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Abstract
Purpose  Yttrium 90-labeled intra-arterial liver therapy is an effective treatment for patients with unresectable primary or 
metastatic liver malignancy. Optimal radioisotope dose calculation is dependent upon lung shunt fraction (LSF) which is 
typically estimated by planar scintigraphy. The goal of this systematic review was to compare LSF using 2D planar scintig-
raphy and 3D SPECT/CT. A secondary outcome was to assess the impact on lung dosimetry.
Methods  PubMed, SCOPUS and Web of Science database were searched for studies in English language related to lung 
shunt fraction quantification utilizing technetium 99m-labeled macroaggregated albumin (99mTc-MAA) planar scintigraphy 
and SPECT/CT, published between January 2010 and November 2020. The review was conducted using the PRISMA state-
ment and QUADAS-2 criteria.
Results  A total of 8 studies (one prospective, 4 retrospective studies and 3 abstracts from national conferences) with a sample 
size of 552 were included in this review. There were 456 patients (82.6%) with hepatocellular carcinoma and 95 patients 
(17.4%) with hepatic metastasis. A wider range of LSF percentages was noted in planar scintigraphy methodology (range 
1.2–33.3%) when compared to SPECT/CT (range 0.4–21.7%). The median LSF percentages were 6.7 and 2.9% using planar 
scintigraphy and SPECT/CT, respectively.
Conclusion  The current clinical assessment of LSF is substantially overestimated by 2D planar scintigraphy when compared 
to 3D SPECT/CT. However, unclearness of blinding between the index test and reference standard was an area of quality 
concern. Hence, further randomized or prospective studies are needed to strengthen the role of SPECT/CT in lung shunt 
fraction estimation.

Keywords  Yttrium 90 · Radioembolization · Hepatocellular carcinoma · Hepatic metastasis · Lung shunt fraction · 
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Introduction

Interventional oncology is a rapidly growing sub-specialty 
with advancing technologies and disease-modifying treat-
ments resulting in a significant impact on patients with can-
cer diagnosis. Selective internal radiation therapy (SIRT), 
also termed as Transarterial radioembolization (TARE), is 
a unique hepatic artery-based brachytherapy using yttrium 
90 (90Y)-loaded microspheres for oncological management. 

SIRT is a safe and well-established treatment for unresect-
able hepatocellular carcinoma (HCC) and metastasis to the 
liver [1–4]. Currently, there are two commercially avail-
able radioactive microspheres for clinical use, namely, 
resin-based SIR-Spheres (Sirtex Medical Limited, North 
Sydney, Australia) and glass-based spheres (TheraSphere; 
Boston Scientific). The tumoricidal effects of 90Y are due to 
β-particles emission (933.7 keV) from the radioactive decay 
of 90Y (half-life = 64.2 h) to nonradioactive, Zirconium-90 
[5].

Patient selection and success for TARE is dependent upon 
many clinical and technical aspects, for example, vascular 
anatomy, patients underlying health status, radiation-induced 
injury from non-targeted delivery of 90Y which can result 
in irreversible damage. Although less frequent than liver 
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toxicity, radiation-induced pneumonitis due to hepatopulmo-
nary shunting of 90Y particles remains a major concern. The 
biological effect of radiation is dependent upon the relation 
between the amount of radioactivity administered (measured 
in Giga becquerel; GBq) and absorbed dose into a specific 
volume of a tissue (measured in Gray; Gy). Radiation dose 
reduction is recommended when the lung dose limit exceeds 
30 Gy for an individual treatment or cumulative dose of 
50 Gy for multiple treatments.

As a standard clinical practice, before TARE, a mapping 
angiography is performed to evaluate the vascular supply to 
the tumor, perform prophylactic embolization of selected 
vessels as needed, determine appropriate catheter position 
to deliver the particles, and identify shunt vessels which 
may result in non-targeted delivery of radioisotope. Subse-
quently, a surrogate particle, 99mTc-macroaggregated albu-
min (99mTc-MAA), is injected into the liver to simulate the 
biodistribution of microspheres in the tumor, healthy liver 
and lungs to quantify the lung shunt fraction (LSF) in terms 
of percentage. This is an important step as the amount of 90Y 
administered is adjusted based on LSF calculations. Accord-
ing to the package insert for SIR-spheres, a LSF < 10% 
does not warrant a dose reduction whereas a LSF > 20% is 
considered a relative contraindication to TARE [6]. As per 
the TheraSphere manufacturer, an upper limit of 30 Gy for 
absorbed dose to the lungs based on the lung shunt fraction 
resulting from a delivery of greater than 16.5 mCi of yttrium 
90 to the lungs is considered as contraindication [7].

