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disease in the setting of biochemical failure, but also for 
initial staging of newly diagnosed intermediate- and high-
risk prostate cancer [1]. Over the past decade, multiple 
clinical trials have demonstrated high accuracy of PET/
CT using various PSMA-targeted radioligands and studies 
have shown that PSMA PET/CT findings impact the clini-
cal management in approximately half of prostate cancer 
patients evaluated with such studies [2–7]. As a result, there 

Introduction

Prostate-specific membrane antigen (PSMA) positron emis-
sion tomography/computed tomography (PET/CT) has 
revolutionized the way prostate cancer is diagnosed and 
managed. The high level of PSMA expression in prostate 
cancer cells allows PSMA PET/CT to outperform conven-
tional imaging in detecting not only recurrent and metastatic 

Extended author information available on the last page of the article

Abstract
Purpose Prostate-specific membrane antigen (PSMA) PET/CT has an established reliable diagnostic performance for detect-
ing metastases in prostate cancer. However, there are increasing instances of scans demonstrating equivocal bone lesions, 
with non-specific uptake and without a definite benign or malignant CT correlate. To date, the prevalence, malignancy rate, 
and relationship with radioligand type ([18F] PSMA-1007 vs. others ([68Ga]Ga-PSMA-11 and [18F] DCFPyL) for these 
equivocal lesions have not been extensively established.
Methods A systematic review and meta-analysis was conducted on equivocal bone lesions. Pubmed and EMBASE were 
searched up to December 11, 2023. Quality of the studies was evaluated using QUADAS-2. The following proportions were 
pooled using random-effects model: (1) prevalence of equivocal bone lesions (i.e., number of patients with one or more 
equivocal bone lesions/number of patients with PSMA PET/CT) and (2) their malignancy rates (i.e., number of metastases/
number of equivocal bone lesions). Subgroup analyses based on radioligand type, clinical setting, and definition of equivocal 
bone lesion were performed.
Results Twenty-five studies (4484 patients) were included. Pooled prevalence of equivocal bone lesions was 20% (95%CI, 
12–31%). [18F]PSMA-1007 was associated with a greater prevalence of equivocal lesions compared with other radioligands: 
36% (95%CI 26–48%) vs. 8% (95%CI, 4–14%), respectively, p < 0.01. Pooled malignancy rate of equivocal bone lesions 
was 14% (95%CI, 7–25%). [18F]PSMA-1007 was associated with a lower malignancy rate compared to other radioligands: 
8% (95%CI, 3–19%) vs. 29% (95%CI, 17–44%), respectively, p = 0.01. There were no signficant difference in prevalence 
or malignancy rate between subgroups stratified to clinical setting or definition of equivocal bone lesions (p = 0.32–0.60).
Conclusions Equivocal bone lesions are often encountered on PSMA PET/CT but exihibit a low malignancy rate. Compared 
to other radioligands, [18F]PSMA-1007 requires special attention as it is associated with a higher frequency and lower rate 
of metastasis.

Keywords Prostate specific membrane antigen · Positron emission tomography · Prostate cancer · Equivocal bone 
lesion · Unspecific bone uptake · [18F]PSMA-1007
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has been widespread adoption of PSMA PET/CT across the 
globe along with integration into clinical practice guidelines 
[8, 9].

Despite its initial success, there is increasing awareness 
of several pitfalls of PSMA PET/CT, one of which is the 
presence of equivocal bone lesions with PSMA uptake. 
These often lead to further workup, and it has been sug-
gested that many are ultimately benign (or represent a 
“false positive” finding for metastasis) [10]. There is also 
concern that certain PSMA-targeted radioligands such as 
[18F]F-PSMA-1007 – which was initially considered advan-
tageous for better assessing the prostate (or prostatectomy 
bed) due to its predominant excretion through the liver, are 
associated with a higher frequency of indeterminate bone 
lesions due to “unspecific bone uptake” [11]. Ambiguity of 
the significance of these equivocal lesions interpreted as 
being malignant may in some cases exclude such patients 
from receiving curative-intent local definitive therapy (e.g., 
prostatectomy or radiation treatment). As a means to address 
this issue, standardized reporting schemes such as PSMA 
Reporting and Data System (PSMA-RADS), Prostate Can-
cer Molecular Imaging Standardized Evaluation (PROM-
ISE), and European Association of Nuclear Medicine PSMA 
(E-PSMA) standardized reporting guidelines have been pro-
posed to improve the interpretation and communication of 
findings on PSMA PET [12–15]. In PSMA-RADS, a bone 
lesion is assigned a score of “3B” if it demonstrates equivo-
cal uptake on PET along with CT appearance which is not 
definitive but also not atypical for malignancy [12]. These 
lesions are recommended to undergo additional imaging, 
biopsy, or follow-up to determine their clinical significance. 
Nevertheless, the clinical significance of equivocal bone 
lesions on PSMA PET/CT and how to best use this informa-
tion to manage the patient’s clinical treatment is still unclear.

Therefore, we conducted a systematic review and meta-
analysis to evaluate (1) the prevalence of equivocal bone 
lesions on PSMA PET/CT, (2) the malignancy rate of equiv-
ocal bone lesions, and (3) the relationship between type of 
radioligand and equivocal bone lesions.

