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Abstract
Introduction In recent years, prostate specific membrane antigen (PSMA) has been gaining a crucial role for prostate cancer 
(PC) management, representing an ideal platform to combine diagnosis and therapy in a unique approach, namely thera-
nostics. However, low or absent PSMA expression has been reported in up to 20% of PC cases. Our aim was to review the 
applications of PET/CT with radiolabeled antibodies (immunoPET) to identify biomarkers other than PSMA, potentially 
suitable for PC theranostics.
Methods We performed a Pubmed/Medline research to identify the most relevant findings of the literature published to 
date on this topic.
Result Prostate stem cell antigen (PSCA), a biomarker strongly overexpressed in metastatic castration-resistant PC (mCRPC), 
was effectively imaged in animal models through immunoPET with 124I and 89Zr-conjugated antibody fragments (minibodies) 
and gave promising results as a theranostic target in preliminary radioimmunotherapeutic applications. Delta-like ligand 3 
(DLL3), a molecule associated with PC switching toward neuroendocrine differentiation, was also successfully imaged via 
immunoPET with 89Zr-labeled antibodies. Other biomarkers, among whom vascular endothelial growth factor receptor 2 
(VEGFR-2) and CD46, were also investigated through immunoPET in pre-clinical studies.
Conclusion ImmunoPET pre-clinical studies have identified several biomarkers with potentially high impact on PC 
theranostics.

Keywords ImmunoPET · Prostate cancer · Precision medicine · Castration-resistant prostate cancer · PET/CT · 
Theranostics

Introduction

Prostate specific membrane antigen (PSMA) has recently 
emerged as the “star target” of prostate cancer (PC) imaging 
through positron emission tomography/computed tomogra-
phy (PET/CT) and has been successfully applied for PC 
management [1, 2]. Furthermore, PET/CT with radiolabeled 
PSMA-ligands (e.g. 68  Ga-PSMA-11, 18F-PSMA-1007, 
etc.…) plays an essential role for the identification of 
patients, affected by metastatic castration-resistant PC 
(mCRPC), eligible for PSMA-targeted radioligand therapy, 
entailing radiopharmaceuticals labeled with beta or alpha-
emitters (i.e. 177Lu/225Ac-PSMA-617), therefore combining 
diagnosis and therapy in a unique approach, namely “thera-
nostics” [3, 4].

However, cases of PSMA-negative PC have been reported, 
thus supporting the continued value of PET imaging with 
metabolic tracers, such as 18F/11C-choline [5]. In a recently 
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published correlative study between 68 Ga-PSMA-11 PET/CT 
and histochemical analysis on post-prostatectomy specimens 
in 40 patients with therapy- “naïve” PC, a variable grade of 
heterogeneity of PSMA expression was detected in the major-
ity of patients [6]. One the most plausible explanations for 
lack of PSMA expression is represented by the deletion of the 
PSMA-encoding gene (FOLH1) [7], or PC neuroendocrine 
differentiation (NEPC) [8]. Notably, it has been reported that 
up to 20% of mCRPC patients present low or absent PSMA 
expression at PET/CT [9]. Heterogeneity of target expression 
in disseminated disease represents one of the major causes of 
PSMA-targeted radioligand therapy failure [10]. This issue 
is of utmost importance since mCRPC, in spite of recent 
advances in diagnosis and therapy, still remains a challenging 
clinical condition, characterized by limited therapeutic options 
and dismal prognosis [11].

ImmunoPET is a novel imaging approach based on the 
administration of radiolabeled antibodies, combining the 
superior diagnostic performance of PET/CT technology 
with antibodies’ high specificity [12]. ImmunoPET has 
been increasingly applied for the in vivo detection of sev-
eral tumor-associated biomarkers, showing a particularly rel-
evant impact on patients’ stratification prior to molecularly 
targeted therapies [13].

The aim of this review is to survey the existing literature 
focused on the applications of immunoPET for the identi-
fication of biomarkers alternative to PSMA with potential 
theranostic impact on PC.

