fully understood, but it is believed that such

functional associations can improve the efficiency of starch

biosynthesis, as the product of one reaction becomes the

substrate for another within the complex. The formation of

enzyme complexes may directly alter the kinetic properties

of individual components [172].

Starch Structure

Starch has complex structures, which can be described over

several levels of organization (Fig. 3), ranging in scale

from nm to mm [7, 59]. The first structural level is the

individual linear branches of starch molecules linked by a-

(1?4) glycosidic linkages. Individual branches are joined

together by a-(1?6) glycosidic linkages at branching

points to form either amylose molecules with few long

branches, or the hyperbranched amylopectin molecules

with a vast number of short branches; this represents the

second level of structure. Level three is the cluster of

double helices formed by the branches of amylopectin in

native starch, arranged into alternating layers of crystalline

20 Springer Science Reviews (2014) 2:15–33

123



and amorphous lamellae (level four). These lamellae

cumulatively form semicrystalline and amorphous shells or

growth rings, which make up a granule (level five).

Molecular Structure

Both amylose and amylopectin have broad size and molar

mass distributions. The CLD of amylose, the content of

which is around 15–35 % in normal starches, ranges from

DP 200 to 10,000 [79, 165, 167, 168, 193]. Some amylose

molecules, particularly those of large molecular weight,

may have up to ten or more long branches [78].

Amylopectin branches can be divided into three dis-

tinct classes: A, B, and C chains (Fig. 4). Those without

attached branches are A chains, connected through a-

(1?6) glycosidic linkages to the rest of the molecule. B

chains carry one or several other chains (A and/or B

branches). Each amylopectin molecule contains a single

C chain, which carries the sole reducing end group

[141]. B chains confined in just one cluster are termed

B1 chains, while chains spanning two, three, and four

clusters are classified as B2, B3, and B4 chains, respec-

tively [77].

Crystalline Structure

It is generally agreed that all except the shortest branches

of amylopectin are organized into double helices, most of

which then form crystalline lamellae. The branching points

of amylopectin are mostly located in the amorphous

lamellae, giving a semicrystalline structure to starch

granules. Amylose is normally in an amorphous confor-

mation in starch granules, and has been proven to be

intertwined with amylopectin in both crystalline and

amorphous lamellae. Small-angle X-ray scattering (SAXS)

shows that amylopectin molecules exhibit similar repeat

distance for crystalline and amorphous lamellae, which is

*9 nm, regardless of their botanical origins [190, 191].

However, there is a significant distribution of this *9 nm

spacing in different varieties [200]. The amount of crys-

talline order in starch granules is generally lower than the

amount of double helical order, meaning that not all double

helices are involved in forming starch crystallites [29].

X-ray diffraction (XRD) shows that starch granules can

be divided into three polymorphs: A-, B-, and C-types.

Amylopectin molecules in the A-type polymorphic star-

ches, such as most cereal, tapioca, and amaranth starches,

have a large number of short (A and B1) branches; whereas

the B-type polymorphic starches, such as potato and high-

amylose starches, have comparatively fewer short branches

but more long branches (B2 and longer branches) [78].

C-type polymorphic starch, such as some legume, yam,

sweet potato, and lotus root starches, contains a mixture of

the A- and B-type polymorphs. The differences between

the A- and B-type polymorphic crystalline structures relate

to the arrangement of the double helices and the relative

amount of water in one unit cell. A-type polymorphic

starch has monoclinic unit cells formed by the orthogonal

packing of double helices with a small amount of tightly

bound structural water [85]. In one unit cell, twelve

Fig. 3 The complex

hierarchical structure of starch

Fig. 4 Cluster model of amylopectin structure
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glucopyranose units are located in two left-handed double

helices packed in a parallel fashion, and four water mole-

cules are located between the helices in each unit cell.

B-type polymorphic starch is formed by a more open

hexagonal packing of the double helices, with 36 water

molecules per unit cell, some of which are located in the

channel located in the center of the hexagonal packing [10,

84]. Amylopectin branches with different lengths differ in

their preference to form a particular crystalline type. It has

been proposed that chains of DP \ 10 do not crystallize,

chains with a DP 10-12 tend to form an A-type crystalline

structure, and chains of DP [ 12 tend to form B-type

crystalline structure [72].