Methods

This systematic review and meta-analysis was conducted in 
accordance with the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses guidelines [16]. A study 
protocol was registered a priori to the Prospective Register 
of Systematic reviews (no. CRD42023486697) [17].

Search strategy

PubMed and EMBASE databases were searched up to 
December 11, 2023 to identify studies investigating equivo-
cal bone lesions on PSMA PET/CT. The search query con-
structed based on key words (“prostate”, “PSMA”, “PET”, 
“equivocal”, and “bone”) and their synonyms was as fol-
lows: Prostate AND ((PSMA OR prostate-specific mem-
brane antigen) AND (“positron emission tomography” OR 
PET)) AND (“PSMA-RADS” OR ((unspecific OR non-
specific OR equivocal OR indeterminate) AND (bone OR 
skeletal OR osseous))). The study selection process was per-
formed by two reviewers (S.W. and H.A.V.) in consensus.

Inclusion and exclusion criteria

Studies were included if they were relevant to the Patient, 
Intervention, Comparator, Outcome framework [18]: (1) 
“patients” with prostate cancer (regardless of clinical set-
ting), (2) PSMA PET/CT as “intervention” (regardless of 
type of PSMA-targeted radioligand) and interpretation with 
or without using PSMA-RADS, (3) No “comparator”, and 
(4) proportion of patients with equivocal bone lesions and 
their malignancy rates as “outcome”. We excluded studies if 
they met any of the following criteria: (1) publication types 
other than original articles or conference abstracts (e.g., 
review articles, editorials, and case reports), (2) cohort of 
< 10 patients, (3) insufficient information in the study to 
extract proportion relevant to the research question (i.e., 
prevalence of equivocal bone lesions and their malignancy 
rates), and (4) overlapping cohorts. When two or more stud-
ies were based on overlapping (or identical) cohorts, the one 
with more comprehensive and/or updated data was selected.

Data extraction and quality assessment

The following characteristics of the studies were tabulated 
using a standardized form: (1) study – author name(s), pub-
lication year, patient enrollment period, institution, country, 
design (prospective vs. retrospective); (2) clinical – age, 
clinical setting (e.g., primary staging, biochemical recur-
rence), Gleason score, prostate-specific antigen (PSA) level, 
reference standard for determining if equivocal bone lesions 
were malignant or not; and (3) PET – vendor, model, type 
of radioligand, injected dose, uptake time, acquisition time, 
definition of equivocal bone lesion (e.g., based on PSMA-
RADS vs. other in-house criteria), number of patients with 
equivocal bone lesions, number of equivocal bone lesions, 
and number of equivocal bone lesions that were deemed 
malignant.

Assessments of the quality of the studies and their risk of 
bias were done based on Quality Assessment of Diagnostic 
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Accuracy Studies-2 (QUADAS-2) [19]. All 4 domains 
(patient selection, index test, reference standard, and flow 
and timing) were assessed for studies evaluating the malig-
nancy rates. However, only two domains (patient selection 
and index test) were assessed for studies that evaluated 
the prevalence of equivocal bone lesions. As evaluating 
the prevalence of equivocal bone lesions does not directly 
involve correlating them to a “reference standard”, the other 
two domains (reference standard and flow and timing) were 
not relevant for assessing quality and bias specifically for 
these studies. Both the data extraction and quality assess-
ment were first done independently by two authors (S.W. 
and D.F.) and discrepancies were resolved by consensus 
with a third author (H.A.V.).

Data synthesis and analysis

The primary outcomes of this meta-analysis were: (1) the 
prevalence of equivocal bone lesions defined as the propor-
tion of patients that had one or more equivocal bone lesions 
among all patients that underwent PSMA PET/CT and (2) 
the malignancy rate of equivocal bone lesions defined as 
the proportion of lesions that were deemed to be metastasis 
based on the reference standard among all evaluated equiv-
ocal bone lesions. The secondary outcomes were to explore 
heterogeneity by performing subgroup analyses, most 
importantly stratified to the type of PSMA-targeted radio-
ligand ([18 F]PSMA-1007 vs. others [[68Ga]Ga-PSMA-11 
or [18 F]DCFPyL], [18 F]PSMA-1007 vs. [68Ga]Ga-
PSMA-11, and [18 F]PSMA-1007 vs. [18 F]DCFPyL]), 
but also by additionally relevant subgroups such as clini-
cal setting (e.g., primary staging, biochemical recurrence, 
etc.) or definition of equivocal bone lesions (e.g., based on 
PSMA-RADS).

Pooling of the proportions and calculation of their 95% 
confidence intervals (CI) were done using a random-effects 
model with the “meta” package in statistical software R 
(version 4.2.2; R Foundation for Statistical Computing, 
Vienna, Austria) [20]. Heterogeneity was assessed with the 
Higgins I2 test [21]. Heterogeneity was explored by compar-
ing pooled proportions of the subgroups [22]. Publication 
bias was assessed with the Egger test and visualized using 
the funnel plot [23]. P values < 0.05 were considered statis-
tically significant.