Materials and methods

Electronic literature search on Pubmed/Medline for the 
English articles, published up to April 2022 on the topic, 
was performed. Boolean operators (OR, AND) were used to 
combine the following keywords: “immunoPET”, immuno-
PET”, “zirconium-89”, “89Zr”, “iodine-124, “124I”, “prostate 
cancer”, “castration-resistant prostate cancer”, “neuroendo-
crine prostate cancer”. No filters other than the languages 
were applied. The most relevant studies focusing on bio-
markers other than PSMA were retrieved, analyzed and dis-
cussed. References of the selected manuscripts were also 
examined for additional relevant studies on the topic. Any 
discrepancy was resolved by discussion among authors. As 
this was not a systematic review or meta-analysis, no statisti-
cal analysis was performed.

Results

Totally, 10 articles were retrieved by the literature search. 
The characteristics of the selected studies were reported in 
Table 1. The main topics were discussed in each following 
paragraph.

ImmunoPET: basic principles

One of the most peculiar features of molecular imaging 
through PET/CT or single photon emission tomography 
(SPECT) is represented by the use of imaging probes 
capable to investigate physiopathological processes at a 
cellular and molecular level [14, 15]. In past years immu-
noscintigraphy, consisting in the administration of anti-
bodies conjugated with gamma-emitting radionuclides (i.e. 
123I or 99mTc), has been applied in oncological and non-
oncological field. As specifically concerns PC, interest-
ing results have been obtained by employing 111In- CHX-
A''DTPA-trastuzumab to demonstrate and quantify human 
epidermal growth factor receptor type 2 (HER2) in PC 
animal models [16, 17]. However, immunoscintigraphy’s 
spreading has been limited by the relatively low spatial 
resolution of conventional scintigraphy, partially overcome 
by the implementation of the hybrid SPECT/CT devices 
[18, 19].

First attempts to develop radioimmunoconjugates suit-
able for immunoPET have been made by utilizing the pos-
itron-emitter iodine-124 (124I) [20]. A cornerstone for the 
implementation of immunoPET has been represented by 
the development of antibodies labeled with zirconium-89 
(89Zr), a positron emitter characterized by a physical 
half-life (i.e. 78.4 h) compatible with the slow clearance 
and long residence of antibodies in the organism after 
the administration [21]. Furthermore, 89Zr can be easily 
produced by irradiation of natural yttrium with 13-MeV 
protons and several commercial suppliers exist to make 
this nuclide available worldwide. Furthermore, 89Zr can 
be efficiently bound to antibodies through the bifunctional 
chelator desferrioxamine (DFO) [22]. Many monoclonal 
antibodies (MoAbs) have been labeled with 89Zr for immu-
noPET with satisfying results, among whom trastuzumab, 
bevacizumab and cetuximab [23–25]. In this regard, the 
PSMA-targeting humanized MoAb J591, conjugated with 
89Zr through DFO, was assessed as a PET molecular probe 
in a phase I study carried out in 10 patients with histologi-
cally proven PC: optimal time for patient imaging after 
injection resulted in 7 ± 1 days, being liver, renal cortex 
and bone marrow the critical organs [26]. Of note, 12 
lesions in 8 out of the 10 enrolled subjects were submitted 
to biopsy and confirmed as PC metastatic localizations, 11 
of whom were positive at PET/CT examination. The main 
limitation of 89Zr-DFO-J591 was represented by its slow 
blood clearance, entailing PET imaging to be performed at 
a late time (6–8 days after injection) to obtain a satisfying 
tumor-to-background ratio. To overcome these drawbacks, 
IAB2M, an 80-kDa minibody genetically engineered from 
the parent antibody J591 and characterized by a faster 
blood clearence, was tested as a potential imaging probe 
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to target PSMA extracellular domain [27]. In a phase I/IIa 
study 89Zr-labeled IAB2M (89Zr-DFO-IAB2M) resulted 
effective for the detection of PC metastases to bone and 
lymph nodes in 17 patients through PET/CT scan as early 
as at 24 and 48  h post tracer administration [28]. On 
this path, Frigerio et al. investigated the PSMA-directed 
scFvD2B antibody fragment as an imaging probe for PC 
in animals models by labeling it with 124I. 124I-scFvD2B 
was intensely incorporated in PSMA-positive cells and 
allowed the in vivo detection of PSMA-positive tumors at 
15 and 24 h, while it showed not meaningful accumulation 
in animals with PSMA-negative lesions [29].

