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Abstract

Purpose Radionuclide bone scintigraphy is increasingly attracting the attention of clinicians as a tool for the specific diag-
nosis of transthyretin (ATTR) cardiac amyloidosis. We aimed to describe the diagnostic value of bone scintigraphy in ATTR
amyloid cardiomyopathy (ATTR-CA) by performing a meta-analysis of multiple studies.

Methods We searched all literature included in PubMed and EMBASE until August 10, 2021. A Bayesian bivariate meta-
analysis was used for all included studies. Diagnostic performance of bone scan for the diagnosis of ATTR-CA was assessed
by calculating pooled sensitivity, specificity, LLR + (Log positive likelihood ratio), LLR — (Log negative likelihood ratio),
LDOR (Log diagnostic odds ratio), and plotting forest maps. Summary receiver operating characteristic curves (SROC) were
fitted based on a Bayesian bivariate hierarchical model to assess the overall diagnostic efficacy of bone scan for the diagnosis
of ATTR-CA. A meta-analysis with subgroups based on imaging time, diagnostic criteria, and different radiotracers was
performed to compare the differences in diagnostic efficacy.

Results We included a total of 39 publications with a total of 3636 patients. The pooled sensitivity, specificity, LLR +,
LLR —, and LDOR of bone scan for diagnosing ATTR-CA were 0.97, 0.96, 3.22, — 3.59, and 6.81, respectively; the SROC
curve showed excellent diagnostic performance with an area under the curve of 0.99. The semi-quantitative visual score
method, quantitative ratio (i.e., H/CL, H/WB, H/M) analysis, and quantitative cardiac SUVmax/peak analysis all had higher
pooled sensitivity (0.97 vs. 0.98 vs. 1.00); the pooled specificity of cardiac SUVmax analysis was lower than that of visual
scoring and quantitative ratio analysis (0.87 vs. 0.96 vs. 0.96). Regarding imaging time, the pooled sensitivity, specific-
ity, LLR +, LLR — and LDOR were better for 3-h imaging than 1-h (0.98 vs. 0.97; 0.97 vs. 0.95; 3.49 vs. 3.03; — 3.91 vs.
— 3.72; 7.40 vs. 6.75). Among the different bone-seeking tracers, the pooled sensitivities of 99mTe_DPD, *"Tc-PYP, and
99T _HMDP were 0.98, 0.95, and 1.00, respectively, and the pooled specificities were 0.94, 0.95, and 0.98, respectively.
Conclusions Bone scintigraphy has an excellent diagnostic performance in ATTR-CA. An accurate diagnosis of ATTR-
CA can be made based on the semi-quantitative visual score, quantitative ratios of planar imaging, and cardiac bone-tracer
uptake values of SPECT images.
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Introduction

Amyloidosis is a disease that results from the deposition

5 Long Sun of amyloid fibrils in the extracellular space, destroying the
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Department of Nuclear Medicine and Minnan PET Center, patients with amyloidosis. AL amyloidosis is due to exces-
Xiamen Cancer Hospital, The First Affiliated Hospital . . . .

of Xiamen University, 55 Zhenhai Rd., Xiamen 361003, sive secretion of monoclonal light chains by bone marrow

China plasma cells and aggregation into amyloid fibrils deposited

Department of Nuclear Medicine, Zhongshan Hospital,
Fudan University (Xiamen Branch), Xiamen, China

@ Springer


http://orcid.org/0000-0002-0318-2925
http://crossmark.crossref.org/dialog/?doi=10.1007/s40336-021-00471-8&domain=pdf

86

Clinical and Translational Imaging (2022) 10:85-98

in tissues, often involving the liver, lung, kidney, lower uri-
nary tract, bone marrow, and rarely the heart [1]. ATTR
amyloidosis is caused by the misfolding of transthyretin pro-
teins, which aggregate into amyloid fibrils and accumulate
in tissues, mainly involving the heart, carpal tunnel, spinal
ligaments, and peripheral nerves [2—4]. When ATTR or AL
amyloid is deposited in the myocardium, it causes thickening
of the ventricular wall, diastolic dysfunction, restricted sys-
tolic function, impaired transmission, and ultimately heart
failure. Research studies have shown that approximately 20%
of heart failure and myocardial wall thickening patients have
wild-type transthyretin cardiac amyloidosis [5].

In the past 20 years, cardiac amyloidosis has often been
considered a rare disease and has not received much atten-
tion. Patients with early-onset ATTR-CA tend to often
present with decreased exercise tolerance and slowly pro-
gressive decreased diastolic heart function, and these non-
specific symptoms can mostly lead to delayed diagnosis or
miss the best time for treatment. The earliest examinations
to suspected heart-related discomforts are electrocardiogram
(ECG) and echocardiography. ECG is performed as a rou-
tine exam. Approximately 34—46% of patients with amyloid
cardiomyopathy exhibit low voltage in the limb leads, with
mutant ATTR amyloid cardiomyopathy (ATTRm-CA) and
wild-type ATTR amyloid cardiomyopathy (ATTRwt-CA)
accounting for 38% and 18%, respectively [6, 7]. The char-
acteristic manifestations of ATTR-CA diagnosed by echo-
cardiography are mainly preserved ejection fraction and left
ventricular hypertrophy, which is nonspecific and can also
occur in hypertensive hypertrophic heart disease and heredi-
tary hypertrophic cardiomyopathy [8]. A further examina-
tion, cardiac MRI, has good diagnostic sensitivity (95%) and
specificity (98%) for amyloid cardiomyopathy but does not
provide a specific differential diagnosis between ATTR-CA
and other cardiomyopathies [9]. In addition, the gold stand-
ard for the diagnosis of ATTR-CA is an endomyocardial
biopsy, which is invasive, risky, and needs to be performed
by a physician with excellent expertise.

