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Abstract
Purpose  Positron emission tomography (PET)/magnetic resonance imaging (MRI) is a hybrid imaging modality that com-
bines MRI and PET imaging into a comprehensive modality for oncologic evaluation. MRI contributes with excellent soft 
tissue contrast resolution along with multiparametric information and PET with exquisite high sensitivity. Together they 
facilitate lesion detection and characterization, TNM staging, and assessment of treatment response. This review aimed to 
survey the published PET/MRI research findings for body oncology and reflect upon them.
Methods  This narrative overview of the literature summarizes the findings of published research articles on PET/MRI for 
oncology (excluding neurologic applications) indexed in the online databases Google Scholar, PubMed, and Scopus, from 
its commercial introduction in 2011 to the present (2023).
Results  The theoretical advantages of PET/MRI have been demonstrated in practice with studies showing PET/MRI has 
comparable or superior sensitivity and specificity to PET/CT and MRI in most cancers, with the advantage of being acquired 
in a single session. Limitations include the comparatively lesser availability and the higher cost, both of which are predicted 
to be offset by increased adoption.
Conclusions  PET/MRI has the potential to become the standard test for staging and post-treatment evaluation of many 
primary tumors.
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Purpose

Simultaneous positron emission tomography (PET)/mag-
netic resonance imaging (MRI) is a hybrid imaging tech-
nique commercially introduced in 2011 [1], after the devel-
opment of avalanche photodiodes [2], and most recently 

silicon photomultipliers, breakthroughs in engineering that 
allowed incorporation of PET detectors into the MRI system 
without meaningful interference [3]. Previously used photo-
multiplier tubes suffered interference from magnetic fields 
making such achievement impossible. PET/MRI promised 
to address some of the limitations of the current oncologic 
standard of care imaging, namely, PET/CT. These include 
the poor soft tissue contrast of CT [4], which is exacerbated 
when performed with low radiation doses for attenuation 
correction purposes only. Another shortcoming of the cur-
rent PET/CT technology is that it cannot acquire PET and 
CT data at once, but rather does it sequentially. Usually, the 
attenuation correction CT is acquired first, only subsequently 
the PET data are obtained [5]. This may lead to misregistra-
tion artifacts due to motion, such as breathing and peristal-
sis [6–8]. These artifacts might result in missed lesions in 
sites adjacent to motion, such as the liver capsule. Moreover, 
the quantitative measurements extracted from PET, like the 
ubiquitous maximum standardized uptake value (SUVmax), 
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might be underestimated due to motion averaging [9]. PET/
MRI introduces the simultaneous acquisition of PET and 
MRI and leverages MRI data to motion-correct PET events, 
resulting in more accurate measurements [10, 11]. MRI also 
allows protocol customization for specific primaries, adding 
sequences, such as diffusion-weighted imaging (DWI) and 
perfusion imaging to evaluate tumors beyond their anatomy. 
Given all the potential applications of PET/MRI in cancer 
staging and post-treatment evaluation, this review aims to 
consolidate the research findings on body oncologic applica-
tions of this diagnostic technology.

Methods

This narrative overview of the literature summarizes the 
findings of published research articles on PET/MRI for 
oncology (excluding neurologic applications) indexed in 
the online databases Google Scholar, PubMed, and Scopus, 
from its commercial introduction in 2011 to the present 
(2023). The same keyword combinations were used across 
these platforms. For each organ/system a combination of 
relevant terms on the topic, plus the term “PET/MRI,” was 
entered in the appropriate search field. Detailed search que-
ries for each topic are included in Table 1. The returned arti-
cles were curated by an expert in PET/MRI, with 12 years 
of clinical and research experience, and included in the 
manuscript according to scientific soundness and relevance 
of the findings. When relevant, the references from returned 
articles were also reviewed. The review is structured with 
the following outlines: Head and Neck, Thorax, Breast, 

Cholangiocarcinoma, Pancreas, Colon and Rectum, Geni-
tourinary Cancer, and Gynecological Cancer.

Results

Head and neck

Head and neck cancers (HNC) comprise 3% of all malignan-
cies, with 66,000 cases annually in the United States [12]. 
Histologically, most of them are squamous cell carcinomas. 
This anatomic region contains several critical structures. 
Hence, precise evaluation of the primary tumor size, as well 
as the involvement of regional lymph nodes, surrounding 
soft tissues, and osseous structures, is crucial for choosing 
the ideal treatment strategy. The superior soft tissue con-
trast of MRI makes it the preferred imaging modality for 
head and neck cancer evaluation, given its ability to deline-
ate tumor invasion more accurately [13]. Metabolic imag-
ing with 2-Deoxy-2-[18F]fluoroglucose ([18F]FDG) PET 
can enhance staging accuracy, identification of lymph node 
involvement, and differentiation of residual or recurrent dis-
ease [14]. Therefore, integrated PET/MRI, which combines 
the advantages of both methods, can meaningfully improve 
diagnostic accuracy (Fig. 1).