Notably, immunoPET has emerged as an essential tool for 
the development of antibody–drug conjugates (ADCs), not 
only to image and quantify target-specific drug accumulation 
but also to study drug-biokinetics through serial PET/CT 
acquisitions at different time-intervals [30]. This issue is of 
foremost importance when ADCs' effectiveness is enhanced 
by labeling with a beta or alpha emitter to perform radio-
immunotherapy (RIT) [31]. However, it has to be under-
lined that, although it is extremely promising, several issues 
remain to be addressed to improve 89Zr-immunoPET: such as 
the binding stability of DFO chelator and several technical 
factors concerning PET/CT image quality and accuracy of 
quantification [32].

Prostate stem cell antigen

Prostate stem cell antigen (PSCA) is a small, glycosylphos-
phatidylinositol (GPI)-anchored cell surface protein, charac-
terized by a 30% of homology with stem cell antigen type 2 
(SCA-2), a surface biomarker of immature lymphocyte [33]. 
In spite of its denomination, PSCA is mainly expressed by 
differentiated cells and strongly overexpressed in PC; nota-
bly, PSCA density in tumor tissue correlated with adverse 
prognostic factors such as high Gleason score and propensity 
to metastatization [34]. Although it has been hypothesized 
that PSCA function is linked with mechanisms involving 
cell adhesion and migration, its exact role remains unclear 
and, as matter of fact, PSCA-knockout mice did not show 
relevant abnormalities [35].

PSCA has several characteristics that make it a poten-
tially useful biomarker for immunoPET and theranostics 
in mCRPC: firstly, it is located on cell surface, therefore 
being exposed to extracellular space and circulating ligands. 
Secondly, increased PSCA level expression has been found 
associated with PC transition toward castration-resistant 
state [36].

One of the first efforts to develop radiolabeled antibod-
ies for PSCA-targeted immunoPET has been carried out by 
Knowles et al. [37]. The authors synthesized an anti-PSCA 
minibody, an engineered 80 kDa antibody fragment (scFv-
CH3 homodimer), suitable for conjugation both with 124I 

and 89Zr (i.e. A11 anti-PSCA minibody). Both 124I- and 
89Zr-labeled minibodies were tested for PET-imaging in 
mice bearing PSCA-positive xenografts. The authors found 
rapid and specific incorporation of both 124I and 89Zr-labeled 
minibodies in PSCA-positive xenografts: 124I-labeled mini-
bodies presented high imaging contrast thanks to the lower 
non-specific uptake in soft tissues, therefore showing the 
most favorable characteristics to be implemented as an imag-
ing agent. On the path of these encouraging results, the same 
group of research further investigated the potential of anti-
PSCA 124I-labeled minibodies for the imaging of PC disease 
progression and response to therapy in animal models [38]. 
SCID male mice were implanted with LAPC-9 xenografts 
in the subcutaneous tissues and were also injected in the 
proximal tibia with PSCA-positive tumor cells (control 
group received PSCA-negative cells). Mice bearing intra-
tibial tumors were submitted to PET/CT with 18F-fluoride 
(18F-NaF), which is generally considered the most compre-
hensive imaging modality to assess metastatic bone disease. 
Immediately after 18F-NaF PET/CT or the day after, mice 
were administered with 124I-labeled minibodies and were 
then imaged with microPET at 44 h after tracer administra-
tion. Both 18F-NaF PET/CT and immunoPET images were 
repeated at different time-points and evaluated both qualita-
tively and quantitatively, by calculating the grade of tracer 
uptake as %ID/g. While bone scan through 18F-NaF showed 
a considerable amount of non-specific uptake hampering 
the detection of tibial tumor implant at the different time-
points, immunoPET with 124I-labeled anti-PSCA minibodies 
demonstrated increased tracer incorporation in tibial tumor 
in 67% of mice at 4 weeks and in 100% of mice at 6 and 
8 weeks after implantation. Furthermore, the authors used 
immunoPET for monitoring changes in PSCA expression in 
mice bearing LAPC-9 xenografts, divided in 2 groups: the 
former submitted to anti-androgen therapy with MDV-3100 
(enzalutamide) and the latter treated with vehicle (i.e. water 
with 1% carboxymethylcellulose): 124I-labeled minibodies 
uptake and tumor volumes were comparable among the 2 
groups before starting the different treatments. After 1 week 
of therapy, tumor volumes were not significantly changed 
among the 2 groups on CT scan, on the contrary 124I-labeled 
minibody uptake was substantially lower in mice treated 
with MDV-3100 with respect to the vehicle group. The data 
were in accordance with cytometry performed on LAPC-9 
digested cells showing that MDV-3100 treatment led to 
a downregulation of PSCA expression (i.e. 62.8 ± 4.9% 
reduction). In light of the above, the authors suggested 
that 124I-labeled minibodies might represent useful imag-
ing agent for the in vivo monitoring of PSCA-expression in 
CRPC during  2nd generation anti-androgen therapy.

