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Abstract

Background Soft-tissue sarcomas (STS) represent a diverse group of rare malignancies, underscoring the need for precise
risk stratification. ['®F]fluoro-2-deoxy-2-d-glucose positron emission tomography (['*FJFDG PET) imaging parameters
have been proposed as potential prognostic indicators in several cancer types, yet their significance in STS remains under
investigation. This study aimed to synthesize the available evidence and assess the prognostic value of these parameters.
Methods A systematic review and meta-analysis was conducted, employing a comprehensive literature search across multiple
databases. The prognostic value of ['®F]FDG PET parameters, including pre- and post- treatment standardized uptake values
(SUV1, SUV2), pretreatment metabolic tumor volume (MTV1) and total lesion glycolysis (TLG1) on event-free survival
(EFS) and overall survival (OS) in patients with STS was examined.

Results Thirty-one studies with 1,932 patients were identified. The analyses demonstrated significant relationships between
higher SUV1 (hazard ratio, HR 1.68 for EFS and 3.07 for OS, p <0.001), SUV2 (HR 3.13 for EFS and 2.09 for OS, p <0.001
and p=0.001 respectively), MTV1 (HR 2.29 for EFS and 3.05 for OS, p=0.011 and p <0.001 respectively), TLG1 (HR
2.85 for EFS and 3.23 for OS, p=0.032 and p =0.002 respectively) and poorer survival outcomes. However, the association
of these parameters with survival outcomes was non-significant in pediatric patients.

Conclusion This study suggests that ['*FJFDG PET parameters could serve as important prognostic markers in adults with
STS, but not in pediatric patients. Future studies with larger cohorts and uniform methodologies are critical to confirm and
build upon these findings.
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TLG Total lesion glycolysis
TSA Trial sequential analysis
Introduction

Soft-tissue sarcomas (STS) are rare tumors that present chal-
lenges in cancer management due to their diverse biological
characteristics and clinical presentations, which are primar-
ily associated with their origin from mesenchymal cells [1,
2]. Representing approximately 1% of malignancies in adults
and 8-15% in children, adolescents, and young adults [3,
4], the complexity of STS challenges diagnosis, treatment
planning and prognostic evaluation [5-7]. Despite progres-
sive strides in surgical techniques, radiation oncology, and
systemic therapies, the prognosis for patients with STS
remains unsatisfactory, emphasizing the urgent necessity for
enhanced prognostic markers and therapeutic strategies [8].

Traditional prognostic factors, including patient age, pres-
ence of metastasis, tumor size, histological type, and tumor
grade, guide clinical decision-making in oncology [9, 10].
However, these factors have limited efficacy in accurately
predicting patient outcomes, thereby highlighting the com-
pelling need for the development and validation of more reli-
able and accurate prognostic tools. A reliable prognostic tool
in soft-tissue sarcomas may enhance patient management
by allowing for the customization of treatment strategies,
such as precise surgical techniques, individualized systemic
therapies, and patient-oriented follow-up schedules, thereby
improving treatment outcomes and patient quality of life.

The pivotal role of ['8F]fluoro-2-deoxy-2-d-glucoseposi-
tron emission tomography (['®F]FDG PET) in oncology has
been well-established, and is recognized for its substantial
contribution to tumor staging and grading, monitoring treat-
ment efficacy, detecting local or distant recurrence, and facil-
itating post-treatment follow-up management [11]. Despite
this, the ability of ['®F]FDG PET parameters to predict sur-
vival outcomes in patients with sarcoma remains a subject of
debate, as research has presented both supportive and con-
tradictory findings [12—16]. Prior meta-analyses have exam-
ined the prognostic value of ['®F]FDG PET parameters in
patients with sarcoma [17-19], but recent research indicates
a potentially diminished prognostic efficacy of these param-
eters in the pediatric population [19-21]. Importantly, previ-
ous meta-analyses failed to consider the pediatric population
separately, thereby potentially obscuring the true prognostic
value of ['®F]FDG PET parameters due to known biological
and clinical differences between pediatric and adult sarco-
mas and among different sarcoma subtypes [3, 7].

To address this gap, we performed a systematic review
and meta-analysis that incorporates an in-depth analysis of
age subgroups and sensitivity analyses to comprehensively
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evaluate the relationship between ['®F]FDG PET metabolic
parameters and survival outcomes in patients with STS.

Materials and methods

This study was conducted in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [22]. The study protocol was regis-
tered with the International Platform of Registered System-
atic Review and Meta-analysis Protocols (INPLASY) under
the registration number INPLASY?202370087 (https://doi.
org/10.37766/inplasy2023.7.0087).

Search strategy

A systematic literature search of studies published within
the last 15 years (from Jan 1, 2008 to June 1, 2023, date of
search: June 15, 2023) was performed in Medline, PubMed,
Google Scholar, and the Cochrane Library by two independ-
ent investigators (MY and LB). The search methodology
utilized Medical Subject Headings (MeSH). Both backward
and forward snowballing methods were also used for an
exhaustive search. Language restrictions were not applied.

The detailed search strategy and queries are available in
the supplemental material (Supplemental Appendix 1).