Current treatment modalities for ATTR-CA include
chemotherapy, transthyretin protein reduction, and liver
transplantation, and the prognosis after treatment is much
better than that of AL amyloid cardiomyopathy (AL-CA)
[10]. Therefore, early diagnosis and treatment are crucial.
9mTc_labelled bone tracer has been used for a long time for
the diagnosis of ATTR-CA. The advantage of bone imaging
agents is the specificity in differentiating ATTR-CA from
AL-CA and other types of cardiomyopathies. Published
studies in various countries have shown good diagnostic
efficacy of technetium-99m diphosphono-1,2-propanodi-
carboxylic acid (**™Tc-DPD), technetium-99m pyrophos-
phate (*™Tc-PYP), and technetium-99m hydroxymethyl-
ene diphosphonate (**"Tc-HMDP) imaging for ATTR-CA,
but most studies included too few patients. In addition, the
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clinical application of bone scans for the diagnosis of ATTR-
CA is still in the early clinical trial stage in many countries
and regions. Therefore, we included multiple studies in our
meta-analysis to assess diagnostic performance from overall
diagnostic efficacy to specific differential applications (dif-
ferent imaging time, different diagnostic criteria, different
bone-seeking tracers), thus providing more comprehensive
and more adequate diagnostic evidence for the use of bone
scintigraphy in cardiac disease.

Materials and methods
Search strategy

This review followed the Preferred Reporting Items for a
Systematic Review and Meta-Analysis (PRISMA) statement
[11]. Ethical approval or informed consent was not required
by conducting a meta-analysis of published studies without
reference to specific patients for inclusion.

We searched the published literature by utilizing the
PubMed database and EMBASE database with a search
deadline of August 10, 2021. The search formula used was:
(((amyloid[Title/Abstract] OR amyloidosis[Title/Abstract])
AND (TTR[Title/Abstract] OR ATTR|[Title/Abstract] OR
transthyretin[Title/Abstract])) AND (scintigraphy[Title/
Abstract] OR scan[Title/Abstract] OR SPECT|[Title/
Abstract] OR SPET|[Title/Abstract] OR bone[Title/
Abstract] OR skeletal[Title/Abstract] OR skeleton[Title/
Abstract] OR PYP[Title/Abstract] OR DPDJ[Title/Abstract]
OR HMDP[Title/Abstract] OR MDP[Title/Abstract] OR
HDP[Title/Abstract])). There was no restriction on the lan-
guage of the article.

Study selection and exclusion

We included studies that met the following criteria: (1)
studies in which *™Tc-PYP or *Tc-DPD or *"Tc-HMDP
imaging were used for the diagnosis of ATTR-CA; (2) diag-
nostically relevant data could be extracted, such as true-
positive (TP), false-positive (FP), false-negative (FN), true-
negative (TN), sensitivity, and specificity; (3) studies with
no less than ten cases. The following types of literature were
excluded: (1) non-human studies; (2) case report, review,
editorial, letter, comment, conference proceedings, confer-
ence abstract, and articles without full-text.

Atrticles that did not meet the criteria were first excluded
through the database filters, and then the remaining articles
that did not meet the criteria were further excluded by care-
fully reading the title, abstract, and full text. Two authors
decided the final included articles, and any disagreements
were resolved through consensus discussions.
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Data extraction and quality assessment

We extracted relevant information from the included lit-
erature, including first author, year of publication, country,
study design, number of patients, age of patients, type of
patients, diagnostic modality, type of imaging agent, and ref-
erence standard. TP, FP, FN, and TN were extracted directly
or calculated indirectly by reading the full text. Two authors
assessed the methodology of each study using the entries in
the Quality Assessment of Diagnostic Accuracy Studies-2
(QUADAS-2) questionnaire [12].

Statistical analysis

First, we assessed the quality of the included studies using
RevMan software (Review Manager, version 5.4). The
included studies’ visual assessment method, quantitative
ratio (i.e., H/CL, H/WB, H/M) analysis, and myocardial
SUV analysis may have used different thresholds in the diag-
nostic process. We used a Bayesian bivariate random-effects
model analysis to fully consider the variation among studies
and the correlation between pooled sensitivity and specific-
ity. We obtained the pooled sensitivity, specificity, LLR +,
LLR —, and LDOR using the “INLA” package [13] (the
integrated nested Laplace approximation based on INLA to
combine the data) and the “metaddiag” package [14] (the
bivariate meta-analysis based on the Bayesian framework
principle) in R (R for Windows, version 4.1.0). The fitted
SROC curves obtained from the modelling based on the
Logit transformation were used to assess the overall effi-
cacy of bone scan for ATTR-CA diagnosis. In addition, for
subgroup data with more zero values and insufficient data
that could not be pooled by R software, the pooled sensitiv-
ity and specificity were calculated after correction by adding
0.5 to the cells with zero values using MetaDiSc software
(Meta-analysis of Diagnostic and Screening Tests, version
1.4) [15]. Finally, publication bias was assessed by plotting
funnel plots using the R package described above [16].