Results

Literature search

Three-hundred and twenty-two articles were initially identi-
fied from the systematic database search. After removal of 

96 duplicates and exclusion of 168 papers by screening of 
titles and abstracts, 44 articles were considered potentially 
eligible. Upon full-text review, 19 of these studies were 
excluded for the following reasons (Supplementary Table 
1): study does not deal with equivocal bone lesions (n = 3); 
equivocal bone lesions and equivocal soft tissue lesions 
were not separately documented (n = 6); overlapping patient 
cohort (n = 8); and topic deals with equivocal bone lesions 
on PSMA PET/CT but details of neither their prevalence nor 
malignancy rates were provided (n = 2). Ultimately, 25 stud-
ies (4484 patients) were included in the systematic review 
and meta-analysis (24–48). Flowchart for study selection is 
shown in Fig. 1.

Characteristics of included studies

The characteristics of the included studies are summarized 
in Tables 1, 2 and 3. Among all 25 studies, 8 (32%) evalu-
ated the prevalence of equivocal bone lesions only [28, 
30–32, 35, 40, 42, 48], 3 (12%) the malignancy rate of 
equivocal bone lesions only [34, 45, 47], and the remain-
ing 14 (56%) both the prevalence and the malignancy rates 
of equivocal bone lesions [24–27, 29, 33, 36–39, 41, 43, 
44, 46]. Most studies were retrospective in design (n = 22, 
88%) [24–26, 28–35, 37–39, 41–48] and performed at sin-
gle centers (n = 23, 92%) [24–28, 30–33, 35–48]. PSMA 
PET was performed for primary staging in 6 studies (24%) 
[27, 33, 35, 37, 43, 48], biochemical recurrence in all or 
most of the patients in 6 (24%) [25, 26, 30, 34, 41, 45], 
and a mixed cohort in 9 (36%) [24, 28, 29, 32, 38–40, 46, 
47]. In the remaining, one study (4%) specifically included 
patients with non-detectable PSA levels after RP and the 
remaining 3 (12%) did not report cohort characteristics [36]. 
[18F]PSMA-1007 was used in 13 studies (52%) [24–30, 32, 
35–37, 44, 45], [68Ga]Ga-PSMA-11 in 6 (24%) [31, 34, 39, 
42, 43, 48], [18F]DCFPyL in 3 (12%) [35, 38, 47], and a 
combination of [18F]PSMA-1007 and non-[18F]PSMA-1007 
radioligands in 3 (12%) [33, 41, 46]. In 9 studies (36%), 
PSMA PET/CT was interpreted and equivocal bone lesions 
were accordingly defined per PSMA-RADS version 1.0 
[24, 26, 33–35, 38, 43, 46, 47]. In the 16 remaining studies, 
various definitions were used (or details were not provided), 
most common being PSMA uptake without a morphologic 
correlate on CT (n = 5, 20%) [27, 32, 36, 37, 41]. Most of 
the studies that evaluated the malignancy rate of equivocal 
bone lesions (13/17 [76.5%]) used the best value comparator 
(BVC; a combination of imaging, clinical, histopathologic, 
or biochemical evaluations such as response to therapy) as 
the reference standard for determining whether the equivo-
cal bone lesion was malignant or not [24, 25, 27, 29, 33, 34, 
37–39, 41, 43, 46, 47]. The other studies used the follow-
ing reference standards: biopsy (n = 1, 5.9%) [45], magnetic 

1 3



Clinical and Translational Imaging

influences the diagnostic accuracy of PSMA PET (high risk 
of bias), but also is not applicable to current day practice 
where they are interpreted simultaneously (high concern 
for applicability) [39]. Most other studies (n = 12) were at 
unclear risk of bias as it was not explicitly stated whether 
PSMA PET/CT was interpreted blinded to the outcome.

In the reference standard domain, only one study had low 
risk of bias, as it exclusively was based on histopathological 
assessment of PSMA-PET guided biopsy [45]. However, 
this was considered to have high concern for applicabil-
ity, as it would not be feasible to biopsy all equivocal bone 
lesions in daily practice. Three studies had high risk of bias 
as they were based on only MRI correlation (n = 2) [26, 44] 
or only PSA kinetics (n = 1) [36]. All 13 other studies were 
considered at unclear risk as they were based on the BVC.

Finally, in the flow and timing domain, those 13 studies 
(at unclear risk in the reference standard domain) were con-
sidered to be at high risk of bias since individual patients in 
the study had different reference standard by definition (i.e., 
BVC). Two additional studies were at unclear risk of bias 
as the interval between PSMA PET/CT and the reference 
standard was not explicit [26, 44].

Prevalence of equivocal bone lesions

Twenty-two studies reported the prevalence of equivocal 
bone lesions on PSMA PET/CT. The prevalence in each 

resonance imaging (MRI) (n = 2, 11.8%) [26, 44], and PSA 
kinetics (n = 1, 5.9%) [36].

Quality and risk of bias

The overall quality of the included studies was considered 
moderate to good, with 13 (76.5%) of the 17 studies evalu-
ating malignancy rate of equivocal bone lesions satisfying 4 
or more of the 7 QUADAS-2 domains and 5 (62.5%) of the 
8 studies only evaluating the prevalence of equivocal bone 
lesions satisfying 3 or more of the 4 evaluated QUADAS-2 
domains. The detailed breakdown of QUADAS-2 assess-
ments are provided in Fig. 2.