Eligibility criteria and study selection

After automatic removal of duplicate records, the remaining
studies were screened by two independent researchers (MY
and YL) for eligibility. We considered studies that met the
following criteria:

1. Population: children, adolescents and adults with STS
undergoing baseline and/or post-neoadjuvant chemo-
therapy (NAC) PET/CT with ['®F]FDG;

2. Exposure: high baseline/post-NAC maximum standard-
ized uptake value (SUVmax), high SUV ratio (SUV2
[post-NAC] / SUV1 [baseline]), high baseline metabolic
tumor volume (MTV1), high baseline total lesion glyco-
lysis (TLG1) values;

3. Comparator: low baseline/post-NAC SUVmax, low
SUV ratio, low baseline MTV1, low baseline TLG1
values;

4. Outcomes: event-free survival (EFS), overall survival
(0S);

5. Study design: prospective and retrospective cohort stud-
ies.

6. The full text of potentially eligible studies was assessed
by applying the inclusion and exclusion criteria.


https://doi.org/10.37766/inplasy2023.7.0087
https://doi.org/10.37766/inplasy2023.7.0087

Clinical and Translational Imaging

The inclusion criteria for this study were: cohort studies
involving patients diagnosed with STS, specifically inves-
tigating the association between ['SF]JFDG PET metabolic
parameters (SUVmax, MTV, or TLG) and survival outcomes
(OS or EFS).

Studies were excluded if they met one or more of the fol-
lowing criteria: (1) review articles, case reports; (2) other
tumors (bone sarcomas, Ewing’s sarcomas); (3) no relevant
outcomes; (4) animal studies; (5) outcomes reported for
mixed groups (bone sarcomas and STS); (6) other radiop-
harmaceuticals used; (7) duplicated publications.

Any divergences were resolved through consensus, with
the supervising researcher (YL) stepping in when necessary.

Data extraction

A dedicated data collection form was developed for this
review, which two authors (MY and LB) used to indepen-
dently assess the complete manuscripts of all included trials
and extract the data. Extracted information encompassed:
(1) Basic study details such as the first author, publication
year, country, journal, study design, period, the number of
centers involved, follow-up period, and sample size; (2)
['8F]FDG PET scan data like PET scanners used, fasting
duration, pre-injection blood glucose tests, post-injection
interval, ['®F]FDG dose, and PET/CT timing; (3) Patient
and tumor specifics including cancer type, disease stage,
histological grade (using the Fédération Nationale des Cen-
tres de Lutte Contre Le Cancer [FNCLCC] grading system
if applicable [23]), tumor location, patient age and sex; (4)
['"®F]FDG PET parameters such as MTV and TLG segmenta-
tion methods, SUV type, cut-off determination method and
values, and effect estimates for study outcomes. We also
examined the supplementary or additional files associated
with the included articles for any pertinent data.

SUV1 and SUV2 were defined as the SUV of the primary
lesion pre- and post- NAC, respectively. The SUV ratio was
calculated as SUV2/SUV1. TLG1 and MTV1 values were
extracted from baseline ['*F]JFDG PET scans.

Outcome measures such as OS, EFS, Kaplan—Meier
curves, and hazard ratio (HR) values were extracted. For the
purpose of this meta-analysis, we consolidated progression-
free survival, disease-free survival, metastasis-free survival,
and event-free survival from the included studies, collec-
tively defining them as EFS.

HR values were used to measure the association between
['8F]FDG PET metabolic parameters and survival. Univari-
ate HR values were extracted directly if available or calcu-
lated using Tierney et al. methodology for original stud-
ies [24], univariate HR were replaced with multivariable if
available. This involved gathering relevant data, including
p values from the log-rank test, the total count of patients
in each group, and the number of events, allowing us to

calculate univariate HRs indirectly. Direct HR extraction
was performed from provided survival curves when present.

Data analysis and synthesis

We used STATA 17 (StataCorp LLC, Texas, US) and
Cochrane tool Review Manager (RevMan version 5.3) to
perform meta-analysis.

The impact of ['8F]JFDG PET parameters on survival out-
comes was assessed by calculating the pooled HR values
with its 95% confidential intervals (CIs).

Inter-study heterogeneity was evaluated using the
I-squared (/%) statistic and the Cochrane Q test, as rec-
ommended by the Cochrane Handbook [25]. If the value
was >40% and/or p <0.05, an effect estimate was considered
as significant for heterogeneity and random-effects model
(restricted maximum-likelihood, REML) was used. Other-
wise, a fixed-effects model based on the inverse-variance
approach was used. Results of meta-analysis were presented
using forest-plots. Statistical significance was set at 0.05 for
hypothesis testing.

We conducted a meta-regression analysis, leveraging
the REML random-effects model, to ascertain if the rela-
tionships between SUV1 and survival outcomes might be
affected by variables such as patient age, sex, histological
grade, tumor location and stage, cut-off value, and the design
of the study [26]. The results of the meta-regression were
graphically represented using bubble-plots. The correlation
between clinical parameters of eligible studies was evaluated
using Spearman’s rank correlation coefficient.