Witt et al. [200] recently reported that the crystalline–

amorphous lamellar (crystalline) structure of starch was

related to the CLD (molecular structure) of starch. The

proportion of short amylopectin branches is negatively

correlated to the repeat distance and width distribution of

the crystalline–amorphous lamellae, whereas intermediate

and long amylopectin branches are positively correlated to

the repeat distance and width distribution of the crystal-

line–amorphous lamellae.

The presence of double helices causes the starch granule

to be birefringent; this can be observed using light

microscopy with cross polarizers. The interference pattern

observed takes the form of a Maltese cross which indicates

that there is an orderly arrangement of the crystalline areas

within the granule [192].

Granular Structure

Starch granules of different botanical species and different

organs display different shapes and sizes [92], which can

be easily identified using light or scanning electron

microscopy (SEM). Starch granules display spherical,

oval, disk, polygonal, elongated, kidney, and lobe shapes,

with diameters varying from submicron to more than

100 lm [92]. Normal and waxy maize starches are

spherical and polygonal in shape. Potato starch has both

oval and spherical shapes. Almost all legume starches

have a characteristic bean-shaped indentation on their

granules [90]. Wheat, barley, rye, and triticale starches

display bimodal granule size distributions consisting of

disk-shaped, large A-granules and small spherical

B-granules. The number of the A-granules is always less

than that of the B-granules, but the A-granules represent

the major mass of the starch [2]. Rice and oat starches

exist as compound granules, which are defined as multiple

granules being synthesized within a single amyloplast

[95]. The compound starch granules are packed together

tightly and develop into irregular polygonal shapes. Leaf

starches have small, flattened granules with submicron

diameters [209].

Pores or pinholes can be observed by SEM on the sur-

faces of some starch granules. These pores or pinholes tend

to occur in clusters and are more prevalent on spherical

granules of the floury endosperm [45, 81]. Their distribution

appears to be random, with varied numbers per granule.

Further studies showed that these pores are openings to

channels in the starch granules connecting an internal cavity

from the hilum to the external surface [46], and these

channels and cavities are filled with amorphous material

[56]. These features may either be the site of initial enzy-

matic attack, or openings that allow enzymes direct access

to the granule interior (hilum), or both [45]. They may also

be the product of endogenous enzyme hydrolysis, as the

majority of pores are close to the hilum [94].

The internal structure of a starch granule is not

homogenous. The outer layer of starch granules seems to

differ from the inner portion [47]. Furthermore, the surface

shell of starch granules remains insoluble after cooking

under low shear conditions, the remnant commonly being

referred to as granule ghosts [44], showing the different

compositions of the periphery of the starch granules to the

inner part of the granules.

Starch Molecular Structure Characterization

Starch molecular structure can be characterized by a range of

methods, principally size-exclusion chromatography (SEC,

also called gel-permeation chromatography, GPC), fluoro-

phore-assisted carbohydrate electrophoresis (FACE), ‘‘batch’’

multiple-angle laser light scattering (MALLS), and NMR.

Size-Exclusion Chromatography

This subject has recently been extensively reviewed [59–

61] so is only briefly discussed here. SEC separates by

molecular size: the hydrodynamic volume Vh or the cor-

responding radius Rh. For a complex branched polymer

such as starch, there is no relation between Rh and

molecular weight; for a linear polymer, such as debranched

starch, there is a unique relationship. Three types of SEC

detectors are commonly used: differential refractive index

(DRI), which gives the weight distribution of molecules as

functions of Rh; viscometric, which gives the number dis-

tribution; and MALLS detection, which gives both the

distribution of weight-average molecular weight, �Mw, and

also the z-average size Rg,z measured by radius of gyration.

The samples must be prepared in a molecularly dispersed

form and without aggregation, loss, degradation, or retro-

gradation, which for starch is best done in a solvent and

eluent comprising dimethyl sulfoxide (DMSO) and LiBr.

In order to obtain Vh from elution time, calibration uses

narrowly dispersed linear glucan standards (pullulan or
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dextran) of known molecular weights. Starch character-

ization by SEC suffers from band broadening, size cali-

bration, shear scission, and low recovery of large

molecules.