For patient selection, 2 studies were considered at high 
risk for bias and had high concern for applicability: in one 
study, PSMA PET/CT was performed in patients that had 
undetectable PSA after prostatectomy [36] and another 
study only evaluated patients who were referred for PSMA 
PET-guided biopsies [45]. Another study had an unclear risk 
of bias as it was not explicitly mentioned whether patient 
enrollment was consecutive or not [37].

Regarding the index test, in the aforementioned study 
where patients had undetectable PSA after prostatectomy, 
readers were not blinded and were aware of this unique clin-
ical setting, resulting in a high risk of bias [36]. In another 
study, PSMA PET was interpreted alone – specifically 
without correlation with CT – which not only negatively 

Fig. 1 PRISMA flowchart sum-
marizing study selection process. 
PRISMA = Preferred Reporting 
Items for Systematic Reviews 
and Meta-Analyses
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First author Institution Enrollment 
period

Pro-
spec-
tive 
design

No. of 
patients

Age 
(years)

Clinical setting
(No. of patients in 
subgroup)

PSA (ng/ml) Grade 
group

Arnfield [24] Royal Brisbane and Women’s 
Hospital

2018–2019 No 214 70, SD 7 Primary 100; BCR 
114

5.0*, 0.95–10 NR, 
1–5

Bohil [25] Royal Liverpool University 
Hospital

NR (12 
months)

No 203 64*, 
49–82

Primary 14; 
Restaging 189

NR, 0.04–299 NR, 
1–5

Dietlein [26] University Hospital of Cologne 2017–2018 No 27 67, SD 8 Primary 2; BCR 25 3.3, 0.3–27.7 3, 1–5
Ettala [27] University of Turku and Turku 

University Hospital
2018–2019 Yes 79 70, SD 7 Primary 12*, 3–2000 4, 1–5

Foley [28] Royal United Hospitals Bath 2019–2020 No 16 NR Primary 7; BCR 9 72, NR (Pri-
mary); 3.8, NR 
(BCR)

NR

Grunig [29] University Hospital Zurich, Can-
tonal Hospital Lucerne, Cantonal 
Hospital St. Gallen, Cantonal 
Hospital Baden

2019–2020 No 348 71*, IQR 
66–76

Primary 120; BCR 
227

2.5*, IQR 0.5–9.3 3, 1–5

Hoberück 
[30]

University Hospital Carl Gustav 
Carus

NR No 40 71*, SD 8 Primary 6; BCR 
28; Follow-up 6

3.8*, 0.3–113.7 4, 1–5

Janssen [31] Charité 2013–2017 No 54 70, NR NR 38.4, SD 77.9 NR
Knappe [32] Bern University Hospital 2019–2021 No 36 NR NR NR NR
Kuten [33] TelAviv Sourasky Medical 

Center
2015–2020 No 406 65, SD 11 Primary 0.5, 0–2.9 3, 2–4

Letang [34] Institut Bergonié & Institut de 
Cancerologie de l’Ouest

2018–2020 No 298 71, 58–87 BCR 2.9, SD 2.5 NR, 
1–5

Mihatsch 
[35]

University Hospital of Würzburg 2018–2021 No 18 70, SD 8 Primary 180.4, 4.8–1690.0 4, 2–5

Orevi [36] Hadassah Medical Center 2020–2021 Yes 17 66, 53–74 Non-detectable 
PSA after RP

11.9, range 
3.4–41 (pre-RP)

NR, 
3–5

Paone [37] Imaging Institute of Southern 
Switzerland

NR No 80 NR Primary 23.7*, NR NR

Phelps [38] National Cancer Institute 2017–2021 No 243 66*, 
53–79

Primary 13; BCR 
35

4.0*, 0.4–203.8 3, 1–5

Pyka [39] Technical University of Munich 2012–2015 No 126 69, range 
49–89

Primary 37; BCR 
49; mCRPC 40

43.5, 2.7–500 
(Primary); 20.9, 
0.3–490 (BCR); 
446, 0.97–3333 
(mCRPC)

NR

Rowe [40] Johns Hopkins University 
School of Medicine

2016–2016 Yes 16 66, 52–77 Mixed 4.4*, 0.2–224.5 4, 2–5

Seifert [41] University Hospital Essen 2020–2020 No 792 71*, IQR 
70–74

BCR 0.5*, IQR 0.2–1 3, 1–5

Shanmugas-
undaram [42]

Nepean Hospital 2015–2018 No 532 69*, IQR 
63–73

NR 9.6*, IQR 6.2–17 4, 
IQR 
2–5

Simsek [43] Istanbul University 2015–2019 No 356 68, 47–91 Primary 16.42*, 
1.29–7013

4, 1–5

Spurr [44] Bristol Royal Infirmary 2021 No 112 NR NR NR NR
Vollnberg 
[45]

Bern University Hospital 2019–2020 No 11 67*, 
51–79

Primary 2; BCR 9 1.8, 0.3–5.2 
(BCR); 110 
(n = 1, Primary)

2, 2–4

Wondergem 
[46]

Noordwest Ziekenhuisgroep 2019 No 240 NR Primary 169; BCR 
21; Follow-up 30

12*, 0.1–577 NR

Table 1 Study and patient characteristics
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Discussion