Results
Literatures search and study characteristics

We retrieved 383 articles on PubMed, 1021 articles on
EMBASE, and two articles by manual search. First, a total
of 1177 articles were excluded by the automatic filters of the
database; then, 167 articles were excluded by reading the
titles and abstracts of the remaining 229 articles; further, 23
articles were excluded by carefully reading the full text of
the remaining 63 articles. Finally, 39 articles were included
in our meta-analysis [5, 17-54]. The detailed search and
selection process are shown in Fig. 1.

We included 39 studies published between 2002 and 2021,
28 retrospective and 11 prospective, with a total of 3636
patients and a mean or median age span of 54.4-86 years.
There were 12 studies using *™Tc-DPD, eight using **™Tc-
HDMP, 16 using *™Tc-PYP, and three using multiple bone
imaging agents. Four studies were analyzed quantitatively by
measuring cardiac SUVmax or SUVpeak, and the remaining
35 studies were analyzed by semi-quantitative visual score
or combined H/CL (heart to contralateral chest retention)
or H/WB (heart to whole-body retention) or H/M (heart to
mediastinum retention) ratios. The reference standard for
28 of these studies was subendocardial biopsy or combined
with extracardiac tissue biopsy; for 8 studies, the reference
standard was extracardiac tissue biopsy, gene sequencing,
and immunohistochemistry; and for the other 3 studies, the
reference standard was typical imaging image presentation,
clinical features, and immunohistochemistry. The essential
characteristics of the included studies are detailed in Table 1.

Methodological qualitative analysis

Figure 2a shows the risk bias and clinical usability issues
for each included study regarding patient selection, experi-
mental methodology, reference standard, and study flow.
Figure 2b presents a summary assessment of all included
studies in terms of methodology. Fourteen studies reported
that they included patients on a consecutive basis [19, 23,
34, 35,37, 39, 42-45, 51-54], and 25 studies did not report
whether they were consecutive [5, 17, 18, 20-22, 24-33,
36, 38, 40, 41, 46-50]. Regarding the index test and ref-
erence standard, 16 studies were blinded [18, 19, 21-23,
28, 29, 36, 37, 40, 42, 45, 50, 51, 54], 21 did not report
whether they were blinded, and two studies were unblinded
[31, 47], while ten studies had a reference standard other
than pathology [5, 18, 19, 34, 35, 38—41, 47], thus introduc-
ing a high risk in the index test and the reference standard.
Further, Asif and Bellevre’s study used the visual score of
bone scintigraphy as a reference standard, leading to the
concern of clinical applicability [34, 47]. Since Lofbacka’s
study included patients with known ATTRm-CA and posi-
tive bone scan, there is a clinical applicability concern in
patient selection [49].

Overall pooled diagnostic performance of bone
scintigraphy

Figure 3 shows a forest plot of the pooled sensitivity and
specificity of bone scan for the diagnosis of ATTR-CA.
The high pooled sensitivity (0.97, 95% CI 0.95-0.99) and
specificity (0.96, 95% CI 0.94-0.98) of the 39 included
studies indicate the excellent performance of bone scan
for the diagnosis of ATTR. Figure 4 shows forest plots
of positive likelihood ratio, negative likelihood ratio, and
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Fig. 1 Flow chart of literature
search using PRISMA 2020 [

Identification of studies via databases and manual search ]

)

method

PubMed (n = 383)

Identification

Records identified from:

EMBASE (n = 1021)
Manual searching (n = 2)

Records removed before screening:
PubMed total exclusion (n = 181)
Records marked as ineligible by automation tools (n = 181)
<-Case report (n = 78)
<-Review (n = 77)
> <-Comment, editorial, letter, published erratum, guideline (n = 17)
<-Animal experiment (n = 1)
<>No full-text (n = 8)
EMBASE total exclusion (n = 996)
Duplicate records in PubMed removed (n = 303)
Records marked as ineligible by automation tools (n = 693)

_ !

<-Conference abstract (n = 650)
<-Case report (n = 24)

Records screened
PubMed (n = 202)
EMBASE (n = 25)

Manual searching (n = 2)

<Review (n = 15)
<-Conference review (n = 4)

Records excluded by reading the abstract and title
PubMed total exclusion (n = 146)

l

.

<-Case report (n = 20)
< Review (n =9)
<-Consensus statement (n = 1)

<-Unrelated studies (n = 116)

EMBASE total exclusion (n = 21)
<-Duplicate records in PubMed removed (n = 12)
<-Review, cases report, editorial, guideline (n = 4)
< Unrelated studies (n = 5)

Studies excluded by reading the full-text
PubMed total exclusion (n = 19)

<Study with fewer than 10 patients = 1

<-Overlapping study patients = 1

<-Cannot extracted 2x2 table (n=17)
EMBASE total exclusion (n = 4)

< Study with fewer than 10 patients (n =1)

< Oral presentation (n= 1)

< No full text (n =1)
< Ongoing studies with no results (n= 1)

diagnostic odds ratio after logit transformation. The pooled
estimates of LLR +, LLR —, and LDOR were 3.22 (95%
CI 2.76-3.80), — 3.59 (95% CI — 4.58 to — 2.86), and 6.81
(95% C15.87-7.93), respectively. Figure 5 shows the SROC
curve and the estimate of AUC (0.99, 95% CI 0.95-0.99).
The dark blue SROC line shown in Fig. 5 is particularly
close to the upper left corner, suggesting that the diagnostic
value of bone scintigraphy is exceptionally high.