Although there are limitations of SEC characterization,

it can still provide qualitative and semiquantitative infor-

mation about the structural features of starch, especially for

the fully branched amylose molecules and the chain lengths

of starch molecules (especially amylose) after enzymatic

debranching, as the molecules of these sizes are not sig-

nificantly affected by either shear scission or the size cal-

ibration limitation.

Fluorophore-Assisted Carbohydrate Electrophoresis

Fluorophore-assisted carbohydrate electrophoresis consists

of labeling the reducing end of each debranched starch

chain with a fluorophore (typically 8-amino-1,3,6-pyrene-

trisulfonic acid) and performing the separation of the

labeled linear molecules using capillary electrophoresis

with fluorescence detection, based on the different mass-to-

charge ratios of linear molecules with different sizes [140].

Compared to SEC, FACE gives a more accurate CLD

since it does not suffer from band broadening. However, it

is limited to characterizing the branches of amylopectin

(DP [ 100). FACE directly gives the debranched number

distribution Nde(X), while debranched data from SEC

is converted from the weight distribution w(logX) to

Nde(X) = X-2 w(logX) [23].

MALLS

There are two types of light-scattering measurements:

dynamic and static. Dynamic light scattering is based on

the scattering of light by the Brownian motion of particles.

In static light scattering, the intensity of scattered radiation

is averaged over a relatively long time (\2 s) to smooth out

all internal mobility [13]. With static light scattering,

weight-average molar mass �Mw and z-average radius of

gyration Rg,z are obtained.

A MALLS detector uses static light scattering. Charac-

terization of starch using an offline MALLS detector in

batch mode does not involve size separation (hence

avoiding the problem of shear scission), and is the best

method to give (total) �Mw and Rg,z for amylopectin. Since

light scattering is very sensitive to large particles, it is

essential to avoid the presence of aggregates and other

components that are not molecularly dispersed. Neither

light-scattering method can give a reliable size distribution

because the signal is a complex function of the actual size

distribution of the sample, and it is mathematically

impossible to invert signal to distribution exactly [25].

Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) gives the degree of

branching (DB) by measuring the ratio of a-(1?6) to a-

(1?4) glycosidic linkages [58]. The starch molecules must

be completely dissolved, and water is unsuitable, especially

for high-amylose starch samples [119]. Moreover, those

starch molecules that do dissolve in water, especially the

amylose ones, are ready to be retrograded due to the re-

association of these molecules with each other or with itself

[207]. DMSO-d6 has been shown to be a suitable solvent

that can fully dissolve starch molecules [150]. The disso-

lution mechanism of starch granules in anhydrous DMSO-

d6 is different from that in water. In water, the granules

swell and then burst, while they do not swell but are peeled

from their surface in DMSO-d6 [124]. However, the cal-

culation of DB from 1H NMR spectra is sometimes com-

plicated due to the presence of many different hydroxyl

groups that can lead to broad signals and thus hide the other

peaks. Tizzotti et al. [176] developed an improved proce-

dure involving the use of a small amount of deuterated

trifluoroacetic acid that shifts the exchangeable protons of

the starch hydroxyl groups to a high frequency, contribut-

ing to clear and well-defined NMR spectra.

Mathematical Model of Starch Biosynthesis

The biosynthesis pathway of starch has not yet been fully

understood. Starch structure, which is regulated by starch

biosynthetic pathways, can provide in-depth information

on the biosynthesis through mathematical modeling of

starch biosynthesis. A simplified treatment based on gen-

eral kinetic principles suggests that the debranched CLD

can be plotted as lnNde(X) against degree of polymerization

X, where approximately linear regions give an indication of

the relative rates of chain growth and chain stoppage [22,

62, 186]. This treatment does not take into account the

specific catalytic mechanism of each group of starch-syn-

thesizing enzymes. A more advanced model has been

developed by Wu et al. [202, 204].

The Wu–Gilbert model is based on three types of

enzymatic processes that dominate starch structure: prop-

agation, branching, and debranching, the activities of

which are controlled by SS (or GBSS), SBE, and DBE,

respectively. This model includes three important phe-

nomena. First, SBE can only create a branch with a length

longer than a certain minimum DP (Xmin). Second, the

length of moiety retained after branching must be more

than a certain minimum DP (X0), the value of which has

been reported to be approximately 6 in Arabidopsis starch.