In this systematic review and meta-analysis, we investi-
gated the prevalence of equivocal bone lesions on PSMA 
PET/CT in patients with prostate cancer and how often 
they are malignant. Overall, equivocal bone lesions were 
often encountered, approximately in 1 of 5 patients (pooled 
prevalence = 20%, 95% CI: 12–31%). However, the rate 
of malignancy was low with approximately 1 in 7 equivo-
cal bone lesions deemed to be metastatic disease (pooled 
malignancy rate = 14%, 95% CI: 7–25%). The results of our 
study substantiate on a larger scale, the trends we have been 
observing in smaller individual reports. Although PSMA 
PET/CT has revolutionized how we manage patients with 
prostate cancer, our study highlights that we need to keep 
in mind this important pitfall of equivocal bone lesions. 
There needs to be increased awareness to all stakeholders 
involved, including expert and community nuclear medi-
cine physicians and radiologists who interpret PSMA PET/
CT, referring physicians, and patients and caregivers in 
order to further optimize clinical recommendation based on 
the most accurate or reliable information which is clinically 
available [49].

Type of radioligand was a significant factor of heterogene-
ity between the included studies. Specifically, the prevalence 
of equivocal bone lesions was higher and their malignancy 
rate was lower in studies using [18F]PSMA-1007 (pooled 
estimate = 36%, 95% CI 26–48%) and 8%, 95% CI 3–19%, 
respectively) compared with other radioligands (pooled 
estimate = 8%, 95% CI 4–14% and 29%, 95% CI 17–44%, 
respectively). The reason for this difference between type 
of PSMA-targeted radioligand is not yet clearly understood. 
It has been suggested that the lower positron energy (and 
greater spatial resolution) and the longer half-life (and 
superior signal-to-background ratio) of [18F] compared to 
[68Ga] may partly explain this [29]; however, [18F]DCFPyL 
also is synthesized with [18F] and therefore this explana-
tion cannot be considered valid. Others have suggested 
that it may be related to the higher binding affinity to 

study ranged from 0 to 78% and the pooled prevalence 
across all 22 studies was 20% (95% CI: 12–31%) (Fig. 3). 
Substantial heterogeneity was present (I2 = 95.8%). There 
was no significant publication bias according to the Egger’s 
test (p = 0.21) and funnel plot (Supplementary Fig. 1A). At 
subgroup analyses, type of PSMA-targeted radioligand was 
associated with heterogeneity (p < 0.01), but not the clini-
cal setting (p = 0.32) or how equivocal bone lesions were 
defined (p = 0.42) (Table 4). Specifically, studies that used 
[18F]PSMA-1007 (n = 14) were associated with a greater 
prevalence compared to those that used other radioligands 
([68Ga]Ga-PSMA-11 and [18F]DCFPyL, n = 10): 36% (95% 
CI 26–48%) vs. 8% (95% CI 4–14%), respectively (Fig. 4). 
Subgroup analysis comparing [18F]PSMA-1007 with each 
of the radioligands are shown in Supplementary Fig. 2.

Malignancy rate of equivocal bone lesions

Seventeen studies reported the malignancy rate of equivo-
cal bone lesions on PSMA PET/CT. The prevalence in each 
study ranged from 0 to 77% and the pooled prevalence 
across all 17 studies was 14% (95% CI: 7–25%) (Fig. 5). 
Substantial heterogeneity was present (I2 = 90.1%). There 
was no significant publication bias according to the Egger’s 
test (p = 0.52) and funnel plot (Supplementary Fig. 1B). At 
subgroup analyses, type of PSMA-targeted radioligand was 
associated with heterogeneity (p = 0.01), but not the clini-
cal setting (p = 0.32) or how equivocal bone lesions were 
defined (p = 0.60) (Table 4). Specifically, studies that used 
[18F]PSMA-1007 (n = 12) were associated with a lower 
malignancy rate compared to those that used other radio-
ligands ([68Ga]Ga-PSMA-11 and [18F]DCFPyL, n = 8): 8% 
(95% CI 3–19%) vs. 29% (95% CI 17–44%), respectively 
(Fig. 6). Subgroup analysis comparing [18F]PSMA-1007 
with each of the radioligands are shown in Supplementary 
Fig. 3.

First author Institution Enrollment 
period

Pro-
spec-
tive 
design

No. of 
patients

Age 
(years)

Clinical setting
(No. of patients in 
subgroup)

PSA (ng/ml) Grade 
group

Yin [47] Johns Hopkins University 
School of Medicine

2016–2017 No 110 63, SD 6 Primary 6; BCR 16 13.0, 0.3–37.8 NR

Zacho [48] Aalborg University Hospital 2016–2018 No 112 68, 48–78 Primary 34.5, 1.7–276 5, 2–5
BCR = biochemical recurrence; IQR = interquartile range; mCRPC = metastatic castration-resistant prostate cancer; Primary = primary stag-
ing; PSA = prostate specific membrane antigen; RP = radical prostatectomy; SD = standard deviation
Continuous data are summarized as mean (age, PSA) or median (grade group) and ranges unless otherwise specified (e.g., median, standard 
deviation, or interquartile range)
*median

Table 1 (continued) 
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First author Scanner vendor (model) Radioligand Dose 
(MBq)

Uptake 
time 
(min)

Interpreter Reporting Refer-
ence 
standard †

Arnfield 
[24]