Trial sequential analysis (TSA) was applied to examine
the sufficiency and currently available evidence. TSA was
conducted for survival outcomes and SUV1 parameter,
which is supported by the most substantial evidence. The
analysis was carried out utilizing dedicated TSA software
(Trial Sequential Analysis (TSA) [Computer program].
Version 0.9.5.10 Beta. The Copenhagen Trial Unit, Cen-
tre for Clinical Intervention Research, The Capital Region,
Copenhagen University Hospital—Rigshospitalet, 2021). If
the cumulative Z-curve crosses the monitoring boundaries, it
suggests that sufficient evidence for the association between
high SUV1 values (exposure) and the survival outcome may
have been reached, indicating that further studies may not
be needed [27]. The type I error rate was maintained at 5%
(2=0.05), and required heterogeneity adjusted information
sizes were calculated with 90% power (f=0.10), relative
risk reduction was set at 30%.

Internal validity and risk of bias assessment
The internal validity and risk of bias were assessed by two

independent reviewers (MY, LB) using the “Tool to assess
risk of bias in cohort studies” contributed by the CLARITY
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Group at McMaster University [28], the explanation for risk
of bias assessment is presented in Supplemental Appendix 2.
Eight areas were evaluated: patient selection, exposure
assessment, pre-existing exposure, control matching, con-
founding assessment, measurement of the outcome, follow-
up assessment, and co-intervention assessment. The risk of
bias was rated as low, moderate, or high. The results were
presented using the “Risk-of-Bias Visualization tool” [29].

Publication bias and small-study effects were assessed
using Egger’s test and funnel plot analysis [30]. We also
used a GRADE systematic approach to rate the certainty of
evidence. Baseline evidence level was high as for studies of
prognostic factor [31].

Sensitivity analysis

We conducted a sensitivity analysis in several ways: Firstly,
we analyzed the multivariable HRs obtained from the Cox
multivariable regression analysis in the original studies.

Secondly, we separately examined studies focusing on
pediatric and adult patients with STS. Pediatric patients
were defined per the Food and Drug Administration (FDA)
guidelines, which classify the pediatric population as birth
through 21 years of age [32]. The patient populations in the
majority of the eligible studies consisted of a diverse mix of
both adults and children, in varying proportions. To clearly
categorize the studies based on patient demographics, we
employed a strategy wherein studies were classified as ‘pedi-
atric’ if they comprised 75% or more pediatric patients. Con-
versely, studies were labeled as ‘adult’ if pediatric patients
made up less than 25% of the study population.

Finally, we evaluated the results of studies with only low-
to-moderate overall risk of bias.

Results
Baseline characteristics of the included studies

The initial literature search yielded a total of 6,775 studies
across multiple databases, and an additional 41 studies were
obtained through other sources (Fig. 1).

Following the removal of duplicate and irrelevant records,
the remaining 1,495 articles underwent title and abstract
screening. From these, 147 full-text articles were reviewed
for eligibility criteria. A total of 1932 patients from 31 stud-
ies were included in this systematic review and meta-anal-
ysis [12-15, 20, 33-58] with major exclusions presented in
Supplemental Table 1.

The characteristics of the included studies are shown in
Table 1.

Among the 31 included studies, four were prospective
observational [45, 46, 52, 55]; six studies [14, 42, 43, 45,
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50, 52] were designed as multicentric, and the remaining
studies followed a single-center design. The mean age of
the patients within included studies ranged between 5 to
74 years, and six studies were designated as ‘pediatric’
[12, 13, 39, 41, 42, 45]. The included studies varied in
aspects of metastatic disease stage, tumor location, and
histological grade. The distribution of soft-tissue sarcoma
types across the included studies can be found in Supple-
mental Table 2. Notably, all studies classified as ‘pediat-
ric’ incorporated patients diagnosed with rhabdomyosar-
comas (RMS), with a similar distribution in RMS subtypes
(embryonal, alveolar).

Table 2 outlines the different methodologies of ['*FIFDG
PET scanning employed across the studies.

The scanning protocols administered were not uniform
and varied according to the individual study design. Like-
wise, there was a lack of consistency in the methods used to
determine the cut-off values across the studies. Sixteen stud-
ies leveraged receiver operating characteristic (ROC) curves,
seven utilized median values, two applied cut-off point
analyses, two others relied on the minimal p value method,
and one referred to previous research for their cut-off. A
comprehensive summary of the cut-off values employed in
the eligible studies can be found in Supplemental Table 3.
Two studies used SUVpeak [43, 46] and one study used
SUVmean [20] instead of SUVmax. For MTV and TLG
calculation, six studies applied a fixed absolute segmentation
method (SUV 2-2.5) [36-38, 44, 50, 51], and three studies
used a fixed relative threshold of 40% [34, 40, 42].

Prognostic value of ['®F]FDG PET parameters for EFS
and OS

SUVI1: In a meta-analysis of 16 studies involving 1222
patients, we found a significant association between SUV 1
and EFS (HR =1.68, p<0.001, high heterogeneity: I>=94%;
Fig. 2; Supplemental Fig. 2, Table 3).

This relationship was confirmed in multivariable data
analysis (HR=1.75, p=0.025) and in the subgroup analy-
sis of low-to-moderate bias studies (HR=1.82, p=0.004).
‘Adult’ studies (n=610) exhibited a stronger correlation
(HR=2.49, p<0.001, = 0), whereas ‘pediatric’ stud-
ies (n=517) found no significant association (HR=1.14,
p=0.2, Fig. 3).