This means SBE can only operate on branches with a DP

higher than (Xmin ? X0). The number of monomer units at

a given DP is determined by actions of several ‘‘enzyme
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isoform sets’’ comprising one isoform for each of a SS,

SBE, and DBE.

This model gives several parameters per enzyme set:

(a) b, the rate ratio of branching (catalyzed by SBE isoforms)

to propagation (catalyzed by SS and GBSS); (b) c, the ratio of

debranching (modulated by DBE isoforms) to propagation;

(c) the relative contribution of each enzyme isoform set;

(d) Xmin; and (e) X0. The mathematical treatment shows that c
is not an independent variable, but is given (in a complicated

way) by the values of b, Xmin, and X0. Both quantitative

fitting (using publicly available code [203]) and qualitative

understanding of starch biosynthesis pathways can be

obtained from this model. Furthermore, it can used to predict

which biosynthetic pathway should be altered to produce

starch with desired CLD and thus certain properties.

Starch Properties

Gelatinization Properties

Gelatinization is an order–disorder transition. When starch

is heated in the presence of sufficient water, granules swell

and the semicrystalline ordered structure is disrupted,

leading to an amorphous structure [160, 192]. The gelati-

nization properties, mainly gelatinization temperature and

enthalpy, are measured by differential scanning calorimetry

(DSC), which reveals an endothermic event at temperatures

similar to those at which structural changes of starch

granules are observed [29]. The onset gelatinization tem-

perature of starch granules reflects the heat stability of the

starch crystalline regions [160], while the enthalpy of

gelatinization primarily reflects the loss of molecular

(double helical) order [29]. The gelatinization properties

are controlled predominantly by the amylopectin CLD,

starch composition, granule architecture (crystalline to

amorphous ratio), and crystalline polymorphism [93].

The amylopectin CLD is a primary factor affecting

starch gelatinization properties [136]. Starch crystalline

structure is mainly made up of double helices of the

branches of amylopectin, and the CLD of amylopectin can

greatly affect the amount and the thickness of the crys-

tallites and the defects in the crystalline lamellae. Studies

on starches from various botanical origins have shown

that the proportion of short amylopectin branches (DP

6–12) is negatively correlated to the gelatinization tem-

perature [91, 132, 136, 151, 152, 184, 201, 208] and

enthalpy [93]. In contrast, large proportions of interme-

diate (DP 13–24) and/or long amylopectin branches

(DP C 25) can increase the gelatinization temperature and

enthalpy [93, 97, 160]. These phenomena are probably

because a larger proportion of intermediate and/or long

amylopectin branches leads to a longer repeating distance

and width distribution of the crystalline–amorphous

lamellae by producing greater lengths of longer crystalline

components in the crystalline lamellae, thus stabilizing

crystalline lamellae toward heat gelatinization; short

branches, however, cannot participate in the crystallite

formation and cause defects in the crystalline structure

[200]. Therefore, increased proportions of longer chains

shift gelatinization to higher temperatures, while short

chains decrease the gelatinization temperature.

Compared to other normal starches, potato starch, which

also contains more long B2, B3, … branches, has a very low

gelatinization temperature. This can be explained by the fact

that the amylopectin of potato starch contains a substantially

higher level of phosphate monoester derivatives than most

normal starches. The negative charges of the phosphate

derivatives repel one another, destabilize the granular

structure, and reduce the gelatinization temperature [95]. In

addition, this phenomenon is also attributed to the B-type

polymorph of potato starch. With the same branch chain

length, this polymorph displays a lower gelatinization tem-

perature than the A-type polymorph [198] due to the dif-

ferences in their crystalline packing and water content. As

stated before, A-type polymorphic starch has 4 water mol-

ecules per unit cell and is more densely packed. B-type

polymorphic starch, on the other hand, is less densely

packed, with 36 water molecules in one unit cell [86, 148].