Tsai and collaborators investigated the possible applica-
tion of PSCA as a target for imaging and near-infrared fluo-
rescence (NIRF)-guided surgery [39]. NIRF-guided surgery 
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consists in the utilization of specific dyes to improve surgical 
margin delineation and has been applied with encouraging 
results in uro-oncology, especially in robotic-assisted pro-
cedures [40]. To obtain a molecular probe suitable both for 
NIRF and immunoPET, Tsai’s group synthesized a cysteine-
modified humanized anti-PSCA A11 Mb (A11 cMb), that 
was site-specifically conjugated with the near-infrared fluo-
rophore Cy5.5 and was also radiolabeled with 124I or 89Zr. 
124I-A11 cMb-Cy5.5 was utilized for immunoPET/fluores-
cence in nude mice bearing xenografts expressing moder-
ate or high PSCA levels, while 89Zr-A11 cMb-Cy5.5 was 
applied as a dual-modality imaging in mice bearing ortho-
topic tumors. Of note, the authors found 124I-immunoPET/
fluorescence capable to effectively image PSCA-expressing 
cells, with high imaging contrast, in xenografted mice, 
as confirmed also by ex vivo analysis. On its turn, 89Zr-
immunoPET/fluorescence was effective for the detection 
of intraprostatic implanted PSCA-positive cells, while fluo-
rescence imaging clearly discriminated intraprostatic tumor 
margins with respect to neighboring seminal vesicles.

Zettlitz et al. further explored the potential of PSCA-
targeting antibodies in a human prostate stem cell antigen 
knock-in (hPSCA KI) mouse model [41]. In hPSCA KI mice 
PSCA was expressed, as it physiologically occurs in humans, 
in stomach, bladder and prostate gland. The authors’ aim was 
to assess whether PSCA physiological signal might hamper 
the detection of PSCA-positive tumors through immunoPET. 
They utilized either 124I-labeled anti-PSCA minibodies or 
89Zr-conjugated A2 cys-diabodies. After i.v. administration, 
124I-labeled minibodies efficiently revealed physiological 
activity in stomach, bladder and prostate in hPSCA KI mice, 
but due to their molecular weight (i.e. 80 kDa), non-specific 
blood activity remained high up to 20 h post-injection. On 
the contrary, 89Zr-A2 cys-diabodies showed faster clearance 
thanks to their lower weight (i.e. 50 kDa) and efficiently 
detected PSCA-positive xenografts mice.

As far as it concerns the theranostic counterpart of 
PSCA-targeting approaches, possible RIT applications in 
animal models were investigated by Tsai and colleagues 
by labeling A11 minibodies with 2 distinct beta-emitters: 
iodine-131 (131I), characterized by a  t1/2 = 8.0 days and 
E(max) = 606 keV, and luthetium-177 (177Lu), exhibiting a 
 t1/2 = 6.7 days and E(max) = 497 keV [42]. In a first phase, 
immunoPET with either 124I-A11 Mb or 89Zr-DFO-A11 Mb 
was utilized to profile the pharmacokinetic characteristics of 
131I-A11 Mb and 177Lu-DTPA-A11 Mb in animal models. 
After having identified 131I-A11 Mb as the best candidate 
for RIT due to its lower blood pool and soft tissue activity, 
RIT through escalating single doses (3.7, 11 or 37 MBq) and 
saline control was administered to 2 groups of mice bearing 
PSCA-positive tumors, while toxicity was tested in hPSCA 
KI mice. The authors monitored mice both for RIT anti-
tumor effectiveness (change in tumor volume) and toxicity 