Previous studies show PET/MRI has a higher sensitivity 
and specificity in detecting HNC than stand-alone PET, CT, 
or MRI [15–18]. The high efficacy of PET/MRI in T staging 
of HNC has been demonstrated in several studies [19–21]. 
For example, PET/MRI showed high accuracy in the assess-
ment of intracranial, retropharyngeal, skull, and prevertebral 
invasion, in addition to depicting perineural infiltration and 

Table 1   Search queries for each review topic

Review topic Search query

Head and Neck (“PET/MR” OR “PET/MRI”) AND (“Head and Neck” OR “Cervical”) AND (“Cancer” OR “Tumor” OR “Carci-
noma”)

Thorax (“PET/MR” OR “PET/MRI”) AND (“Lung” OR “Bronchial”) AND (“Cancer” OR “Tumor” OR “Adenocarcinoma” 
OR “Small-Cell -Carcinoma” OR “Non-Small-Cell Carcinoma” OR “Squamous Cell Carcinoma” OR “Large Cell 
Carcinoma”)

Breast (“PET/MR” OR “PET/MRI”) AND (“Breast”) AND (“Lobular Carcinoma” OR “Ductal Carcinoma” OR “Cancer”)
Cholangiocarcinoma (“PET/MR” OR “PET/MRI”) AND (“Cholangiocarcinoma”) OR ((“Bile Ducts” OR “Bile Duct”) and “Cancer”)
Pancreas (“PET/MR” OR “PET/MRI”) AND ((“Pancreas” OR “Pancreatic”) AND (“Cancer” OR “Carcinoma” OR “Adeno-

carcinoma” OR “Neuroendocrine Tumor”)))
Colon and Rectum (“PET/MR” OR “PET/MRI”) AND ((“Colon” OR “Rectal” OR “Rectum” OR “Colorectal”) AND (“Cancer” OR 

“Carcinoma” OR “Adenocarcinoma”))
Genitourinary cancer (“PET/MR” OR “PET/MRI”) AND ((“Renal Cell Carcinoma”) OR ((“Kidney” OR “Renal”) AND “Cancer”) OR 

(“Prostate" AND "Cancer”)))
Gynecological cancer (“PET/MR” OR “PET/MRI”) AND (“Cervical” OR “Uterine” OR “Ovarian” OR “Endometrial” OR “Vulvar” OR 

“Vaginal”) AND (“Cancer” OR “Adenocarcinoma” OR “Squamous Cell Carcinoma” OR “Tumor”)
Neuroendocrine tumors (“PET/MR” OR “PET/MRI”) AND (“Neuroendocrine Tumor” OR “Carcinoid Tumor” OR “Pancreatic Neuroendo-

crine Tumor” OR “Gastrointestinal Neuroendocrine Tumor” OR “Lung Neuroendocrine Tumor” OR “Bronchial 
Neuroendocrine Tumor” OR “Small Intestinal Neuroendocrine Tumor” OR “Appendiceal Neuroendocrine Tumor”)
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muscular involvement [22, 23]. Another study reported a 
good imaging-pathological correlation between PET/MRI 
and surgical specimens in 67% of patients [24].

Before starting any therapy, assessment of nodal metas-
tases is crucial since cervical lymph node involvement is 
common in HNC patients and is considered one of the most 
important predictors of prognosis. Nodal metastases are usu-
ally [18F]FDG avid. Thus, [18F]FDG-PET combined with 
DWI and dynamic contrast-enhanced MRI can be comple-
mentary to overcome the limitations of stand-alone MRI in 
detecting the small size and variable morphologic appear-
ances of cervical lymph nodes [25].

Regarding M staging, the evaluation of lung and liver 
metastases is crucial, considering that those are the most 
common sites of spread in the 15% of patients who do 
develop distant metastases [26, 27]. While PET/MRI is 
superior in evaluating distant metastases from a range of 
primaries to a variety of organs, and especially to the bones, 
liver, lymph nodes, and peritoneum [28–32], it is limited in 
detecting lung metastases, especially if < 7 mm in maximal 
diameter [33]. Therefore, a dedicated chest CT needs to be 
obtained in those undergoing PET/MRI.