The correlation of SUV1 with OS, as confirmed by
22 studies encompassing 1,312 patients, was significant
(HR =3.07, p <0.001, high heterogeneity: I* =74%; Fig. 2;
Supplemental Fig. 2, Table 3). This outcome was vali-
dated by subgroup analyses based on the statistical analy-
sis method (HR =2.84, p=0.002), as well as by the sub-
group analysis of low-to-moderate bias studies (HR =2.94,
p <0.001). This association was more pronounced in ‘adult’
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Fig.1 PRISMA flow diagram for study selection

studies (n=964, HR =3.95, p<0.001, P= 3) and was non-
significant in ‘pediatric’ studies (n=348, HR=1.14, p=0.4,
Fig. 3).

SUV2: A significant relationship was found between
high SUV2 and poor EFS across three studies (n=163,
HR =3.13, p <0.001, high heterogeneity: I =59%; Supple-
mental Fig. 3, Table 3), as was the SUV2 and OS relation-
ship (n=163, HR =2.09, p=0.001, I>=0%; Supplemental
Fig. 3, Table 3). No subgroup analyses were conducted for
these parameters.

SUV ratio: The analysis of five studies (n=432) estab-
lished a significant association between a low SUV ratio and
improved EFS (HR=0.61, p=0.049, I*=22%; Supplemen-
tal Fig. 4, Table 3), particularly in ‘adult’ studies (n="77,
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HR =0.26, p=0.003), but not in ‘pediatric’ ones (n =260,
HR=0.87, p=0.6, Table 3). Conversely, no significant asso-
ciation was found between SUV ratio and OS across five
studies (n =283, HR=0.47, p=0.13, high heterogeneity:
I>=84%; Supplemental Fig. 4, Table 3).

MTVI: An assessment of five studies on MTV1 and EFS
encompassing 317 patients revealed a significant association
(HR =2.29, p=0.011, high heterogeneity: I*=75%; Supple-
mental Fig. 5, Table 3), which was stronger in ‘adult’ studies
(n=153,HR=3.54, p<0.001, P= 0), but not significant in
‘pediatric’ studies (n=164, HR =1.54, p=0.4, Table 3). The
MTV1 and OS correlation across nine studies (n=381) was
also significant (HR =3.05, p <0.001, high heterogeneity:
P=72%; Supplemental Fig. 5, Table 3), and was significant
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- E in ‘adult’ studies (n=217, HR=4.06, p <0.001) and non-
%<Zt = significant in ‘pediatric’ studies (n=164, HR=1.51, p=0.4,
P £5 e Table 3).
25 < 58 < < <« g TLGI: Exploration of TLG1 and EFS in four studies
Z SR g . . . .
25 Z < Zz Z Z © with 216 patients demonstrated a significant association
§ c:% (HR =2.85, p=0.032, high heterogeneity: I>=77%; Sup-
> ~ . y ~ ~ g plemental Fig. 6, Table 3). The TLG1 and OS relationship
2 £ & g & g > across seven studies (n=261) also revealed a significant
& Lo . .
. = association (HR=3.23, p=0.002, high heterogeneity:
_fé é I?=67%; Supplemental Fig. 6, Table 3). Subgroup analyses
= & g El O s g g 3 were not performed for these correlations.
g s 893 508 Q S,
s |&FFE 2 % g |3
©E = g Risk of bias and GRADE assessment
. B -
£< > E The overall risk of bias of the 31 enrolled studies was judged
%) § E o o as ‘low’ in three trials, ‘some concerns’ in 9 trials and ‘high’
Qs 5 2: § z <zt <zt E] in 16 trials (Supplemental Fig. 1). The primary sources of
5 o E bias were the lack of matching for confounding variables,
g z % ;% E inconsistent follow-up, and variation in co-interventions
B2 _ 2 S - - - E among the studies.
E g é é 2 é é é 5 Egger’s test and funnel plot analysis revealed presence of
: = s publication bias and small-study effects for the majority of
| 9 E the analyses (Table 3, Supplemental Figs. 7-11).
8 % ® g é<zt 9 0 ® g Moderate level of evidence (GRADE approach) was
= 5 5 2 23 3 < stated for the evidence of decreased EFS and OS in adult
2 E 2 258 2 & a patients with high SUV1 and MTV1 (Supplemental
_ z § Table 4). However, the certainty of evidence for other ['*F]
é: Qﬁ = 5 FDG PET metabolic parameters was classified as ‘very low’.
e 2 3 g
22 E % v £ o Meta-regression
A o A Z Z Z = "§
S =
.§ g 3 § The meta-regression analysis revealed patient age as the only
%E % 3 significant modifier of the association between SUV1 and
= O . .
“é g - - v 2 o S s survival outcomes (Supplemental Table 5). Specifically, an
K& o © Zz Z = Sg elevation in the average patient age within the study was
Q . . . . .
3 g 5 significantly tied to an amplified HR for SUV1 and survival
8w & outcomes (Coeff. 0.016 for EFS and 0.026 for OS, p<0.001,
%.‘é" g E‘zé Fig. 3, Supplemental Figs. 13, 14). An inverse correlation
25 z % % % ﬂzﬁ % § g was observed between the average patient age in the studies
g g and the proportion of patients diagnosed with high-grade
& =3 tumors (Supplemental Table 6 and Supplemental Fig. 12).
= pp pp g
S -
) Qg . . .
£ ~ g Trial sequential analysis
& o & & = 8
gl © © Z 4 < 25
o s goi For association between SUV1 and survival outcomes in
% E], s £ 5 adult patients with STS the TSA analysis showed that the
3 z E = % g cumulative z-curve, after crossing the O’Brien—-Fleming
== g 8 % & % nZ< = B g boundary for effect, did not reach the required sample size
Q = . .
E = E § (2007 patients for EFS and 3191 patients for OS, Supple-
g g § S ic o é E mental Figs. 15 an.d 17)..Tbese TS.As.suggest tbat, although
~ o = ) g e ‘g 2| g g the pooled effect is statistically significant, with regard to
(o] = — . . oy
LT sy Zm Ez 53 gz 50 sample size, the result is not definitive to reach 90% study
s |2 En 2o ES S8 ES|RS : .
c 3 3 S 5 = = =~ power, and future studies are necessary to be conclusive.
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Table 3 (continued)