Pooled diagnostic performance of each subgroup
set

Table 2 shows the pooled sensitivity, specificity, LLR +,
LLR —, LDOR, and 95% CI for each subgroup.

Visual scoring, quantitative ratio (i.e., H/CL, H/WB,
H/M) analysis, and myocardial SUVmax/peak analy-
sis showed high pooled sensitivities of 0.97 (95% CI
0.94-0.98), 0.98 (95% CI 0.96-1.00), and 1.00 (95% CI
0.95-1.00), respectively, for diagnosing ATTR-CA. The
pooled specificities were higher for visual scoring (0.96,
95% CI 0.94-0.98) and quantitative ratio analysis (0.96, 95%
CI 0.92-0.99) and lowered for myocardial SUVmax/peak
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(0.87,95% C1 0.79-0.93). The pooled LLR +, LLR — and
LDOR of quantitative ratio analysis were higher than vis-
ual scoring [3.33 (95% CI 2.45-4.59) vs. 3.21 (95% CI
2.71-3.83); — 4.06 (95% CI — 5.45 to — 3.05) vs. — 3.41
(95% CI — 4.15 to — 2.80); 7.39 (95% CI 5.97-9.23) vs.
6.62 (95% CI 5.84-7.48)], indicating that quantitative ratio
analysis may be superior to visual scoring in identifying
ATTR-CA.

On the other hand, when the diagnostic threshold for
visual scoring was score 1 (five data sets), the pooled sen-
sitivity, specificity, LLR +, LLR —, and LDOR were 0.99
(95% C1 0.97-1.00), 0.93 (95% C1 0.78-0.99), 3.02 (95% CI
1.35-5.27), — 4.62 (95% CI — 6.33 to — 3.44), and 7.64 (95%
CI 5.58-10.35), respectively. When the diagnostic threshold
was score 2 (32 data sets), the pooled sensitivity, specific-
ity, LLR +, LLR —, and LDOR 0.96 (95% CI 0.93-0.98),
0.96 (95% CI10.94-0.98), 3.16 (95% CI 2.66-3.79), — 3.12
(95% CI — 3.91 to — 2.51), and 6.28 (95% CI 5.43-7.23),
respectively.

Regarding imaging time, the pooled sensitivity, specific-
ity, LLR +, LLR —, and LDOR for studies in which the
time from radiotracer injection to scanning was 30 min—1 h
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(14 data sets) were 0.97 (95% CI 0.95-0.99), 0.95 (95%
CI 0.93-0.97), 3.03 (95% CI 2.68-3.49), — 3.72 (95% CI
—4.90 to — 2.08), and 6.75 (95% CI 5.68-8.04), respec-
tively. The pooled sensitivity, specificity, LLR +, LLR —,
and LDOR for studies in which the imaging time was
2.5—4 h after radiotracer injection (33 data sets) were 0.98
(95% CI1 0.95-0.99), 0.97 (95% CI 0.94-0.99), 3.49 (95%
CI 2.82-4.35), — 3.91 (95% CI — 5.22 to — 2.97), and 7.40
(95% CI 6.27-8.79), respectively. Overall, pooled sensitiv-
ity, specificity, LLR +, LLR — and LDOR were higher at
an imaging time of approximately 3 h than at approximately
1 h

When grouped according to the type of imaging agent,
the pooled sensitivity, specificity, LLR +, LLR —, and
LDOR for imaging with *™Tc-DPD (12 data sets) were 0.98
(95% C1 0.96-1.00), 0.94 (95% C1 0.88-0.98), 2.82 (95% CI
2.06-3.79), — 4.52 (95% CI — 7.55 to — 3.03), and 7.34 (95%
CI 5.47-10.47), respectively. The pooled sensitivity, speci-
ficity, LLR +, LLR —, and LDOR for imaging with 9me_
PYP (16 data sets) were 0.95 (95% CI 0.90-0.98), 0.95 (95%
CI 0.93-0.97), 3.02 (95% CI 2.53-3.71), — 2.96 (95% CI
— 4.07 to — 2.16), and 5.98 (95% CI 4.94-7.35), respec-
tively. The pooled sensitivity, specificity, LLR +, LLR —,
and LDOR for imaging with *™Tc-HMDP (9 data sets) were
1.00 (95% CI 0.98-1.00), 0.98 (95% CI 0.96-1.00), 4.24
(95% C13.07-6.27), — 6.38 (95% CI — 11.72 to — 3.80), and
10.62 (95% CI 7.63—15.55), respectively.

Publication bias

By visual analysis of the funnel plot (Fig. 6), we found eight
studies scattered outside the 95% confidence interval of the
funnel plot, indicating heterogeneity among our included
studies. In addition, a large number of studies were dis-
tributed at the bottom of the funnel plot, indicating that we
included a large number of small sample studies. Observing
the studies within the 95% confidence interval as a whole,
we found that these studies were roughly symmetrically
distributed on both sides of the LDOR estimates, thus indi-
cating that there was no significant publication bias in the
inclusion of our meta-analysis.