Thorax

Primary lung tumors

Tumors originating in the lung are highly lethal and are pro-
jected to account for 20% of cancer-related deaths in 2022 
[12]. Non-small-cell lung cancer (NSCLC) comprises 85% 
of lung tumors and encompasses squamous cell carcinoma, 
adenocarcinoma, and large cell carcinoma [34]. For this 
group, [18F]FDG PET/MRI is comparable to [18F]FDG 
PET/CT in the initial staging [35]. Moreover, PET/MRI 
outperforms PET/CT in detecting brain and liver metasta-
ses [36]. The determination of tumor resectability is also 

adequately performed using [18F]FDG PET/MRI with a 
tailored protocol including breath-hold T1-weighted and 
respiratory-gated T2-weighted images [37]. Another pro-
spective study with 50 patients showed a specificity of 92% 
and a sensitivity of 97% for [18F]FDG PET/MRI in deter-
mining primary tumor resectability [38] (Fig. 2).

A marked advantage of PET/MRI over PET/CT is the 
possibility of integrating a brain MRI into the whole-body 
scan. This integration saves time, contrast media, and is 
more convenient for the patient. The nervous system is the 
most common site of lung cancer metastases [39]; there-
fore, brain evaluation is of utmost importance in lung cancer 
staging.

Lung metastases

The lung is the third most common site of metastases for 
men and women [40]. Therefore, besides evaluating primary 
masses, it is essential to examine the lungs in the setting 
of any whole-body staging. In this regard, MRI is intrinsi-
cally limited due to low proton density and motion artifacts. 
Even though specialized MRI sequences, such as ultrashort 
echo time and zero-echo time, provide a better evaluation 
than standard Dixon images, MRI still falls short of CT 
performance for lung nodule detection [41–44]. PET/MRI 
inherits this deficiency, presenting subpar sensitivity for lung 
nodules ranging from 30 to 80% [33, 45–48]. This prob-
lem becomes more evident as nodule size decreases, with 
a sensitivity < 15% for ≤ 5 mm nodules [33]. However, in 
several types of malignancies, if metastatic disease is already 
detected elsewhere, diagnosing additional lung lesions may 
not change management. Thus, in most cases, [18F]FDG-
PET/MRI is well positioned as a one-stop-shop modality 
for cancer staging (Fig. 3). Notwithstanding, in the specific 
cases where identifying a lung metastasis would result in 
management changes, PET/MRI should be complemented 

Fig. 1   Axial [18F]FDG-PET (a), corresponding level T2-weighted FSE (b), fused PET/MRI (c). Markedly avid head and neck cancer (arrow), 
infiltrating the soft palate, with associated bilateral cervical lymphadenopathy (arrowheads) are well depicted on both MRI and PET
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by chest CT if negative for extrathoracic metastases and lung 
nodules.

Breast

Breast cancer is the most common neoplasm worldwide, 
and its annual incidence continues to increase in the United 
States [12]. MRI is the most accurate cross imaging modal-
ity for breast cancer evaluation, with a sensitivity of 99% and 
specificity of 89%, according to pooled data [49]. Regarding 
molecular imaging’s role in breast cancer management, the 
National Comprehensive Cancer Network currently consid-
ers [18F]FDG PET/CT an optional test [50]. It is thought 
that PET/CT helps identify occult nodal or metastatic dis-
ease. By incorporating PET into the already best-in-class 

MRI, [18F]FDG PET/MRI might serve as a one-stop-shop 
modality in the staging of this disease. The proven diagnos-
tic yield of MRI, combined with the incremental N and M 
staging performance delivered by PET, results in an even 
more robust test (Fig. 4). Case in point, [18F]FDG PET/MRI 
was superior to [18F]FDG PET/CT in whole-body staging 
[51, 52]. A retrospective study with 36 patients reported an 
increase in diagnostic confidence and changed the manage-
ment in one-third of the cases when using [18F]FDG PET/
MRI for the initial staging of invasive ductal carcinoma [53]. 
PET/MRI could detect additional nodal and distant metasta-
ses, which led to upstaging in 39% of the cases. A later meta-
analysis found that this rate of change was lower when PET/
CT was used for initial staging instead (25% for PET/CT 
vs. 39% for PET/MRI) [54]. In a prospective head-to-head 

Fig. 2   Coronal [18F]FDG-PET 
from PET/CT (a), coronal CT 
(b), fused PET/CT (c), coronal 
[18F]FDG-PET from PET/
MR (d), coronal STIR (e), 
fused PET/MRI (f). There is 
an [18F]FDG-avid mass in the 
right upper lobe (arrowhead), 
corresponding to primary lung 
cancer, with associated [18F]
FDG avid right hilar (narrow 
arrow) and subcarinal (broad 
arrow) lymphadenopathy. Infil-
tration of the visceral pleura can 
be appreciated on STIR