Effect model

p value for publica-
tion bias (Egger’s

test)

p value for P %

p value for

95% CI

Studies, N Cohorts, N Patients, N HR

Outcome

overall effect heterogeneity

Random

<0.001
NA

67

0.001
0.5

1.57-6.67  0.002

23
48

3.

261
91

Univariate analysis

TLG1

Random

<0.001
0.15

1.86-10.79

4.

Multivariable analysis

Random

0.012

76

0.007

2.04 0.78-5.36

154

Low-moderate bias studies

HR hazard ratio, SUV standardized uptake value, TLG total lesion glycolysis, MTV metabolic tumor volume, CI confidence interval, NA not applicable

Conversely, when exploring the association between
SUV1 and survival outcomes in pediatric patients, the cumu-
lative z-curve lies in the zone with no statistical significance
and not reach the required sample size (1475 patients for
EFS and 1695 patients for OS, Supplemental Figs. 16 and
18). This implies that the sample size of the meta-analysis
was too small, and it is therefore impossible to infer where
the cumulative z-line will lie in future trials.

Discussion
Key findings

Our principal finding suggests that high SUV1 (moderate
evidence), SUV2 (very low evidence), MTV1 (moderate evi-
dence) and TLG1 (very low evidence) values are strongly
associated with unfavorable EFS and OS in adult patients
with STS (all HRs >2). According to the proposed prognos-
tic factor categories of Hayes et al., a HR exceeding 2 might
be regarded as a strong prognostic factor [59]. However,
very low-level evidence suggests that no ['F]JFDG PET
metabolic parameter is associated with survival outcomes
in pediatric patients with RMS. The SUV ratio parameter
demonstrated contradictory results—it was associated with
EFS in adult patients, yet showed no correlation with OS.

The meta-regression analysis revealed that patient age
is a significant modifier of the association between SUV1
and survival outcomes, thus emphasizing the role of patient
age in the predictive value of ['*FJFDG PET metabolic
parameters.

The TSA analysis indicated that further research is nec-
essary for definitive conclusions, especially in the pediatric
patient population.

Relationship with previous studies

The results of our systematic review and meta-analysis are
largely consistent with previous meta-analyses highlighting
the prognostic potential of various ['*F]FDG PET meta-
bolic parameters in oncological settings. Specifically, meta-
analyses have indicated the utility of SUV, MTV, and TLG
parameters in predicting survival outcomes in patients with
STS [17-19].

In particular, our findings corroborate previous research
suggesting that higher pre- and posttreatment SUV values
can predict poor survival outcomes. This is consistent with
prior studies indicating that higher SUV values, reflecting
high metabolic activity of the tumor and the proliferation
rate of tumor cells, are associated with aggressive tumor
behavior and poorer patient outcomes [60, 61]. In the sys-
tematic review by Lim et al. (2019), it was also demon-
strated that a reduction in SUVmax correlates with improved
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A SUV1 and EFS