Siemens (Biograph mCT) [18F]PSMA-1007 250, 
218–272

126*, 
119–
137

2 experienced 
NM

PSMA-RADS v1.0 BVC

Bohil [25] GE (Discovery 690) [18F]PSMA-1007 4/kg ~ 120 2 experienced 
NM

NR BVC

Dietlein 
[26]

Siemens (Biograph mCT 128 
Flow)

[18F]PSMA-1007 343, SD 49 120 NR PSMA-RADS v1.0 MRI

Ettala [27] NR [18F]PSMA-1007 NR NR 2 experience 
NM

Avid without anatomi-
cal correlate

BVC

Foley [28] NR [18F]PSMA-1007 238, SD 27 120 NR NR
Grunig [29] GE (Discovery 600, Dis-

covery 690, Discovery MI, 
Signa PET/MR), Siemens 
(Biograph mCT Flow)

[18F]PSMA-1007 3–4/kg 60–90 1 double 
board-certified 
radiologist/NM

Focal mild-moderate 
uptake (SUVmax <10) 
not obviously related 
to a benign or malig-
nant cause

BVC

Hoberück 
[30]

Siemens (Biograph Vision 
600)

[18F]PSMA-1007
[68Ga]Ga-PSMA-11

154, 
123–175
149, 
111–161

104, 
SD 11
110, 
SD 18

2 experienced 
NM & 2 
experienced 
radiologists

Decided in consensus 
considering uptake 
intensity, lesion size 
and morphologic 
appearance

Janssen 
[31]

Phillips (Gemini Astonish 
TF 16)

[68Ga]Ga-PSMA-11 120.3, SD 
20.4

61.7, 
SD 
32.2

2 readers NR

Knappe 
[32]

NR [18F]PSMA-1007 NR NR NR Uptake without 
morphologic correlate 
in CT

Kuten [33] GE (Discovery 690, Discov-
ery MI)

[18F]PSMA-1007 
[68Ga]Ga-PSMA-11

4/kg
1.8–2.2/kg

~ 90
~ 60

1 experienced 
NM

PSMA-RADS v1.0 BVC

Letang [34] Siemens (Biograph mCT), 
GE (IQ5, MI DR, Discovery 
700)

[68Ga]Ga-PSMA-11 2.2/kg, 
1.3–3.7

63, 
51–90

1 senior & 1 
resident NM

PSMA-RADS v1.0 BVC

Mihatsch 
[35]

Siemens (Biograph mCT 64, 
Biograph mCT Flow 128 
Edge)

[18F]PSMA-1007 301, SD 15 91, SD 
10

1 resident radi-
ologist, 1 expert 
radiologist, & 1 
expert NM

PSMA-RADS v1.0

Orevi [36] GE (Discovery MI digital, 
Discovery MI DR)

[18F]PSMA-1007 3.4/kg, SD 
0.3

67, 
SD 8

2 experienced 
NM physicians

Avid foci with no cor-
responding abnormal-
ity on CT

PSA 
kinetics

Paone [37] NR [18F]PSMA-1007 NR NR NR Low-to-moderate 
uptake without a cor-
relate lesion on CT

BVC

Phelps [38] GE (Discovery MI DR) [18F]DCFPyL 262.7, SD 
37.9

120 2 expert NM PSMA-RADS v1.0 BVC

Pyka [39] Siemens (Biograph mCT, 
Biograph mMR)

[68Ga]Ga-PSMA-11 151, 
95–217

60 2 expert NM NR BVC

Rowe [40] Siemens (Biograph mCT 
128), GE (Discovery RX 64)

[18F]DCFPyL 333, SD 9 60 2 expert NM NR

Seifert [41] Siemens (Biograph Vision, 
Biograph mCT, Biograph 
mMR)

[18F]PSMA-1007 
[68Ga]Ga-PSMA-11

350.6, SD 
61.8
133.3, SD 
81.2

111, 
SD 20
67, SD 
14

2 NM Focally increased 
uptake (SUVmax > 4) 
and clear visualization 
in maximum intensity 
projection images 
without CT correlate

BVC

Shanmu-
gasundaram 
[42]

NR [68Ga]Ga-PSMA-11 NR NR NR NR

Simsek [43] Siemens (Biograph 
TruePoint)

[68Ga]Ga-PSMA-11 ~ 185 45–60 2 experienced 
NM

PSMA-RADS v1.0 BVC

Table 2 PSMA PET/CT characteristics
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access issues such as [18F]PSMA-1007 not yet approved in 
the United States and whether there is a cyclotron on site). 
Moreover, additional training may be needed before using 
[18F]PSMA-1007 to avoid overcalling these equivocal bone 
lesions.