Discussion

Bone-seeking radiopharmaceuticals have been used for the
diagnosis of ATTR-CA for 20 years. Most clinical studies
based on the diagnosis of ATTR-CA have a small number
of cases due to the limited therapeutic effect of amyloid
cardiomyopathy and the lack of awareness of the disease
among clinicians. The previous meta-analysis has shown
good diagnostic performance with bone scans [55]. Our
study is a Bayesian bivariate meta-analysis based on a

@ Springer



Clinical and Translational Imaging (2022) 10:85-98

92

True negative rate (Specificity)

True positive rate (Sensitivity)

Specificity (95%CI)

Sensitivity (95%CI)

TP FP TN FN

Study ID

98]

SONORVXO-ONOODANOXNOOOD RO —OOOROND =0T
SO OO NOCOSONOANNOOONNOCONOCOONOOOOAOCOD

\O T~ N0 O\ N 00 T ONOO 00T~ — S [ 00U O I~ VO NS OISO HN IS IS enT NSO It
AR RNRRXRNRRRRNNNNRARNNNNANRARAANARANARNANNANS A

[slelelelelelelelelelelelelelelelelelelelelelelelelelelelelelelelelelelelel el

I Iy 8 ﬁSJL:J [LIfe il T 2 11,

P
|

N

94
98
00
00
99
00
00
99
00
00
00
00
00
39
00
00
99
73
00
77
00
00
97
00
98
98
99
98
00
00
,0.99 |

O~ QN0 — ENNO 00 — NGO TS NN O T O 00 N O D I~ N A0 00 T~ \O — I~ cnentn o000 B
AANARNXRRVARRNARNANRARNARARNANNHANRANANANNRNRNNAR A

[slelelelelelelelelelelelelelelelelelelelelelelelelelelelelelelelelelelelel el
Trota o Trrer teTo1oTTox -
T RS S LJ T T TETT R E

T ey
4

|

|
|

00001%80”%300100100001W001M190150332400

CON—OT =g FROAANNAANNARRCOOIF NN oTToow
124llH544941712911516%0241178592607ﬁ333
COLONEON OO~ —OA—OOONTOO20OONOANDNS N —N

VAN N LR RO —eNy o TNRNNPOANORXOANTFOTNDNOW
T e e N D R SR A

gini E
pezzi C
2012 De Haro del
2013 Bokhari S
2014 Hutt DF
y SC
2019 Kircher
PR

uarti GJ

2018 Ramsa

antoniou V
astano A
2016 Gillmore JD
2017 Cappelli F
RV

2017 Cariou E
2

P
2020 Takasone K

2020 Tamaraﬁpoo B
0

2020 Usuku

2020 Zhan,
Pooled Estimates

2020 Musumeci MB
2020 Santarelli MF

2020 Scull

2020 Sin;
2021 Poterucha TJ

2020 FlahenKIKR
2021 Ren C

2002 Puille M
2005 Peru

2011 Ra

2015 Galat A
2015 Pa

2016 C

2017 Moore PT
2019 Tsutsui Y
2020 Bellevre D
2020 Caobelli F
2020 Malka
2020 Masri A
2021 Asif,

2021 Gallini C
2021 Lindmark K
2021 Lofbacka V
2021 Miller RJH
2021 Nitsche C
2021 Schatka I

0.8 0.9 1.0

0.7

0.6

0.5

1.0

0.2 0.4 0.6 0.8

0.0

Fig. 3 Forest plot for the pooled sensitivity (true positive rate) and specificity (true negative rate)

= —_——— ———— —— - —,
a e T T —
U8 E—toramnolRalta R0l onaGnanoX —mnwn RS e
SN EORAASRT R LT ARG RNTA M T RIS Conn X oy
PO S o e NN D20 =SS SIS pnteNCNVEIER St N S VN T
N PR PN A AR AR A -

~3

14

o

Q

S8

o

=

[

s N

0 FNOASTEARANMNOARAONNRN—N—ADNNSRANN—— RS —n—Nn R

T OSSN BeAn G S S G060 G G G U3 IS [~ 06 06 I — 060 \O\S S T~ (A I~ T O\ OO A T~ 1A =1~ \S

T

o

S

Ll b H g gl L

BT R R AR SR NRSRR RN R R EE R SRR R &

9_: t___h_b Lopl AT

g [:l]11 1

T ¥ 1t T

> l

S 1

- k
= o
U000 =0 =T TONT T =0 —OF Tt — NS R
3 2T LARANNAVNRXTA=RNANRNEOSE TN LR —ORRE=AT M o
NN N NN SNN—S NS = — = == |
Wl T T TS T T T
S S NG N S SN A S N oS S - S0\ F oS o S N = F =t e\ S e o I le\ S R
2NN ORI =ML LN O NATANT 0NN
T T T T T Y T T T T Y T T T Ty TY T T
£
TN OT NN AN —ANOT — NN T ON N — N T —— D — 0N —0S A
% SAE ST NGO M ONANNRN NS, OR =M 0006 CRNIN T X O=0R 7 )
SRRSO A R R AR AT e R SN

Log negative likelihood ratio (LLR-)

VAW =N VMNINMOADVANNNNRR =N —ONVINT ST T P
2NLSLHORT SN ORI ONHIN O OTRNNXT OO0 %
PN alaalalaaTa aTeoTea o [ValVals o dVaTo ok JVolvalVateetoe) 952555354535353443
RGBT RGBS L RN —F R e~ SR SeAaiod s N ier S S0 o8 —\S
@ R INSAMOENINO—=NRA =T —O—oIN JANSNONOENOMHRNINCO TS
E—di—ai——adS——aai——a——a—a—aTa—c—c——cica =~ —cic