B SUV1 and 0S

HR Weight HR Weight
Study with 95% Cl (%) Study with 95% Cl (%)
1. Univariate all 1 1. Univariate all
Casey, 2014 |—=— 204[1.12, 372 280 Andersen 1, 2015 — 3.75[145, 9.70] 2.05
Choi, 2013 —— 295[1.10, 7.90] 1.69 Casey, 2014 = 193[1.11, 336 275
Dharmarajan, 2012 - 163[0.94, 2.83] 299 Chang, 2014 — 370[1.01, 1356] 153
El-Kholy, 2019 —— 1.15[0.67, 1.97] 3.04 El-Kholy, 2019 — 110[0.58, 2.08] 2.60
Fayolle, 2022 —m— 1.25[074, 2.11] 3.10 Fayolle, 2022 - 105[0.63, 1.76] 281
Fendler, 2015 | 200[1.08, 370 275 Ha, 2016 —— 4.97[160, 1541] 176
Ha, 2016 ‘ ———m———— 574[167, 19.70] 125 Hack, 2021 —— 3.32[163, 6.78] 246
Harrison 1, 2021 | ] 0.97[091, 1.03] 455 Hong, 2014 —— 4810191, 1210] 2.09
Harrison 2, 2021 o 1.00[0.95, 1.05] 4.56 Jo, 2022 - 277[166, 462] 282
Jo, 2022 —— 265[1.62, 433 3.22 Kalisvaart, 2021 —— 5.07[224, 11.48] 228
Lisle, 2008 ‘ - R - 254131, 4.93] 258 Kato, 2020 — 9.56[1.72, 53.15] 1.09
Parambil, 2023 | ] 0.98[0.87, 1.11] 447 Kitao, 2019 — 3.76[0.85 16.58] 1.32
Park, 2017 | ——— 3.57[1.16, 11.00] 1.42 Lisle, 2008 —a— 6.52[1.76, 24.15] 152
Rhu, 2019 ‘ —— 215[1.30, 355 3.18 Okazumi, 2009 - 505[057, 44.90] 077
Sambri, 2019 ‘ 5.11[1.03, 25.34] 0.83 Parambil, 2023 ] 0.99[0.86, 1.14] 3.29
Tateishi, 2011 —_—— 1.26[0.39, 4.10] 1.33 Park, 2017 —_— 587[1.32, 26.08] 1.31
Yamamoto, 2017 — 2.78[0.79, 9.76] 1.22 Rhu, 2019 —.— 505[1.85 13.78] 1.96
Heterogeneity: 1° = 0.16, I” = 94.47%, H’ = 18.07 ‘ 168[1.31, 2.14] Sambri, 2019 — 4.27[155, 11.76] 1.95
Test of 6, = 8;: Q(16) = 70.24, p = 0.00 Tateishi, 2011 —.— 1.08[0.38, 3.08] 1.89
Umemura, 2017 _ 560[1.33, 2355 137
2. Multivariable all Wakamatsu, 2021 — - 9.87[2.86, 34.10] 161
Fayolle, 2022 — . 125[0.74, 2.11] 3.10 Yamamoto, 2017 —— 6.10[1.64, 2271] 151
Ha, 2016 T = 5650157, 2034 118 N \yeterogencity: 2 = 0.36, I = 74.42%, H? = 3.91 ‘ 307[220, 428]
Jo, 2022 L 1010094, 1.08] 454 1 1estofe, = 6: Q(21) = 11199, p = 0.00
Lisle, 2008 | —a— 254[131, 493 258
Rhu, 2019 | —— 2.15[1.30, 3.55] 3.18 2. Multivariable all
Heterogeneity: 1° = 0.22, I> = 81.24%, H’ = 5.33 ‘ 1.75[1.07, 2.86] Andersen 1, 2015 R — 3.75[145, 9.70] 2.05
Test of 6, = §;: Q(4) = 22.85, p = 0.00 Fayolle, 2022 - 105[063, 176] 281
Ha, 2016 —a— 4.96[154, 16.01] 1.70
3. Pediatric patients (all - rhabdomyosarcoma) Jo, 2022 - 1.09[1.03, 1.15] 333
Casey, 2014 [ 204[112, 372] 280 Lisle, 2008 — 652[1.76, 24.15] 152
Dharmarajan, 2012 —— 1.63[0.94, 2.83] 299 Okazumi, 2009 - 505[0.57, 4490] 077
El-Kholy, 2019 _\._ 115[0.67, 1.97] 3.04 Rhu, 2019 - 5050185, 1378 196
Fayolle, 2022 i 1250074, 2] 310 1 \yakamatsu, 2021 L 16.47[0.58, 466.29] 038
Harrison 1, 2021 u 0970091, 1031 455 | eterogeneity: 12 = 0.56, I> = 81.80%, H’ = 5.50 ‘ 284[147, 551]
Parambil, 2023 | 0.98[0.87, 1.11] 447 Test of 6, = 6 Q(7) = 33.15, p = 0.00
Heterogeneity: 1° = 0.03, I = 76.16%, H’ = 4.19 ‘ 1.14[0.93, 1.39]
Testof 8, = 6;: Q(5) = 10.19, p = 0.07 3. Pediatric patients (all - rhabdomyosarcoma)
4. Adults only Casey, 2014 - 193[1.11, 3.36] 275
Choi, 2013 } - 295[110, 7.90] 169 El-Kholy, 2019 — 110[0.58, 208 260
Fender, 2015 — - 200[1.08, 370] 275 [ Favolle 2022 - 105[063,  1.76] 281
Ha, 2016 - 574[167, 1970] 125 Parambil, 2023 0.99[0.86, 1.14] 3.29
Jo, 2022 - 265[162, 433 322 Heterogeneity: 12 = 0.04, I = 43.64%, H> = 1.77 ‘ 114086, 1.51]
Lisle, 2008 — - 254[131, 493] 258 Testof 6 =6; Q(3) = 5.26, p=0.15
Park, 2017 — 3.57[1.16, 11.00] 1.42 4. Adults only
Rhu, 2019 —— 215[1.30, 3.55] 3.18 Andersen 1, 2015 —a— 375[145, 9.70] 2.05
Sambri, 2019 5.11[1.03, 26.34] 083 Chang, 2014 —.— 3.70[1.01, 13.56] 153
Tateishi, 2011 —_— 1.26[0.39, 4.10] 1.33 Ha, 2016 — 497[1.60, 1541 1.76
‘Yamamoto, 2017 - 278[0.79, 9.76] 1.22 Hack, 2021 —m— 3.32[163, 6.78] 246
Heterogeneity: 1 = 0.00, I” = 0.00%, H® = 1.00 ’ 249[1.96, 3.17) Hong, 2014 - 4810191, 1210] 2.09
Test of 8 = 8;: Q(9) = 5.24, p = 0.81 —_ Jo, 2022 -l 277166, 462] 282
"2 2 4 816 Kalisvaart, 2021 —— 5.07[2.24, 11.48] 228
Kato, 2020 — 9.56[1.72, 53.15] 1.09
Kitao, 2019 = 376[0.85, 1658] 1.32
Lisle, 2008 — 6.52[1.76, 24.15] 152
Okazumi, 2009 _— 5.05[057, 44.90] 0.77
Park, 2017 —a— 587[132, 26.08] 131
Rhu, 2019 —O— 505[1.85 13.78] 1.96
Sambri, 2019 —— 4.27[155, 11.76] 1.95
Tateishi, 2011 —.— 1.08[0.38, 3.08] 1.89
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recurrence-free survival in patients with STS. Furthermore,
they found a strong correlation between SUV and tumor
grade, with the majority of intermediate/high-grade STS
exhibiting significantly higher SUVmax values [16]. Similar
to the study by Li et al., we found no significant relationship
between SUV ratio and OS [17]. While the SUV ratio dem-
onstrated a significant correlation with EFS, especially in
adult patients, the lack of a significant association with OS
might be attributed to high clinical and statistical heteroge-
neity of included studies.