(change in mice weight). RIT with anti-PSCA 131I-A11 Mb 
through single dose approaches presented a dose-dependent 
anti-tumor activity, with minimal off-target toxicity, and 
resulted effective to improve median survival in treated mice 
with respect to the control group.

Immunotherapy, consisting of unleashing host immune 
system against tumor is a therapeutic approach that has 
gained a central role in oncology through the introduction 
of immune checkpoint inhibitors (ICIs) and chimeric antigen 
receptor (CAR)-T cell therapy [43, 44]. In particular, it has 
to be underlined that CAR-T cell therapy can be associated 
with some severe adverse effects, such as cytokine release 
syndrome (CRS), CAR T-cell–related encephalopathy syn-
drome (CRES) or immune effector cell–associated neurotox-
icity syndrome (ICANS) [45]. To promptly manage potential 
adverse effects associated with CAR-T cell therapy, several 
efforts have been made to develop a switchable platform, 
namely “UniCAR”, suitable for redirecting immune system 
from an active state to an inactive one. UniCAR-T cells are 
activated by binding to a specific target module (TM) which 
works as a “bridge” between T cells and a tumor-associated 
biomarker. Therefore, while infusion of TM to the patient 
leads UniCAR T cells to the “ON” mode, when the TM is 
physiologically removed from the organism, cells come back 
to the “OFF” mode [46]. In this way, CAR-T cell’s activity 
can be controlled and modulated by clinicians. In this per-
spective, Arndt and colleagues have recently developed a 
flexible approach for a PSCA-targeted immunoPET and RIT 
by utilizing UniCAR platform [47]. The authors synthesized 
a novel IgG4-based TM targeting PSCA: immunodeficient 
mice were subcutaneously injected with PC3 tumors (posi-
tive for PSCA/PSMA/luciferase) alone or in combination 
with UniCAR T cells (i.e. luciferase was utilized to monitor 
tumor growth through bioluminescence). In mice infused 
with anti-PSCA IgG4-based TM, UniCAR T cells were acti-
vated and efficiently exerted anti-tumor activity, as demon-
strated by bioluminescence analysis, while no anti-tumor 
activity was detected in mice that did not receive TM. A 
further endpoint of the cited study consisted of entailing 
the IgG4-based TM for theranostic purposes, by labeling 
it through a bifunctional chelator (DOTAGA) with the 
positron-emitter copper 64 (64Cu) for the imaging and with 
the alpha emitter actinium-225 (225Ac) for therapy, respec-
tively. As far as it concerns the imaging phase, 64Cu-TM was 
tested in mice bearing PSCA-positive xenografts and, after 
administration, the radiocompound rapidly cleared from 
blood and was promptly incorporated within tumors. Of 
note, at later time-points of imaging, 64Cu-TM’s distribution 
included heart, liver, kidneys, with no evidence of uptake in 
salivary glands. For the therapeutic part of the study, mice 
bearing PSCA-positive tumors were divided in 2 groups 
and administered, alternatively, with 225Ac-TM (5 kBq per 
animal; approximately 200 kBq/kg) or DOTAGA-TM (i.e. 
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controls): at day 43 post therapy, tumor growth was signifi-
cantly reduced in the 225Ac-TM treated mice with respect to 
controls. At the administered activity, no relevant adverse 
effects were registered.