=
E Q00NN NN AN = — =0 N — —F =00 OOV NNOAD T~ — A
I oA oRG=oSreonAS oM e R nANT Ao AT TN ™

L eAcicnai—en—ala T enacnenaienen et —en—en e alenenenaicn s Cenen €

E ] :_ﬂ?_ L Ly,

LT

KR
—ea
——
2020 Musumeci MB—————s——=——p
oL
Y
e

I
l

Log positive likelihood ratio (LLR+)

3
> - m -
s 3.8, 39 S w8 Moo B F
RUZn 2« =Ons, A T oB X M eEOS —
ooy O S ooma = o = o U= < =}
S EREER«<SosE Eps = Q=L ETA> 58T ZE¥~% 05 s 5
ENEENIEECT s vae8035TE G ERLT 285 289,288
2y B EEREE 252585825 g 20 EER b5 EOER
a=gar EE e = E 3 TE RS- cC T 4 EE T RO ET SE=2E=28:2
= 55 SV 0SS EREIRCIIET D RS S0 EcSS2C RS EQS =000
>, AR AATOAOO0U ZAXNMEMOE2 2 ZARNEEIN OIS ZAKA D
T AUN—ANNFTININOOEE 00NN — i o
RS Qaagaaaaaaaaaaaaaaaaaa
o e e e e e e e e e e e e e e e e e e e S I IS I ISISISI
7 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAQAAQAQAQQS A

10

02 4 6 8

-2

-4

2 3 45

1

Fig.4 Forest plot for the pooled LLR —, LLR +, and LDOR

Electrocardiography and echocardiography are the most
common examinations for patients with suspect amyloid
cardiomyopathy or other cardiac diseases. Low voltage in

previous study by adding many new publications. In addi-

tion, a meticulous subgroup meta-analysis was performed
to assess the difference in diagnostic efficacy of bone scin-

tigraphy for ATTR-CA.

the limb leads of the ECG combined with septal thickening
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(> 12 mm) on echocardiography can distinguish ATTR-CA
from other diseases associated with septal thickening with
a sensitivity and specificity of 100% and 95%, respectively

Table 2 Comparison of diagnostic performance between subgroups
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Fig.6 Funnel plot on bone scintigraphy for the diagnosis of ATTR-
CA

[56, 57]. However, only 25% of patients with ATTR-CA
showed low voltage in the limb leads, and the lack of

Data-type Pooled sensitivity Pooled specificity Pooled LLR + (95%  Pooled LLR — (95%  Pooled LDOR (95%
(95% CI) (95% CI) Ch CI) CI)
Time of acquiring image
About 1-h* 0.97 (0.95, 0.99) 0.95 (0.93, 0.97) 3.03 (2.68, 3.49) —3.72 (- 4.90, 6.75 (5.68, 8.04)
—2.08)
About 3-h° 0.98 (0.95, 0.99) 0.97 (0.94, 0.99) 3.49 (2.82,4.35) -391(-522, 7.40 (6.27, 8.79)
-2.97)
Diagnostic method
Visual score 0.97 (0.94, 0.98) 0.96 (0.94, 0.98) 3.21(2.71,3.83) —3.41(-4.15, 6.62 (5.84,7.48)
—2.80)
H/CL or H/WB or 0.98 (0.96, 1.00) 0.96 (0.92, 0.99) 3.33(2.45,4.59) —4.06 (— 5.45, 7.39 (5.97,9.23)
H/M —-3.05)
‘Cardiac SUVmax or 1.00 (0.95-1.00) 0.87 (0.79-0.93) NA NA NA
SUVpeak
Visual score cut-off
Score 1 0.99 (0.97, 1.00) 0.93 (0.78, 0.99) 3.02 (1.35,5.27) —4.62 (- 6.33, 7.64 (5.58, 10.35)
-3.44)
Score 2 0.96 (0.93, 0.98) 0.96 (0.94, 0.98) 3.16 (2.66, 3.79) -3.12(-3.91, 6.28 (5.43,7.23)
—2.51)
Radiotracer type
9mTe-DPD 0.98 (0.96, 1.00) 0.94 (0.88, 0.98) 2.82 (2.06, 3.79) —4.52 (- 17.55, 7.34 (5.47,10.47)
—3.03)
PmTc-PYP 0.95 (0.90, 0.98) 0.95(0.93, 0.97) 3.02(2.53,3.71) —2.96 (- 4.07, 5.98 (4.94,7.35)
—-2.16)
9mTc-HMDP 1.00 (0.98, 1.00) 0.98 (0.96, 1.00) 4.24 (3.07,6.27) - 6.38 (- 11.72, 10.62 (7.63, 15.55)
- 3.80)

NA not available
#About 1-h, imaging time from 30 min to 1 h

®About 3-h, imaging time from 2.5 to 4 h

“Cardiac SUVmax or SUVpeak does not have enough data sets to calculate its pooled LLR —, LLR +, and LDOR
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specificity in the presentation of septal thickening made it
difficult to differentiate between ATTR-CA and AL-CA in
clinical practice [58]. A meta-analysis study showed that
late gadolinium enhancement cardiovascular MRI has a high
diagnostic value in diagnosing amyloid cardiomyopathy,
with a sensitivity and specificity of 85% (95% CI1 77-91%)
and 92% (95% CI 83-97%), respectively, but fails to diag-
nose ATTR-CA subtype and AL-CA subtype specifically
[59]. Our meta-analysis showed that bone scan had excellent
diagnostic efficacy for ATTR-CA, with sensitivity, specific-
ity, and AUC of 0.97, 0.96 and, 0.99, respectively.