Similarly, our results align with previous research dem-
onstrating that higher MTV and TLG values are associated
with poorer survival outcomes. MTV refers to the volume
of the lesion that exhibits metabolic activity, while TLG
represents the product of the average SUV of the lesion and
the MTV. These parameters provide volumetric and func-
tional information about tumor metabolic activity and can
theoretically more accurately reflect the actual tumor burden
[62], and their association with survival outcomes has been
reported in numerous cancers, including sarcomas [17-19,
63-65]. It’s notable that the MTV and TLG data used in this
meta-analysis was obtained from pre-chemotherapy ['®F]
FDG PET imaging. Currently, there is no evidence regarding

the prognostic value of MTV and TLG derived from post-
chemotherapy imaging in patients with STS.

However, we observed that all associations of ['*FJFDG
PET metabolic parameters with survival outcomes were gen-
erally stronger in adult studies compared to pediatric ones,
which is an aspect not examined in previous studies.

Significance of study findings

Our findings suggest that high SUV1, SUV2, and pretreat-
ment MTV and TLG values can serve as predictors of EFS
and OS, highlighting their potential as prognostic markers in
patients with STS. Thus, it might be beneficial for physicians
to adopt a more stringent follow-up regimen with reduced
intervals for patients exhibiting high SUV1, MTV1 or TLG1
values. Furthermore, low SUV2 values may also suggest
well chemotherapy response.

In our study, pretreatment MTV and TLG parameters
showed higher HR values than SUV. The predictive advan-
tage of MTV and TLG over SUV may stem from their ability
to better reflect the tumor’s overall metabolic burden, which
is associated with tumor aggressiveness and patient progno-
sis. These parameters consider the metabolic heterogeneity
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within the entire tumor, rather than a single point, which
can often lead to a more accurate prediction of treatment
outcomes.

It should be noted that the strength of associations
between PET metabolic parameters and survival outcomes
varied between adult and pediatric populations. Moreover,
the meta-regression analysis revealed patient age as a signifi-
cant modifier of the association between SUV1 and survival
outcomes, underscoring the importance of considering age-
specific factors in prognostic assessments. The prognosis
impact of ['®F]FDG uptake might be different in adult or
pediatric patients as none of the previous meta-analyses
were realized in a strictly pediatric population [66]. In the
literature, the prognostic relevance of patient age remains
controversial, older age seems to be associated with a worse
outcome in both STS [67], osteosarcoma [68] and Ewing’s
sarcoma [69]. Additionally, our research indicated that
younger patients tend to have tumors of a higher histological
grade. This observation leads us to speculate that the con-
trasting impacts of SUVs on prognostic outcomes between
pediatric and adult populations, as documented in our study,
could be attributed to these underlying variations in tumor
biology. These biological differences could lead to variable
responses to systemic cytotoxic therapy across age groups.

It is crucial to emphasize that our conclusions regard-
ing the lack of impact of ['®F]FDG PET parameters on
prognosis in the pediatric population were based solely on
patients with rhabdomyosarcoma. Unlike "adult-type" sar-
comas, rhabdomyosarcoma is characterized by high sensitiv-
ity to chemotherapy. Moreover, pediatric patients typically
undergo more aggressive treatment protocols compared to
adults due to their better overall health and ability to tolerate
intensive therapies, which can affect the metabolic activity
of the tumor and potentially the utility of ['*FIFDG PET
parameters.

This systematic review and meta-analysis also provide an
overview of the heterogeneity present in current studies with
regards to methodological aspects, such as ['*FIFDG PET
scanning protocols and cut-off value determination methods.
These findings underscore the need for standardized proto-
cols and analytical methods to further enhance the reliability
and reproducibility of research in this field.