With regard to the influence of amylose content on the

starch gelatinization properties, studies on varieties of

sweet potato, buckwheat [136], and barley starches [159]

showed that amylose content had no impact on the gelati-

nization properties. However, a similar study on waxy,

normal, and high-amylose maize starches showed that

high-amylose maize starches displayed higher onset gela-

tinization temperatures than waxy and normal maize star-

ches [93]. This phenomenon is not due to amylose content;

instead, it is because amylopectin molecules of high-

amylose maize starch have larger proportion of long

branches (DP [ 37) than their waxy and normal counter-

parts. As a result, larger crystallites are formed and the

stability of the crystalline lamellae is increased, which need

a higher temperature to melt.

Processing conditions and particle size can also affect

the gelatinization properties of starch. For example, starch

isolated by a strong alkaline method shows a significantly

higher gelatinization temperature than that isolated by a

mild alkaline protease method [143]. A reduction in par-

ticle size also leads to a large drop in the gelatinization

peak, conclusion temperature, and enthalpy [71, 117].

Pasting Properties

Pasting properties play a key role for starch applications,

especially for starches used as thickening and stabilizing
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agents. The pasting properties are commonly measured

using the Brabender Viscoamylograph and Rapid Visco-

Analyzer (RVA), by testing changes in the viscosity of a

starch paste during a cooking and cooling cycle [32]. The

data can be simplified into a series of parameters including

pasting temperature, peak viscosity, final viscosity, break-

down, and setback.

The proportions of amylose and lipids are major factors

associated with pasting properties. Amylopectin contributes

to starch granules swelling and pasting, whereas amylose

acts both as a diluent and as an inhibitor of swelling,

especially in the presence of lipids. Lipids are found in most

starches, and form insoluble single helical complexes with

some of the amylose, and thus restrict starch granule

swelling and lead to a lower peak viscosity and a substan-

tially higher pasting temperature [159, 171]. This can

explain the variations of starches from different botanical

origins. Tuber and root starches, compared to cereal star-

ches, show lower pasting temperatures and lower setback

viscosities, resulting from the absence of lipids in tuber and

root starches [114]. Regarding starches from the same

botanical tissue, a negative correlation has been found

between amylose content and peak viscosity of starch [27].

Waxy starches display lower pasting temperature and

higher peak viscosity than their normal starch counterparts,

because they contain mainly amylopectin; these starch

granules thus can easily swell without any restriction from

amylose or amylose–lipid complexes. High-amylose star-

ches, however, are difficult to swell and thus display a very

high pasting temperature and low peak viscosities, which

can be attributed to their low amylopectin, high amylose,

and amylose–lipid complex contents [93, 159].

Amylopectin fine structure is another key factor affect-

ing pasting properties. Starches containing a large number

of short branches are easily swollen and broken—resulting

in a substantially lower pasting temperatures and viscosi-

ties, but higher breakdowns [42, 161, 201]. In contrast, the

presence of extra-long branches in amylopectin raises the

pasting temperature. Similar to amylose, these extra-long

branches of amylopectin, which have been found in rice,

maize, barley, millet, sorghum, and other plants [55, 77,

80, 164, 166, 170], can form single helical complexes with

lipids and intertwine with other branches to maintain the

integrity of starch granules [93]. The extra-long branch

chain content is positively and negatively correlated to

setback and breakdown, respectively [68, 77, 87].

Starch granule size also has an impact on the pasting

properties. Fortuna et al. [48] segregated potato, maize, and

wheat starch granules into two fractions with large and

small granular sizes, respectively, and found that starch

with small granule size had larger specific surface area,

leading to a higher pasting temperature, and a lower peak

viscosity [48]. Similar results were observed in a study on

the pasting properties of the A- and B-granules of wheat,

barley, and triticale starches [2]. B-granules, with smaller

granule size compared with A-granules, exhibited higher

pasting temperatures and lower peak viscosities than their

A-granule counterparts—attributed mainly to the high lip-

ids content of B-granules. A-granules, on the other hand,

consisting more B2 and longer amylopectin chains, dis-

played greater setback viscosities. These imply that the fine

molecular structure and lipid content of starch play more

important roles, compared with granule size, in controlling

the pasting properties of starch.