Fig. 3   Coronal [18F]FDG-PET (a), coronal T1-weighted fat saturated 
MRI (b), fused PET/MRI (c). An [18F]FDG-avid nodule (arrow), 
corresponding to pulmonary metastasis, in the left upper lobe is eas-

ily detected on PET. Detection on MRI might be challenging, given 
small size, in the absence of corresponding marked [18F]FDG avidity
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comparison, [18F]FDG PET/MRI identified and correctly 
classified more lesions than [18F]FDG PET/CT [55]. In 
another direct comparison, PET/MRI was more effective 
than PET/CT in detecting bone metastases, presenting a 
sensitivity of 96% and a specificity of 99% [29]. [18F]FDG 
PET/MRI-derived biomarkers may also provide in-depth 
assessment of tumor biology and aggressiveness [56–58]. 
Ductal carcinoma has higher [18F]FDG uptake than lobular 
carcinoma. In the settings of lobular cancer, while detection 
of primary tumor, associated synchronous breast lesions, and 
overall local staging can be achieved by the MRI part of the 
study, [18F]FDG negative distant metastases in occult areas 
could be overlooked and may be better evaluated with other 
radiotracers discussed below [59]. In summary, in ductal 
breast cancer, [18F]FDG PET/MRI is an excellent tool to 
identify nodal and distant metastases, especially in younger 
patients and intermediate to high-grade tumors [53].

Fibroblast activation protein inhibitor (FAPI) has emerged 
as an alternative to [18F]FDG, targeting cancer-associated 
fibroblasts instead of increased glucose metabolism. A ret-
rospective study reported [68Ga]Ga-FAPI uptake in 100% 
of the 19 primary breast tumors evaluated [60]. However, 
only 16% (3) of them had lobular carcinoma, which would 
be the histology in most need of a better radiotracer since 
[18F]FDG has already been proven effective for ductal car-
cinoma. For treatment response monitoring, the [68Ga]
Ga-FAPI tumor-to-background ratio was associated with 

complete pathologic response [61]. Moreover, [68Ga]Ga-
FAPI PET/MRI performed better than MRI alone for treat-
ment response assessment in breast cancer [61]. PET/CT 
studies suggest that [68Ga]Ga-FAPI outperforms [18F]FDG 
in breast cancer, achieving a sensitivity of 100% and speci-
ficity of 96% versus 78% and 100%, respectively, for [18F]
FDG. Further prospective PET/MRI studies are needed to 
determine if the same advantages are observed.

Abdomen

Cholangiocarcinoma

Cholangiocarcinomas are tumors arising from the biliary 
tree whose treatment is often surgical. Thus, careful evalu-
ation of its relationship to adjacent vasculature and lymph 
node involvement is essential [62]. The majority of chol-
angiocarcinomas are perihilar, with extrahepatic disease 
representing 40% of the cases and intrahepatic tumors the 
other 10% [63]. Morphologically, cholangiocarcinoma may 
be mass forming, periductal infiltrating, intraductal, super-
ficial spreading, or undefined [62]. The staging of cholan-
giocarcinoma often involves a multimodal strategy, includ-
ing contrast-enhanced CT, MRI with MRCP, and PET/CT 
imaging to completely evaluate the tumoral extension, nodal 
involvement, and distant metastases, even though only the 
first two are listed in the National Comprehensive Cancer 

Fig. 4   Axial [18F]FDG-PET 
(a), axial high-resolution post-
contrast T1-weighted MRI (b), 
subtraction early arterial phase 
T1-weighted dynamic contrast-
enhanced MRI (c), fused PET/
MRI (d). A large, [18F]FDG 
avid, markedly enhancing mass, 
corresponding to known inva-
sive ductal carcinoma, infiltrates 
the left breast (arrows). [18F]
FDG avidity improves detection 
of lymphadenopathy, including 
the small left internal thoracic 
lymphadenopathy (arrowheads)
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Network guidelines [64–67]. The main limitations of such 
methods that can be overcome by PET/MRI are detecting 
small lesions, especially subcentimeter intrahepatic lesions, 
and peritoneal metastases [30].