Other factors such as clinical setting or how equivocal 
bone lesions were defined were not a substantial source of 
heterogeneity (p = 0.32–0.60). As bone metastases can vir-
tually occur in any clinical setting, across the broad catego-
ries of primary staging, biochemical recurrence, and even 
during systemic treatment for known metastatic disease, the 

receptors and internalization rate of [18F]PSMA-1007 [50, 
51]. Regardless, the difference between [18F]PSMA-1007 
and other radioligands has important clinical implications. 
[18F]PSMA-1007 has been considered advantageous for 
delineating the primary tumors and local recurrence after 
radical treatment and for radiotherapy planning (e.g., dose 
painting) due to its lack of urinary excretion compared with 
other radioligands [52–54]. Therefore, these characteris-
tics related to radioligand type should be taken into con-
sideration when choosing which one to use, and how to 
interpret them (in addition to jurisdictional constraints and 

Variable Category No. of studies 
(or sub-studies)

Pooled estimate
(95% confidence 
interval)

p 
value

Prevalence Radioligand [18F]PSMA-1007 14 0.36 (0.26–0.48) 0.01
Others * 10 0.08 (0.04–0.14)

Reporting PSMA-RADS 7 0.15 (0.06–0.33) 0.42
Others 15 0.23 (0.12–0.38)

Clinical 
setting

Initial staging 6 0.10 (0.03–0.31) 0.32
Biochemical recurrence 4 0.37 (0.16–0.65)
Mixed 8 0.24 (0.14–0.39)
Others † 4 0.14 (0.02–0.60)

Malignancy 
rate

Radioligand [18F]PSMA-1007 12 0.08 (0.03–0.19) 0.01
Others * 8 0.29 (0.17–0.44)

Reporting PSMA-RADS 8 0.16 (0.06–0.37) 0.60
Others 9 0.11 (0.04–0.28)

Clinical 
setting

Initial staging 4 0.31 (0.05–0.80) 0.32
Biochemical recurrence 5 0.12 (0.07–0.19)
Mixed 6 0.13 (0.05–0.32)
Others † 2 0.03 (0.00-0.03)

Table 3 Subgroup analyses on 
the prevalence of equivocal bone 
lesions and their malignancy 
rates stratified to type of PSMA-
targeted radioligand, methods for 
reporting PSMA PET/CT, and 
clinical setting

PSMA = prostate specific 
membrane antigen; PSMA-
RADS = PSMA Reporting and 
Data System;
* [68Ga]Ga-PSMA-11 or 
[18F]DCFPyL
† Non-detectable prostate-spe-
cific antigen level after radical 
prostatectomy (n = 1) or not 
reported (n = 3 for prevalence 
and n = 1 for malignancy rate)

 

First author Scanner vendor (model) Radioligand Dose 
(MBq)

Uptake 
time 
(min)

Interpreter Reporting Refer-
ence 
standard †

Spurr [44] NR [18F]PSMA-1007 NR NR NR NR MRI
Vollnberg 
[45]

Siemens (mCT, Vision 600, 
Vision Quadra)

[18F]PSMA-1007 240, 
213–254

90 1 dual board-
certified 
radiologist/NM 
& 1 NM

NR Biopsy

Wondergem 
[46]

Siemens (Biograph 16 
TruePoint)

[18F]PSMA-1007
[18F]DCFPyL

324, 
239–363
319, 
231–367

90
120

2 experienced 
NM

PSMA-RADS v1.0 BVC

Yin [47] Siemens (Biograph mCT), 
GE (Discovery RX)

[18F]DCFPyL ~ 333 60 2 experienced 
readers

PSMA-RADS v1.0 BVC

Zacho [48] Siemens (Biograph mCT 
Flow 64), GE (VCT Discov-
ery True 64)

[68Ga]Ga-PSMA-11 2/kg 60 3 experienced 
NM

NR

BVC = best value comparator; MRI = magnetic resonance imaging; NM = nuclear medicine physician; NR = not reported; PSMA-RADS = Pros-
tate Specific Membrane Antigen Reporting and Data System; SD = standard deviation; SUVmax = maximum standardized uptake value
Continuous data are summarized as mean (age, PSA) or median (grade group) and ranges unless otherwise specified (e.g., median, standard 
deviation, or interquartile range)
*median
† Studies that only evaluated prevalence of equivocal bone lesions have empty cells for reference standard

Table 2 (continued) 

1 3



Clinical and Translational Imaging

Fig. 2 Grouped bar charts summarizing risk of bias (left) and concern 
for applicability (right) in 25 included studies according to the QUA-
DAS-2 tool. Individual study results are shown at the bottom. For 8 
studies that only reported the prevalence of equivocal bone lesions on 

PSMA PET/CT (but not their malignancy rates), a modified approach 
using only 2 of the 4 domains (patient selection and index test) were 
assessed as the other 2 domains (reference standard and flow and tim-
ing) were not relevant
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follow-up to confirm their significance may still be required. 
Further investigation is needed to see whether quantitative 
analysis of PSMA PET (e.g., maximum standardized uptake 
value [SUVmax] such as cutoff of > 7.2 suggested by Arn-
field et al. [24]), secondary PSMA uptake patterns (e.g., 
focality and changes in late-phase acquisition [55]), more 
in-depth morphological analysis of CT correlates, or using 
additional tools such as genomic classifiers (e.g., Decipher 
test) will help identify metastasis or not in such scenarios 
[56, 57].