Delta‑like ligand 3 (DLL3)

Lineage switching represents one of most crucial features 
involved in tumor resistance to therapy and consists in the 
capability of a single genotype to generate often radically 
different alternative phenotypes as a response to changes in 
the cell environment [48]. By redirecting their phenotype to 
a state capable to proliferate independently from a certain 
metabolic pathway molecularly targeted by therapy, tumors 
can become “therapy-resistant”. As specifically regards PC, 
prolonged inhibition of the androgen axis through ADT or 
2nd generation anti-androgens may lead cells to lineage 
switching toward neuroendocrine differentiation [49], giv-
ing rise to the so-called treatment-induced NEPC. Several 
similarities have been reported among NEPC and small cell 
lung cancer (SCLC), such as the aggressive behavior and, 
from a molecular point of view, the suppression of Notch 
signaling activity through the upregulation of the inhibitory 
Notch ligand delta-like ligand 3 (DLL3) [50]. As a matter 
of fact, DDL3 has been found overexpressed in the majority 
of NEPC samples, while it is absent or minimally detectable 
in non-malignant cells. These characteristics make DLL3 a 
potentially useful biomarker for theranostic applications in 
NEPC.

In this perspective, a DLL3-targeted humanized 
MoAb–SC16 was developed and chemically modified to be 
labeled with 89Zr through DFO by Sharma and colleagues 
[51] to allow an in vivo assessment of DLL3 expression 
in SCLC models. In a very recently published paper [52], 
Korsen and co-workers applied immunohistochemistry and 
qPCR to gage androgen receptor-associated biomarkers and 
NEPC-associated biomarkers in a panel of PC cell lines. 
They identified a peculiar cell line, namely H660, as positive 
for DLL3 and negative for androgen-associated biomark-
ers (PSA, PSMA) both at a transcriptional and translational 
level. Subsequently, mice bearing both DLL3-positive (cell 
line: H660) and DLL3-negative (cell line: DU145) xeno-
grafts were submitted to DLL3-targeted PET-imaging with 
89Zr-DFO-SC16: tracer incorporation was rapid and intense 
in H660 xenografts, with increasing uptake value over time 
(i.e. maximum uptake reached at 120 h post-injection). On 
the contrary, minimal uptake of 89Zr-DFO-SC16 was evident 
in DU145 xenografts. Notably, another group of male mice 
was subcutaneously injected with both LNCaP (PSMA-
positive/DLL3-negative) and H660 (PSMA-negative/DLL3-
positive) xenografts on the opposite flanks and then submit-
ted to 68 Ga-PSMA-11 PET/CT: at 1 h after administration 
only LNCaP xenografts presented high 68 Ga-PSMA-11 

incorporation. Two days later, the same group of mice 
underwent 89Zr-DFO-SC16 immunoPET that effectively 
imaged H660 xenografts while no meaningful uptake was 
registered in LNCaP tumors. Notably, H660 xenografts 
were negative also when examined with 68 Ga-DOTATATE, 
which is currently applied in clinical practice to detect soma-
tostatin-receptor expression, indicative of neuroendocrine 
differentiation in tumors [53, 54].

Vascular endothelial growth factor receptor 2 
(VEGFR‑2)

Vascular endothelial growth factor receptor 2 (VEGFR-2) 
is a tyrosine kinase receptor for the angiogenic growth fac-
tor, VEGF, that, in its turn, encompasses a family of growth 
factors including several members (i.e. VEGF-A, -B, -C and 
–D). VEGFR-2 preferentially binds to VEGF-A triggering a 
complex signaling cascade involving secondary messengers 
including several protein kinases and phosphatases, leading 
to cell proliferation and supporting the so-called “proangio-
genic phenotype” [55]. Since VEGF/VEGFR expression was 
found upregulated in PC and associated with tumor stage, 
aggressiveness, propensity to colonize bone, several efforts 
have been made to develop an immunoPET platform target-
ing VEGFR [56].