First, it is noteworthy that the results of our analysis
suggest better diagnostic performance with 3-h imaging
compared to 1 h, which is consistent with the findings of
previous studies. Singh et al. found that the concentration
of bone-seeking tracer in the cardiac cavity blood pool was
still higher at 1 hour after the radiopharmaceutical injec-
tion and therefore delayed imaging to 3 h [42]. Masri’s
study also demonstrated that increased blood pool activity
affects visual diagnostic results. In his study, images with an
imaging time of 1 h and 3 h were scored differently in nine
patients according to visual scoring criteria (i.e., nine false
positives appeared in 1-h imaging). Therefore, 1-h imaging
is recommended to be combined with SPECT/CT imaging
to accurately differentiate between myocardial tracer uptake
and ventricular blood pool tracer aggregation to reduce false
positives [38].

Second, the predominant method for diagnosing ATTR-
CA is the Perugini grading system, a semi-quantitative
visual analysis method [18]. Our results suggest that the
diagnostic efficacy of the visual scoring method is compa-
rable to that of the quantitative ratio (H/CL or H/WB, or
H/M) analysis methods. It has been shown that there is no
difference in diagnostic accuracy between the visual scoring
method and the quantitative ratio method, and both methods
can be well mastered and applied by experienced readers and
novices [42]. In a retrospective study, the Perugini visual
score (> 2) of planar imaging had a better diagnostic perfor-
mance for ATTR-CA and was almost comparable to **™Tc-
PYP SPECT imaging. In contrast, the planar image’s H/CL
ratio (> 1.5) performed poorly as a diagnostic criterion, with
a sensitivity and specificity of 0.57 and 0.95, respectively
[47]. It is noteworthy that the diagnostic criterion based on
the visual score of planar images alone is flawed. In the
study of Poterucha, 32% of patients with positive visual
assessment results were due to excessive tracer accumula-
tion in the cardiac blood pool [52]. This increased uptake
of cardiac blood pool leading to decreased visual diagnostic
accuracy is widespread. Therefore, in most studies, patients
with a visual score of 1 or 2 on planar imaging underwent
further SPECT imaging [19, 21, 22, 29, 38, 42, 51]. In addi-
tion, it has been shown that the visual judgment method of
SPECT images alone has higher diagnostic sensitivity (1.00

@ Springer

vs. 0.93) and specificity (0.99 vs. 0.91) than the visual grad-
ing score of planar images [50]. Therefore, routinely adding
SPECT or SPECT/CT imaging to improve the diagnostic
accuracy of ATTR-CA should become a routine procedure
[47, 60]. Another noteworthy aspect is that some researchers
have concluded that the diagnostic performance of absolute
quantitative measurements of myocardial radiotracer uptake
values and visual grading score are in good agreement. In
all of these studies, the sensitivity of myocardial SUVmax/
peak for diagnosing ATTR-CA reached 100%. Moreover,
the quantitative myocardial uptake values from SPECT/CT
also more accurately reflect the load of myocardial amyloid
deposition [31, 34, 35, 41, 61]. This finding may also herald
the potential value of SPECT/CT quantitative myocardial
radiotracer uptake values in diagnosis, efficacy assessment
of treatment, and prognosis prediction that can be explored.

Furthermore, the results of our meta-analysis showed that
the diagnostic threshold of the visual score of 1 was more
sensitive but less specific than that of 2. The studies of Gill-
more and Cappelli compared the diagnostic performance
of a visual score of 1 and a visual score of 2 and found that
score 1 was more sensitive and less specific than score 2 [26,
27]. AL-CA was a frequent cause of false positives and was
predominantly distributed in the group with a visual score of
1. Quarta et al. mentioned that 39% of AL-CA patients had
varying degrees of **™Tc-DPD uptake. Moreover, patients
with AL-CA presenting with *™Tc-DPD uptake tend to have
a poorer cardiac function and a worse prognosis, so care
should be taken to distinguish ATTR-CA from AL-CA at
the time of diagnosis carefully [62]. In addition to AL-CA,
the presence of the following disorders can also lead to the
false-positive diagnosis, including extensive myocardial
infarction, unstable angina, cardiotoxicity due to adriamycin,
pericarditis, alcoholic cardiomyopathy, pericardial tumors,
and hypercalcemia [63].

It has been shown that **™Tc-MDP, the radiotracer most
commonly used for bone scintigraphy, is less concentrated
in the myocardium of ATTR-CA patients and is less suit-
able as a specific cardiac imaging agent for the diagnosis of
ATTR-CA [18, 20]. The imaging agents routinely used for
the diagnosis of ATTR-CA are 9mTe_DPD, " Tc-PYP, and
9mTc-HMDP. All three tracers are effective for the diag-
nosis of ATTR-CA. Studies have demonstrated differences
in pharmacokinetics, plasma protein binding, renal excre-
tion, and degree of bone binding between *™Tc-DPD and
9mTc-HMDP, but the differences in uptake and distribution
in patients with ATTR-CA have not been conclusively estab-
lished [64—66]. The results of our meta-analysis showed dif-
ferences in pooled sensitivity and specificity between the
different imaging agents, which may also suggest slight dif-
ferences in the affinity of bone-seeking tracers for ATTR
amyloid-deposited myocardium. In a comparative study of
dual nuclide imaging in six patients, the author described
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a mild difference in the degree of concentration of **™Tc-
HMDP and **™Tc-DPD in the myocardium of ATTR-CA
patients, but the difference was not statistically significant
[67]. Unfortunately, few studies have directly compared
the differences of these three imaging agents in diagnosing
ATTR-CA. In clinical practice, most hospitals choose bone-
seeking radiopharmaceuticals for cardiac use not based on
better diagnostic performance, no doubt, but rather on which
imaging agent is more readily available.