Although the definition of equivocal bone lesions (or 
how PSMA PET/CT was interpreted) was not a substantial 
factor of heterogeneity, this issue deserves more in-depth 
discussion. Nine (36.0%) of the studies used PSMA-RADS 
version 1.0, while various other definitions were used (or 
details not provided) in the remaining studies. No studies up 
to now have evaluated the recently updated PSMA-RADS 
version 2.0 [13]; however, only minimal impact on the prev-
alence and malignancy rate of equivocal bone lesions is to be 
expected considering the content of the modifications. It is 
unclear whether the conduct of using PSMA-RADS (or any 
other standardized reporting system) will in itself improve 
assessment of bone lesion. However, lessons can be learned 
from the history of the debate between Prostate Imaging 

risk stratification itself (e.g., PSA level, PSA kinetics, or 
Gleason grade group) may be more important in determin-
ing whether the equivocal bone lesion is metastatic or not. 
For example, while the overall pooled malignancy rate was 
14% (95% CI: 7–25%), few of the studies at the extreme 
ends warrant mention to illustrate this point. For example, 
two studies in which PSMA PET/CT was performed in pre-
dominantly high-risk patients – Paone et al. [37] (high risk 
in 58.8% [47/80], median PSA 23.7 ng/ml) and Simsek et 
al. [43] (high risk in 81.2% [289/356], median PSA 16.4 
ng/mL) had very high malignancy rates of 76.9% (70/91) 
and 70.0% (7/10), respectively, substantially higher than 
the overall pooled malignancy rate of 14%. These data 
support tailoring the workup of equivocal bone lesions on 
PSMA PET/CT depending on the pretest likelihood of bone 
metastasis. They can be considered metastasis and man-
aged accordingly in patients at high risk for metastasis (or 
with co-existing additional sites of definite metastasis else-
where); on the contrary, in a patient at low risk for metasta-
sis (especially who is a candidate for locoregional definitive 
treatment), higher thresholds should be applied for calling 
equivocal bone lesions as metastases so that the patient 
will not be denied potentially curative intent treatment. If 
risk is truly indeterminate, additional imaging, biopsy, or 

Fig. 3 Forest plot showing pooled prevalence of equivocal bone lesions in all 22 studies. Events = number of patients with equivocal bone lesions. 
Total = number of patients in the study
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There were a few limitations in this systematic review 
and meta-analysis. First, there was substantial heterogene-
ity between the included studies. Nevertheless, we were 
able to demonstrate that at least some of this heterogeneity 
arises from the differences in type of PSMA-targeted radio-
ligand ([18F]PSMA-1007 vs. others [[68Ga]Ga-PSMA-11 
or [18F]DCFPyL]). Secondly, most (13/17 [76.5%]) of 
the included studies used BVC as the reference standard 
for determining whether the equivocal bone lesion was 
malignant or not. Although we acknowledged that this is a 
potential source for unclear risk of bias in the QUADAS-2 
assessments, it should be emphasized that BVC is not per-
fect. As a matter of fact, using BVC could lead to both false 
positive and negative conclusions. Nonetheless, biopsy 

Reporting and Data System (PI-RADS) versus Likert scale 
for interpreting MRI. While diagnostic performance was 
not significantly different (at least in high-volume tertiary 
centers), PI-RADS eventually became the standard for pros-
tate MRI interpretation because it provided clear structure, 
standardization, and definition allowing the potential for 
decreasing inter-reader variability [58, 59]. PSMA-RADS 
could be used as a platform for research or utilized as part 
of clinical trials across different institutions and settings to 
help establish the clinical significance and most optimal 
way to manage equivocal bone lesions on PSMA PET/CT. 
Such structured reporting may also improve inter-reader 
agreement for PSMA PET/CT interpretation [60].

Fig. 4 Forest plots showing pooled prevalence of equivocal bone 
lesions stratified to subgroups based on type of PSMA-targeted radio-
ligand. Studies that used [18F]PSMA-1007 (n = 14) had a greater 

pooled prevalence compared to those that used other radioligands 
([68Ga]Ga-PSMA-11 and [18F]DCFPyL, n = 10, p < 0.01)

 

1 3



Clinical and Translational Imaging

(used as the sole reference standard in 1 study [45]) can-
not be used for all patients nor would that be ethically jus-
tified. Furthermore, interpretation of bone biopsies can be 
challenging especially when lesions are sclerotic, which is 
often the case in the setting of patients with prostate cancer, 
with approximately 1 in 4 biopsies yielding nondiagnostic 
results [61]. BVC is commonly used in clinical practice to 
decide whether equivocal bone lesions are metastasis or 
not. Therefore, the pooled estimates derived from this meta-
analysis probably reflect real world evidence. Finally, we 
were unable to directly analyze the relationship between the 
location of the equivocal bone lesion and malignancy rate. 
Yet, it is well known from extensive literature that the likeli-
hood of metastasis is different between locations – not only 
between axial and non-axial bones but even within axial 
bones (e.g., ribs vs. vertebrae or pelvic bones) [62, 63]. 
Although further investigation will be needed in this spe-
cific context, we can speculate that equivocal bone lesions 
on PSMA PET/CT will less likely be metastasis in the ribs, 
especially when in isolation without additional sites of dis-
ease in the pelvis or vertebrae.

In conclusion, equivocal bone lesions are often encoun-
tered on PSMA PET/CT but exhibit a low malignancy rate. 
Compared to other radioligands, [18F]PSMA-1007 requires 
special attention as it is associated with a higher frequency 
and lower rate of metastasis.

Fig. 5 Forest plot showing pooled malignancy rate of equivocal bone lesions in all 17 studies. Events = number of malignant bone lesions. 
Total = number of equivocal bone lesions
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