Li and co-workers conjugated ramucirumab, a recom-
binant humanized IgG1 monoclonal antibody, with 89Zr 
through the chelator DFO (89Zr-Df-R) and tested this 
radiocompound as an imaging probe for the in vivo assess-
ment of VEGFR-2 expression in mice bearing subcutane-
ous xenografts of different PC lines [57]. Expression of 
VEGFR-2 was gaged in 3 PC cell lines (i.e. PC3, LNCaP 
and LAPC-4) through flow cytometry: among the analyzed 
cells, PC3 presented the highest VEGFR-2 levels. After hav-
ing subcutaneously injected tumor cells of the 3 different 
lines to mice, immunoPET with 89Zr-Df-R was carried out 
to visualize VEGFR-2 expression in xenografts by acquir-
ing images at different time-points. ImmunoPET showed 
intense tracer incorporation in PC3 xenografts, according 
to the high levels of VEGFR-2 detected by flow cytometry 
in these tumor cells, with a peak of uptake reached at 96 h 
post-injection. On the contrary, only mild tracer uptake was 
revealed in LNCaP and LAPC-4 xenografts, consistently 
with a lower VEGFR-2 density demonstrated at cytometry. 
Notably, 89Zr-Df-R incorporation in PC3 xenografts resulted 
significantly reduced by administering “cold” ramucirumab, 
thus indicating the specificity of tracer binding to VEGFR-
2. The authors also performed a biodistribution study that 
showed similar patterns of tracer’s distribution in mice bear-
ing the 3 distinct types of xenografts, being spleen, liver 
and blood the major sites of radiocompound’s aspecific 
uptake. In spite of these promising results, to the best of 
our knowledge no further investigations were performed on 



593Clinical and Translational Imaging (2022) 10:587–596 

1 3

VEGFR-2 as potentially useful biomarker for PC diagnosis 
and theranostics.

CD46

Human membrane co-factor protein, namely CD46, plays a 
central role as negative regulator of the complement cascade 
in the innate immune system and protects autologous cells 
from complement attack by binding to some complement 
factors such as C3b and C4b.

CD46 extracellular domain consists of short consensus 
repeats (SCR1-SCR4) forming an elongated structure [58]. 
Of note, CD46 was found overexpressed in localized and 
metastatic PC (both in adenocarcinoma and NEPC), while 
it is only minimally detectable on normal tissue and, most 
interestingly, CD46 expression resulted enhanced in mCRPC 
after treatment with abiraterone and enzalutamide [49].

A CD46-targeted immunoPET resulted feasible thanks to 
the development of YS5, a human full-length IgG1, radiola-
beled with 89Zr (89Zr-DFO-YS5), synthesized by Wang et al. 
[59]. ImmunoPET with 89Zr-DFO-YS5 was performed in 
mice bearing 2 distinct types of tumors, DU145 (AR/PSMA-
negative, CD46-positive) and 22Rv1 (AR/CD46/PSMA-pos-
itive), through repeated acquisitions up to 168 h after tracer 
administration; furthermore, mice bearing tumors were sac-
rificed at different time points for biodistribution studies. In 
PSMA-negative/CD46-positive xenografts (DU145), tracer 
uptake reached the highest value (i.e. 18.2 ± 10.9%ID/gram) 
at 168 h and the greatest tumor/muscle ratio (i.e. 59.0 ± 16.5) 
at 96 h.

Interestingly, in mice bearing PSMA/CD46-positive 
tumors (22Rv1), the biodistribution of 89Zr-DFO-YS5 was 
compared with that of 68 Ga-PSMA-11: 89Zr-DFO-YS5 pre-
sented high uptake in tumor but all the other organs had an 
uptake value below 5% at 4 day p.i., while 68 Ga-PSMA-11 
uptake measured at 1 h p.i. resulted remarkably high both in 
tumor and kidneys. It is worth mentioning that imaging with 
89Zr-DFO-YS5 was also tested by the authors in mice bear-
ing several patient-derived xenografts: CD46 was clearly 
detected by immunoPET, especially in case of LTL-545 
neuroendocrine prostate cancer tumors.

Trophoblast cell surface antigen 2 (TROP‑2)

Trophoblast cell surface antigen 2 (TROP-2), firstly 
described as a protein highly expressed on the surface of 
trophoblast cells, is a 46-kDa transmembrane glycoprotein, 
only minimally detectable in normal glandular cells, while 
it has been found overexpressed in several tumors such as 
bladder, lung, breast and gastric cancer [60]. As specifically 
regards PC, TROP-2 has been found significantly elevated 
in CRPC and NEPC [61].