[18F]FDG PET/MRI resulted in management changes in 
30% of the cases with untreated, mass-forming intrahepatic 
cholangiocarcinoma when compared to the management 
that would have been proposed after conventional imag-
ing [32]. Another study of [68Ga]Ga-FAPI PET/CT plus 
PET/MRI versus [18F]FDG in hepatic tumors, including 
13 patients with cholangiocarcinoma, showed that [68Ga]
Ga-FAPI was better than [18F]FDG for hepatic lesions, but 
was similar to MRI alone [68]. However, [68Ga]Ga-FAPI 
PET may contribute by identifying additional positive nodes 
and distant metastases. Therefore, the available data suggest 
that PET/MRI, especially when performed with [68Ga]Ga-
FAPI, may perform better than CT, MRI, or PET alone in 
cholangiocarcinoma.

Pancreas

Pancreatic cancer is a lethal pathology with a rising inci-
dence in the United States [69] and the 7th leading cause 
of cancer-related death worldwide [70]. Pancreatic cancer 
staging is usually performed with contrast-enhanced CT 
or MRI [71]. Notwithstanding, the use of [18F]FDG PET/
MRI in the staging and post-treatment evaluation may be 
warranted since a retrospective study found that in 49% of 
cases [18F]FDG PET/MRI resulted in changes in manage-
ment when compared to standard of care imaging [72]. Fur-
ther, post-neoadjuvant therapy response is well correlated to 
[18F]FDG PET/MRI metrics, such as a change in SUVmax 
[73]. [68Ga]Ga-FAPI PET/MRI has also been used to suc-
cessfully used to differentiate pancreatic cancer from IgG4-
related pancreatitis in a case of ambiguous [18F]FDG PET 

imaging [74]. A prospective study with 33 patients compar-
ing [68Ga]Ga-FAPI to [18F]FDG PET/CT showed a higher 
sensitivity for lymph node metastases but a lower detection 
rate for hepatic metastases for the former. While more stud-
ies are needed to provide more definitive conclusions, PET/
MRI is positioned to become a staple in pancreatic cancer 
staging and restaging.

Colon and Rectum

Colorectal cancer is responsible for a major societal bur-
den, being the third most prevalent cancer in males after 
prostate and lung and in females after breast and lung [12]. 
The standard of care for whole-body evaluation in colorectal 
cancer includes a pelvic MRI and a CT scan of the chest 
and abdomen. Whole-body [18F]FDG PET/MRI adds clini-
cal value to this diagnostic process by detecting additional 
lesions and allowing better characterization of extracolonic 
lesions [75]. In the local staging of rectal tumors, PET/MRI 
improves T staging [76], the assessment of tumor size, and 
sphincteric infiltration [77], both of which may change sur-
gical planning (Fig. 5). Moreover, PET/MRI presents better 
N staging versus MRI alone, thanks to the PET component, 
which can identify pathologic lymph nodes that do not meet 
cross sectional imaging size criteria for suspicion (Fig. 6). 
The M staging is also improved when using PET/MRI ver-
sus CT for liver metastases [28, 78, 79] (Fig. 7). This is 
especially important considering that the liver is the most 
common site of metastatic spread in colorectal cancer, and 
up to 25% of patients with colorectal cancer will develop 
liver metastases over the course of their disease [80, 81]. 
In oligometastatic colorectal cancer, [18F]FDG PET/MRI 
may change patient management in 19% of the cases (95% 
confidence interval 9–37%) [82]. Based on an initial study 
with [68Ga]Ga-FAPI PET/CT, [68Ga]Ga was superior to 

Fig. 5   Axial [18F]FDG-PET (a), axial T2-weighted high-resolution 
FSE MRI (b), fused PET/MRI (c). Semi-circumferential rectal wall 
thickening, corresponding to known rectal cancer, demonstrates inter-
mediate signal intensity in (b) and marked [18F]FDG uptake in (a). 

Extension beyond the tunica muscularis (arrowhead) for about 10 mm 
(T3c) would have been missed on PET images but is well depicted on 
MRI
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[18F]FDG in the detection of primary and metastatic lesions 
in gastric, duodenal, and colorectal cancers. Additionally, 
FAPI presented higher uptake in most lesions [83]. [68Ga]
Ga-FAPI also led to upstaging when compared to the TNM-
assigned stage by [18F]FDG PET/CT in 21% of the cases.  