Strengths and limitations

To our knowledge, this is the largest meta-analysis designed
to systematically explore the relationships between ['®F]
FDG PET parameters and survival outcomes in patients
with STS. Unlike some previous studies, we avoided com-
bining different sarcoma types. Bone sarcomas, STS and
Ewing’s sarcomas are heterogeneous groups, each possess-
ing unique histological subtypes, molecular profiles, and
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clinical behaviors that can influence ['®F]FDG uptake pat-
terns. For instance, some soft-tissue sarcomas (STS) may
exhibit higher metabolic rates, leading to increased ['*F]
FDG uptake, compared to certain bone sarcomas [15, 70,
71]. Combining these groups can consequently mask the
distinct correlations between ['*F]JFDG PET parameters and
survival outcomes. In studies that included patients with
various types of sarcomas, including bone sarcomas and
Ewing’s sarcoma, we exclusively extracted data pertaining
to patients STS.

Notably, our study is the first to investigate and highlight
the differences in the prognostic value of ['*FJFDG PET
metabolic parameters between adult and pediatric patients
with STS. We found a significant impact of age on the asso-
ciation between SUV1 and survival outcomes.

We performed an extensive subgroup analysis including
multivariable data analysis based on Cox proportional haz-
ards model, that reduces bias from some major confounding
variables. Furthermore, we executed an additional analysis
in studies with low-moderate risk of bias, complemented by
meta-regression and trial sequential analysis.

In addition, some limitations of this review must be
acknowledged. One of the main limitations is the high level
of heterogeneity observed among the included studies. This
heterogeneity could stem from factors such as variations in
study design, scanning protocols, methods for determining
cut-off values, and patient demographics, which could affect
the findings and their interpretation. On the other hand, the
robustness of the results, despite the heterogeneity of the
studies, may indicate high transitivity of the results and high
quality of evidence. The included studies employed various
segmentation methods to derive MTV for survival predic-
tion, potentially leading to diverse MTV estimations, and
consequently, impacting the TLG values [72].

Second, considering that 14 out of the 31 studies included
in our meta-analysis represented mixed cohorts of pediatric
and adult patients, we opted for a cut-off point of 75% chil-
dren to categorize a study as ‘pediatric’. This could, how-
ever, have introduced a potential skewness in our results.

Third, although our meta-analysis exclusively focused on
STS, it incorporates diverse STS types, including RMS, syn-
ovial sarcoma, angiosarcoma, liposarcoma, leiomyosarcoma,
etc. This could also have affected the results, as different
STS variants depending on histologic type and histological
grade may exhibit varying levels of ['*F]FDG accumula-
tion [70, 73]. Significant variability precluded a subgroup
analysis for different STS subtypes; however, it should be
noted that all studies classified as ‘pediatric’ were solely
represented by patients with RMS.

Fourth, the presence of publication bias and small-study
effects for some analyses, as revealed by Egger’s test and
funnel plot analysis, suggest that those results should be
interpreted with caution.



Clinical and Translational Imaging

Fifth, another potential source of bias in our study may
stem from our methods of HR extraction. In cases where
HRs were explicitly provided, we incorporated them directly.
However, when HRs were not stated, we derived them either
from the outcome data given in the articles or extrapolated
from survival curves using univariate analysis. Therefore,
this may have potentially introduced bias into meta-analysis.

Lastly, the overall risk of bias in the included studies was
either ‘high’ or of ‘some concerns’ for the majority of the
trials. Most common sources of bias were the lack of match-
ing for confounding variables, inconsistent follow-up, and
variation in co-interventions among the studies. These fac-
tors may have affected the reported associations and thus,
the interpretations drawn from our meta-analysis.

Future studies and prospects

Looking ahead, future research can address the limitations
observed in meta-analysis. Investigating the prognostic
significance of post-chemotherapy MTV and TLG, as well
as examining the changes in these parameters from pre- to
post-chemotherapy in the context of predicting chemother-
apy response, could provide intriguing prospects for future
studies. To assess the impact of baseline and post-therapy
PET/CT parameters on survival rates, additional prospective
clinical studies with clearly defined time points are needed
for evaluating PET/CT parameters in patients with various
biological types of rhabdomyosarcoma (fusion-positive and
fusion-negative). Special interest may be in organizing and
conducting similar studies in children and adolescents with
“adult-type” soft-tissue sarcomas, which, in terms of their
biology and sensitivity to chemotherapy, are much closer to
similar tumors in adults compared to rhabdomyosarcoma.
Results of TSA analysis suggests that there is a need for pro-
spective, multicenter studies with a more uniform methodo-
logical design. The protocols for ['®F]FDG PET scanning,
segmentation methods and the methods to determine cut-off
values should be standardized across these studies to ensure
consistency and comparability of results. This can contribute
to a more robust and generalizable evidence base regarding
the prognostic value of PET parameters in patients with STS.

Conclusion

In conclusion, our systematic review and meta-analysis
provide evidence that ['®F]FDG PET parameters of SUV1,
SUV2, MTV1, and TLGI, hold significant prognostic value
for event-free survival and overall survival in adult patients
with STS. Notably, we found that the association of these
parameters with survival outcomes was non-significant in
pediatric patients, underscoring the necessity of age-specific
considerations in future research focused on investigating

[18FJFDG PET prognostic parameters and their clinical
application for patients with STS. Future well-designed
prospective multicenter studies with uniform methodology
are needed to validate our findings and further explore the
value of clinical use of ['*F]JFDG PET imaging in improving
outcomes of patients with STS.
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