An interesting strategy for the in vivo imaging of TROP-2 
expression in PC through immunoPET has been developed 
by van Rij and co-workers [62]. To obtain an optimal tumor-
to-background ratio, a pre-targeting approach was employed 
via a bispecific monoclonal antibody (bsmAb), TF12, pre-
senting 2 sites binding to TROP-2 (i.e. anti-TROP-2 Fab 
fragments) and 1 site targeting HSG (histamine-succinyl-
glycine). In the pre-targeting approach, TF-12 is firstly intra-
venously administered; subsequently, after that the amount 
of TF-12 not bound to tumor has cleared from blood, the 
HSG-substituted radiolabeled hapten-peptide is injected 
and rapidly incorporated into the tumor by the anti-HSG 
arm of the bsmAb [63]. Nude mice were injected with PC3 
cells in the flank or in the peritoneum to test anti-TROP-2 
immunoPET: 18F-fluorodeoxyglucose  ([18F]FDG) was used 
as a reference. Therefore, each mouse was submitted both 
to PET/CT with  [18F]FDG and anti-TROP-2 immunoPET. 
For immunoPET, pre-targeting was carried out through the 
administration of TF-12 followed, after 16 h, by the injec-
tion of a HSG-substituted radiolabeled hapten-peptide, 
namely 68 Ga-IMP288: PET/CT was performed 1 h after 
labeled hapten administration. After 48 h, the same animal 
was administered with  [18F]FDG and submitted to PET/CT 
at 45 min post-injection. It is worth mentioning that pre-
targeting allowed obtaining an excellent tumor-to-blood ratio 
in all mice bearing PC3 xenografts as early as 1 h after injec-
tion. Of note, immunoPET with 68 Ga-IMP288 outperformed 
PET with  [18F]FDG for the visualization of xenografts both 
in mice flank and peritoneum, being effective to identify 
lesions as small as 5  mm3.

Concluding remarks and future directions

ImmunoPET was successfully employed for the investiga-
tion of several biomarkers, other than PSMA, that might 
have a great impact on PC theranostics. However, existing 
literature on this topic is still limited to pre-clinical studies, 
since none of the aforementioned molecular targets has been 
evaluated in humans yet. Notably, one of the most relevant 
issues limiting the diffusion of immunoPET is represented 
by the potential immunogenicity of the different radioim-
munoconjugated compounds. However, while murine 
antibodies obtained from mouse hybridoma were found to 
elicit meaningful anti-murine antibody (HAMA) response 
in patients, technological development has recently allowed 
the production of “humanized” or fully human antibodies, 
thus minimizing the issues linked to immunogenicity and 
HAMA production [64].

It has to be underlined that the majority of the stud-
ies reported in this review (6 out of 10 papers, 60%) was 
focused on PSCA, that has been found extremely promis-
ing and investigated in several settings (i.e. NIRF-guided 
surgery, RIT, UniCAR T cell therapy), as schematically 
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represented in Fig. 1. In particular, in recent years the 
complex interactions among the various cell types in the 
tumor microenvironment have emerged as a relevant hall-
mark of cancer, leading to the design of powerful T-cell 
therapies that are capable of causing the regression of 
large tumor burdens [65]. In this regard, it is worth men-
tioning the ongoing clinical trial (NCT03873805) address-
ing the impact of PSCA-chimeric antigen receptor (CAR) 
T cells in patients with PSCA-positive mCRPC. A further 
interesting clinical trial (NCT04702737) is underway to 
assess the potential of tarlatamab (AMG 757), a half-life 
extended bispecific T-cell engager, as a therapeutic tool in 
DDL3-positive NEPC cells. In the aforementioned clinical 
trials, target identification (PSCA or DDL3) was based 
on laboratory findings (histochemistry, genomic analysis). 
Nevertheless, biopsy represents an invasive approach, not 
suitable for exploring heterogeneity of target expression 
in case of multiple localizations.

In this perspective, immunoPET holds the promise to 
become an essential tool for a patient-tailored approach in 
PC, being suitable for an in vivo assessment and quantifica-
tion of several targets alternative to PSMA, according to 
tumor biology and evolution, and allowing dynamic evalu-
ation of eventual changes in biomarkers’ expression during 
therapy.
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