Digestibility

Starch digestibility impacts on human health. Based on

digestion rate, starch is classified into three groups: rapidly

digestible starch (RDS), slowly digestible starch (SDS),

and enzyme-resistant starch (RS) [43]. RDS is rapidly

digested in small intestine, leading to a high blood glucose

level, and seems to be related to some chronic diseases

including cardiovascular diseases, insulin resistance, dia-

betes, and obesity [19]. SDS is digested slowly but com-

pletely, having the ability to maintain plasma glucose level

over time; while RS is not digested in small intestine and

can reach the colon, where it is fermented, producing short-

chain fatty acids with benefits to colonic health [179]. SDS

and RS are thought to have the potential to protect from

diet-related diseases, including insulin resistance, colon

cancer, and inflammatory bowel disease [74, 100, 110].

From a nutritional point of view, slowing starch digestion

rate is beneficial to human health.

The digestion mechanism of granular starch is compli-

cated, with various factors involved including the granular

structure (granule size and surface pores), crystalline

structure, and molecular structure of starch; these factors

are usually interconnected [9, 214]. A positive correlation

is generally observed between RS and amylose content [26,

122, 217] probably because amylose intertwines with

amylopectin crystallites, enhancing the integrity of the

granular structure. However, low-amylose rice starch

showed lower RS content than waxy rice starch, implying

that, apart from amylose content, there are other factors

involved in digestibility. This phenomenon can be

explained by the lower crystallinity of low-amylose rice

starch; thus, the granule is less intact and easy to digest. In

addition, short amylopectin branches (DP 6–12) have been

reported to be positively associated with the digestion rate.

Less RS and more RDS were observed in granular starches

with a larger proportion of short amylopectin branches than

starches with a larger amount of long amylopectin branches

[24, 160].

Starch is generally consumed by humans after cooking.

Studies on cooked rice flour showed that SDS is negatively
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correlated to short amylopectin branches but positively

correlated to intermediate and long amylopectin branches,

and the opposite trends were observed for RDS [8]. Simi-

larly, a study on cooked rice grains found that digestion

rate tends to increase with the increase of the chain length

of long amylose chains, and tends to decrease with the

proportions of long amylose chains and long amylopectin

chains [163]. These trends are not observed in cooked pure

starch [24], possibly because the presence of plant cell

walls and proteins in grain and flour can decrease the

gelatinization degree of starch and retard starch dispersion,

retaining some degree of granular structure. In addition, the

lipids in grain and flour can form amylose–lipid complexes,

which restricts the swelling of starch granule, whence the

ability of enzymes to penetrate starch granules is inhibited

and starch digestibility is decreased.

Starch Biosynthesis–Structure–Properties

Relationships

The structure of starch varies considerably depending on

their botanical origins, caused by differences in starch

biosynthetic pathways, which is controlled by the combi-

nation and relative activities of the SS, SBE, and DBE

isoforms, and, to a lesser extent, by other related enzymes

[51].

Starch structure determines its functional properties,

including the mechanical properties of starch-containing

materials and the organoleptic and digestibility properties

of starchy food. For example, amylose-free (waxy) starches

gelatinize easily, yielding clear and stable pastes [215].

They can be used as stabilizer and thickener in food pro-

ducts and as an emulsifier for salad dressings, as well as

used in paper manufacturing. High-amylose starches, on the

other hand, having high gelling strength and film-forming

ability, are useful for producing sweets, for keeping the

coating on fried products crispy, and for reducing fat uptake

of food upon cooking. High-amylose starches can also be

processed as a source of RS with or without further modi-

fication, which has nutritional benefits as outlined previ-

ously [98, 213]. It reduces postprandial glycemic and

insulin responses, thus reducing the risk for developing type

II diabetes, obesity, and cardiovascular diseases [115, 123].

The fermentation of RS by gut microflora can produce

short-chain fatty acids, especially butyrate, which can pre-

vent the incidence of colon cancer [185].

The alteration of starch structure by modifying the

starch biosynthetic pathway and, consequently, physio-

chemical properties and functions, offers numerous possi-

bilities for food and industrial materials. Novel starches

with altered structures and improved properties have been

produced in planta by biotechnological modification [83,

99, 121, 199]; however, there is still a considerable gap

between our current capabilities and market needs. The

mechanism of starch biosynthesis has not yet been totally

understood because of its complexity, although remarkable

advances have been achieved in recent years. In addition,

obtaining reliable starch structural data without experi-

mental artifacts is still a challenge due to the limits of the

current starch characterization techniques. More efforts

need to be made to explore further information about these

relationships.
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