ATTR-CA is divided into ATTRwt-CA (senile systemic
amyloidosis) and ATTRm-CA (familial amyloid cardio-
myopathy). Studies on the diagnosis of ATTRwt-CA have
shown that bone scintigraphy has superior diagnostic sen-
sitivity and specificity [5, 51]. Similarly, bone scintigraphy
has excellent diagnostic accuracy in patients with amyloid
cardiomyopathy with common mutant TTR genotypes.
However, bone scintigraphy is not ideal for the diagnosis
of amyloid cardiomyopathy with rare TTR genotypes. In
Musumeci’s study, the sensitivity (10.5%) and diagnostic
accuracy (37%) of bone scintigraphy were very low for
ATTR-CA with Phe64Leu TTR gene mutation [39]. Other
researchers have similarly found low myocardial uptake of
the bone radiotracer in ATTR-CA patients with Phe64Leu
mutation, leading to false-negative results [52]. Thus, the
original mechanisms of bone tracer binding to ATTR amy-
loid-deposited myocardium, including high calcium loading
in ATTR amyloid tissue leading to the high uptake of bone
radiotracer and high affinity of ATTR amyloid fibrous tissue
for bone radiotracer leading to the high uptake of the bone
radiotracer, remain to be further investigated.

Another aspect that deserves our attention is the cur-
rent development of SPECT instruments and application
software, especially the highly sensitive 360-degree rotat-
ing cadmium telluride (CZT) detector, which improves the
diagnostic accuracy of nuclear medicine. Compared to the
conventional sodium iodide (Nal) detector, the CZT detector
offers higher detection efficiency and better detection sensi-
tivity, i.e., reducing the dose of tracer used and reducing the
imaging duration while ensuring better image clarity. The
efficacy of the SPECT gamma camera equipped with the
CTZ detector for diagnosing ATTR-CA performed better in
all the studies we included, with a diagnostic sensitivity of
almost 100% [34, 36, 44, 54].

Finally, we need to mention some limitations in this meta-
analysis. First, our inclusion criteria were not very strict, and
the most important of which needs to be discussed is that
not all the reference standards of our included literature were
endocardial biopsies. Some studies used tissue biopsies of
carpal tunnel ligaments and spinal ligaments as the refer-
ence standard for diagnosis. Eldhagen et al. found that the
presence of ATTR amyloid deposition in the ligamentum
flavum of the patient with lumbar spinal stenosis was not
associated with ATTR amyloid deposits in the myocardium

[68]. By analyzing surgical resection specimens, Sueyoshi
found that patients with bilateral carpal tunnel syndrome had
a 33.3% incidence of ATTR amyloid deposition in carpal
tunnel ligaments or tendons, and patients with lumbar spinal
stenosis had a 44.4% incidence of ATTR amyloid deposition
in spinal ligaments [69]. It has also been shown that patients
with ATTR mutations have an 87.5% positive rate of amy-
loid detection by Congo-red staining of the carpal tunnel
ligament [70]. Therefore, the diagnostic accuracy calculated
based on reference standards of biopsies of non-cardiac tis-
sue for diagnosing ATTR-CA by bone scan may deviate to
some extent from the actual accuracy. There are also studies
in which the reference standard included biopsies of abdomi-
nal adipose tissue. Studies that included a large number of
amyloidosis cases have found that abdominal fat pad aspi-
ration biopsy has a low diagnostic sensitivity for ATTR
amyloidosis (12-27.3%) but a relatively high diagnostic
sensitivity for AL amyloidosis (73.2-84%) [71-73]. Thus,
abdominal fat biopsy as a diagnostic method to exclude
AL is safe, applicable, and relatively accurate. Further, we
included several studies for specific patient populations,
including Musumeci’s study of patients with the Phe64Leu
genotype, a rare type of TTR mutation [39], Nitsche’s study
of patients with cardiomyopathy with aortic stenosis [51],
and Lindmark’s study of patients with ATTRwt-CA only [5].
It could be partly responsible for the heterogeneity between
studies. Finally, we included many studies with small sam-
ples, which may indicate the low stability of the results of
our meta-analysis.

Conclusions

Bone-seeking tracers (**™Tc-DPD, **™Tc-PYP, and *™Tc-
HMDP) play an essential role in diagnosing ATTR-CA. One
hour and 3-h imaging images show differences in the degree
of radiotracer concentration in the ventricular blood pool,
resulting in slight differences in diagnostic sensitivity and
specificity. The visual evaluation of planar cardiac imaging
is sufficient to make an accurate diagnosis of ATTR-CA, but
the combination of SPECT imaging significantly improves
the specificity and sensitivity of the diagnosis. Both quanti-
tative ratios (H/CL, H/WB, H/M) from planar imaging and
quantitative cardiac bone tracer uptake values from quantita-
tive SPECT imaging provide accurate diagnostic informa-
tion. However, bone scans are not very effective in diagnos-
ing ATTR-CA patients with rare mutation types.
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