Musculoskeletal

Emerging studies on the role of PET/MRI in primary bone 
malignancies found it a promising modality that allows for 
precise local staging and detection of distant metastases with 
reduced patient exposure to radiation [84–87]. To evaluate 
musculoskeletal (MSK) malignancies, in addition to [18F]
FDG, the most widely used radiopharmaceutical, one can 
use [18F]-sodium fluoride ([18F]-NaF) as a bone-seeking 

agent capable of detecting bone metastases, especially in 
tumors with low [18F]FDG affinity, like renal cell carci-
noma and thyroid cancer [88]. Based on the published stud-
ies, PET/MRI is an excellent modality for the evaluation of 
soft tissue neoplasms. PET/MRI for T staging in sarcoma is 
equivalent to MRI, while the PET component improves N 
and M staging l [89]. MRI is an accurate tool for local stag-
ing in soft tissue sarcomas thanks to its ability for excellent 
delineation of tumor margins as well as detection of osseous 
and neurovascular invasion. Adding these potentialities of 
MRI to simultaneously acquire metabolic information from 
PET can yield a more accurate local staging [90]. The same 
applies regarding lymph node involvement since [18F]FDG-
PET showed 96% sensitivity in the detection of involved 
lymph nodes compared with stand-alone CT and MRI [91]. 

Fig. 6   Axial [18F]FDG-PET (a), T2-weighted SSFSE (b), fused 
PET/MRI (c), corresponding level DWI (d).Metastatic lymph node 
from colorectal cancer. On PET/MRI, metastatic lymph nodes 
(arrow) tend to concordantly demonstrate increased [18F]FDG avid-

ity, heterogeneous internal signal and diffusion restriction as in this 
case. Note also exquisite delineation of lymph node from adjacent 
vasculature despite lack of IV contrast

Fig. 7   Axial [18F]FDG-PET (a), axial fat saturated post-contrast 
T1-weighted MRI (b), fused PET/MRI (c). A subcentimeter, mildly 
[18F]FDG avid liver metastasis (arrow) might have been missed 

on stand-alone PET or stand-alone MRI; however, simultaneously 
acquired MRI and PET facilitate lesion detection and characterization



358	 Clinical and Translational Imaging (2023) 11:351–364

1 3

Metastases detection by PET/MRI faces the aforementioned 
limitation of this modality for the assessment of pulmonary 
metastases, while it remains superior for detecting other dis-
tant metastases [4, 28, 33, 52, 92]. FAPI can overcome some 
of the limitations of [18F]FDG, such as the high [18F]FDG 
avidity of bone marrow and its low uptake in low-grade sar-
coma. FAPI has an excellent tumor-to-background ratio in 
sarcomas. Therefore, FAPI-PET/MRI can be used as a single 
examination to provide all the necessary information regard-
ing treatment and staging in affected patients [93, 94]. PET/
MRI is also useful to guide treatment and identify biopsy 
targets in sarcomas [95]. The detailed anatomic (MRI) and 
functional (PET) information provided simultaneously on 
PET/MRI can yield more accurate and reliable TNM stag-
ing in both primary and metastatic MSK neoplasms. The 
diagnostic value of this modality may be optimized by the 
appropriate radiopharmaceutical and MRI protocol selec-
tion [96, 97].

Genitourinary

Prostate cancer

Prostate cancer is the most common cancer type in males 
and is projected to account for 27% of the newly diagnosed 
cancers in this patient population [12]. Prostate-specific 
membrane antigen (PSMA) is a transmembrane enzyme 
that is overexpressed in prostate adenocarcinoma; its degree 
of expression is usually correlated with tumor grade [98]. 
PSMA analogs have been developed to target prostatic can-
cers. Their use is particularly useful in patients with low 

serum PSA, whose lesions can be more subtle and missed 
by anatomic imaging alone or non-specific tracers, such 
as [18F]FDG. Examples of FDA-approved agents to date 
include [18F]DCFPyL and [68Ga]PSMA-11. [68Ga]PSMA 
PET/MRI was superior to PET alone and multiparametric 
MRI alone for prostate cancer localization (AUROCs of 
0.88, 0.83, and 0.73, respectively) [99]. Compared to mul-
tiparametric pelvic MRI, the current standard of care, PSMA 
PET/MRI, increases the sensitivity (46% vs. 69%) of extra-
capsular extension evaluation at the expense of specificity 
(94% vs. 90%) [100]. PSMA PET/MRI may also improve 
nodal staging and distant metastasis evaluation, especially in 
the bones, where MRI is superior to CT [101–103] (Fig. 8). 
Besides initial staging, PSMA PET/MRI performs well 
in the setting of restaging/biochemical recurrence, with a 
sensitivity of 99% [104]. PSMA PET/MRI detection rate 
in biochemical recurrence is related to the PSA levels, with 
values < 0.5 ng/mL presenting significantly less lesions vs. 
PSA value ≥ 2 ng/mL [105]. However, even at low PSA lev-
els, PSMA positivity is still relevant at 54.5%, and most of 
these patients had a distant recurrence in the lymph nodes or 
bones [106]. Notably, besides stellar performance for whole-
body metastases detection, PSMA PET/MRI performs bet-
ter than PSMA PET/CT to assess recurrent disease in the 
prostatectomy bed.

Kidney cancer

Renal tumors accounted for 4% of new cancer diagnoses 
in the United States in 2022 [12]. PSMA is a expressed 
in several tissues, including the small intestine, proximal 
renal tubules, and salivary glands [107]. Unfortunately, 

Fig. 8   Coronal [18F]FDG-PET 
(a), coronal STIR MRI (b), 
fused PET/MRI (c). An [18F]
FDG-avid focus denotes a 
metastatic lesion in the left iliac 
bone, which matches an area of 
high signal on STIR



359Clinical and Translational Imaging (2023) 11:351–364	

1 3

this expression, coupled with the urinary excretion of most 
PSMA ligands, makes imaging primary kidney tumors chal-
lenging with the radiopharmaceutical [108, 109]. However, 
in the characterization of primary renal cancers, [68Ga]
PSMA PET/CT SUVmax has been shown to differentiate 
histologic tumor grade [110] and also differentiate benign 
and malignant tumors [111]. Finally, [18F]-PSMA PET/
CT has been used to evaluate treatment response in patients 
with metastatic renal cell carcinoma undergoing immune 
checkpoint inhibitor therapy, detecting changes that were 
missed by RECIST [112]. [18F]DCFPyL has been success-
fully used in PET/CT imaging of metastatic renal cell car-
cinoma, detecting more lesions than CT or MRI [113–115]. 
PET/MRI is yet to be applied in the context of renal cancers, 
but we can expect similar or even better results than with 
PET/CT.

Gynecological cancer

Cervical, ovarian, and uterine cancer are among the ten 
most common cancers in females, and gynecologic cancers 
accounted for about 672,00 deaths in 2020 worldwide [116]. 
They are classified based on the anatomic origin, including 
cancers of the ovaries and fallopian tubes, uterine corpus, 
uterine cervix, endometrium, vagina, and vulva [117]. The 
risk of gynecologic cancer increases with age, and early 
diagnosis is paramount for the most effective treatment. 
PET/MRI showed similar efficacy in the evaluation of local 
tumor extent with that of contrast-enhanced pelvic MRI, 
which is a common modality for the evaluation of tumor 
size and local extension in gynecologic settings [118–121]. 
In two studies of cervical cancer, PET/MRI showed high 
accuracy for T staging (83.3%, 85%) and N staging (90%, 
87%) [119, 120, 122] (Fig. 9). Another study using PET/
MRI for ovarian cancer reported accuracies of 96.4%, 93.9%, 
and 100% for T, N, and M staging, respectively (Fig. 10). 

Additionally, PET/MRI allows better treatment planning due 
to its higher sensitivity for distant metastasis [122]. In com-
parison with PET/CT, PET/MRI was reported to be equiva-
lent or more accurate for detecting lymph node metastases in 
cervical cancer [120, 123]. Moreover, as reported in a study 
of 30 patients with endometrial cancer, PET/MRI and PET/
CT showed the same sensitivity, specificity, and accuracy 
(100%, 96.3%, and 96.7%, respectively) for detecting pelvic 
nodal metastases [124]. Another study specifically focused 
on the detection of deep myometrial invasion and lymph 
node involvement of Endometrial Cancer using PET/MRI 
reported good performance in preoperative staging (sensi-
tivity of 0.8571, specificity of 0.9286, accuracy of 0.9143) 
[125]. Moreover, this study showed that MRI parameters, 
such as tumor volume, volume index, and tumor volume 
ratio, together with PET parameters, like total lesion glyco-
lysis, may predict lymphovascular space invasion, with MRI 
parameters also being able to classify patients into low or 
high risk. Regarding distant metastases, PET/MRI showed 
a high sensitivity for the detection of metastatic liver lesions 
(95%) as well as peritoneal carcinomatosis (97%) [28, 30]. 
However, more studies are needed to confirm the role of 
PET/MRI in gynecological malignancies. 

Neuroendocrine tumors

Neuroendocrine tumors can arise in different organs and 
share neuromarker expression, such as chromogranin A and 
synaptophysin; they also variably express different classes 
of somatostatin receptors [126]. The evaluation of neuroen-
docrine tumors is thus facilitated on PET/MRI due to the 
superb soft tissue contrast resolution of MRI paired with 
the ability to customize the PET scan by choosing differ-
ent tracers according to the underlying tumor biology. In 
a pilot study with [68Ga]DOTATOC including 8 patients, 
PET/MRI was able to detect all malignant neuroendocrine 

Fig. 9   Axial [18F]FDG-PET (a), axial T2-weighted MRI (b), fused 
PET/MRI (c). Large cervical cancer (asterisk) infiltrates the uterus, 
bilateral parametria, peritoneum (arrow) and metastasizes to pelvic 

lymph nodes (arrowhead). Note high-quality anatomic layout pro-
vided by MRI and perfect coregistration with PET, ensured by simul-
taneous PET/MR acquisition
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lesions, although 4 benign and indeterminate lung lesions 
detected on PET/CT were not seen on PET/MRI [127]. A 
larger study assessed the performance of the same radi-
otracer in PET/CT and PET/MRI in 28 patients with neu-
roendocrine tumors, where PET/MRI outperformed PET/
CT in liver lesion detection thanks to the possibility of 
performing hepatobiliary phase contrast-enhanced imaging 
and DWI that increased the sensibility beyond PET-positive 
lesions. In a separate study with similar design, review of 
197 lesions in 30 patients showed a higher proportion of cor-
rectly classified neuroendocrine lesions on PET/MRI than on 
PET/CT (90.8% vs. 86.7%, p = 0.031), with PET/MRI also 
presenting better lesion conspicuity than PET/CT, with the 
caveat of only ~ 10% of the lesions having had pathologi-
cal confirmation [128]. A third study with 12 patients com-
paring [68Ga] DOTATOC PET/MRI and PET/CT showed 
PET/MRI superiority in lesion detection (72.5% vs. 62.7%, 
respectively, p = 0.01) [129]. Overall, these results suggest 
PET/MRI is equivalent to or better than PET/CT for neu-
roendocrine tumor evaluation with DOTATOC. Another 
study using a different tracer, [68Ga]DOTANOC, showed 
a slight advantage of PET/MRI over PET/CT for neuroen-
docrine tumor imaging, with an overall accuracy for PET/
MRI of 97% (95% CI, 94.4%–99.6%), versus 94.6% (95% 
CI, 91.2%–98.1%) for PET/CT [130]. Of note, as mentioned 
beforehand the evaluation of lung metastases can be compro-
mised on PET/MRI due to MRI limitations for chest imag-
ing, and this study replicated such deficit – three pulmonary 
lesions and one pleural metastasis were missed by PET/MRI, 
resulting in 0% sensitivity (95% CI, 0%–70.8%) for this seg-
ment. In a retrospective study, PET/MRI with [68Ga]DOTA-
TATE PET/MRI detected additional lesions when compared 
to [68Ga]PET/CT, with better characterization of lesions 
in the liver, pancreas, and pelvis [131]. Even without using 
gadolinium contrast, PET/MRI can achieve a performance 

similar or superior to contrast-enhanced PET/CT, which is 
important in patients with risk factors for nephrogenic sys-
temic fibrosis [132]. In summary, a variety of tumor-specific 
radiotracers have been developed for neuroendocrine tumor 
imaging, and PET/MRI explores these tracers with remarka-
ble synergy thanks to the intrinsic soft tissue contrast of MRI 
coupled with protocol flexibility that allows for inclusion of 
sequences, such as DWI  and hepatobiliary phase imaging.

Limitations and Pitfalls

Although a promising technology with several paradigm-
shifting results as presented above, PET/MRI presents some 
drawbacks. Patients with ferromagnetic implants or other 
devices that are not compatible with MRI might be better 
suited for PET/CT evaluation. Even in MRI-compatible 
materials, the associated field inhomogeneity leads to sig-
nificant image distortion and compromise attenuation cor-
rection [133, 134]. Moreover, a comprehensive lung evalua-
tion as part of the whole-body PET/MRI is still suboptimal, 
especially in lesions measuring 6 mm or smaller. A dedi-
cated chest CT should be considered in cases where suffi-
cient suspicion of lung lesions is warranted. Finally, cost, 
accessibility, and personnel training remain significant bar-
riers to PET/MRI adoption, despite some studies already 
showing a favorable cost-effectiveness profile for PET/RMI 
given appropriate indications [135].

Conclusions

PET/MRI is in a unique position to become the standard 
whole-body staging for body oncology by combining precise 
anatomic localization, functional and metabolic data in a 
single and simultaneously acquired study.

Fig. 10   Axial [18F]FDG-PET (a), axial T2-weighted high resolution FSE MRI (b), fused PET/MRI (c). Large ovarian cystadenocarcinoma 
occupies the entire pelvis. Solid components (arrow) demonstrate marked [18F]FDG avidity
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