At many institutions, the image analysis of LSF is typi-
cally performed by 2D planar gamma camera scintigraphy 
with simultaneously acquired 3D single-photon emission 
computed tomography (SPECT)/computed tomography 
(CT) images, primarily to identify extrahepatic radiotracer 
distribution. Several limitations have been noted with planar 
scintigraphy such as lack of anatomic references, operator 
dependence, attenuation difference between the lung and 
liver tissue. Another, significant limiting factor in planar 
imaging is the spill over of activity from the hepatic dome 
into the lung bases. Hence, the use of 3D SPECT/CT was 
proposed to overcome these limitations for an accurate esti-
mate of LSF and radiation risk to the lungs. The primary 
purpose of this study was to systematically review the lit-
erature regarding the application of SPECT/CT for quanti-
fication of LSF.

Materials and methods

Search strategy and selection criteria

Following the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines, we 
conducted a comprehensive search on medical database, 

PubMed, SCOPUS and Web of Science, for studies in 
English language from January 1, 2010 to November 30, 
2020. The following combination of terms were used to 
search—“lung shunt fraction”, “hepatopulmonary shunt”, 
“lung dosimetry”, “radiation pneumonitis” AND “yttrium”, 
“radioembolization”, “Y90”, “Transarterial radioemboliza-
tion”, and “SPECT/CT”.

Inclusion and exclusion criteria

The inclusion criteria were as follows:

1.	 Observational studies, clinical studies and abstracts from 
national conferences in English language with a mini-
mum sample size of ten patients.

2.	 Adult (> 18 years old) male or female patients diagnosed 
with unresectable primary or metastatic liver tumors 
with planned yttrium 90 radioembolization.

3.	 Studies that quantify lung shunt fraction using planar 
scintigraphy and SPECT/CT.

Review articles, animal studies, laboratory investigations, 
letters to the editor, case series, case reports and any dupli-
cated clinical studies were excluded from the study.

Primary outcome

Identify the differences in quantitative LSF assessment using 
conventional planar scintigraphy versus SPECT/CT.

Secondary outcome

Evaluate the subsequent impact on yttrium 90 lung 
dosimetry.

Data collection and analysis

The reviewers independently performed data extraction and 
identified all potentially relevant studies. Data collected 
included the type of article (e.g., prospective or retrospec-
tive), country of origin, year of study, sample size, demo-
graphics (e.g., age, sex, etc.), clinical characteristics (e.g., 
primary malignancy or metastasis), LSF quantification and 
methodology (SPECT/CT and 99mTc-MAA whole-body 
planar imaging). Studies were classified into three levels of 
evidence as follows: level I, randomized controlled trials 
(RCTs); level II, non-RCTs or well-designed cohort studies; 
and level III, observational studies, as described by the U.S. 
Preventive Services Task Force.
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Study quality appraisal and risk of bias

The authors independently evaluated the methodological 
assessment using the tool provided by the Quality Assess-
ment of Diagnostic Accuracy Studies-2 (QUADAS-2), 
modified by removing the question “If a threshold was 
used, was it prespecified?” [8]. The QUADAS-2 form is 
composed of four domains: (1) patient selection, (2) index 
test, (3) reference standard and (4) flow and timing. 3D 
SPECT/CT was considered as the index test (intervention) 
and 2D planar scintigraphy was considered as a reference 
test (comparison).

Results

Following the PRISMA diagram, the initial search yielded 
184 potential citations published between 2014 and 2019. 
Finally, one prospective study, four retrospective studies and 
three abstracts from national conferences were included in 
the study (Fig. 1).

Table 1 summarizes the data related to the year of publi-
cation, methodology, level of evidence, sample size, mean 
age, and pathology for each included study. Out of 552 

patients, 456 patients had hepatocellular carcinoma and 95 
patients had hepatic metastasis primarily from colorectal 
cancer (n = 24), cholangiocarcinoma (n = 15) and neuroen-
docrine cancer (n = 6). The data included from the three 
abstracts did not provide information regarding subtype of 
tumors.

Table 2 summarizes the studies according to 90Y spheres, 
SPECT/CT vendor, LSF quantification using planar scin-
tigraphy and SPECT/CT with statistical coefficients. Five 
studies reported mean LSF percentages and four stud-
ies documented a wider range of LSF with planar tech-
nique (1.2–33.3%) when compared to SPECT/CT (range 
0.4–21.7%). The median LSF percentages were 6.7% using 
planar imaging and 2.9% using SPECT/CT. Figure 2 shows 
results of LSF from each included study. 

As a secondary outcome, we evaluated the impact of LSF 
quantification on the lung dosimetry using the Medical Inter-
nal Radiation dose (MIRD) formula [17, 18]:

The methodological quality is summarized in Fig.  3. 
In general, the patient population was highly selected by 

(1)

Lung dose (Gy) = 49.67 × injected activity (GBq)

× LSF∕Lung mass (kg).

Fig. 1   PRISMA diagram outlin-
ing article selection for review Records iden�fied through   

SCOPUS: n = 51                      
Web of Science: n=66 

PubMed: n = 67  

Addi�onal records iden�fied 
through references list 

(n = 0) 

Records a er duplicates removed 
(n = 39) 

Records screened 
(n = 39) 

Records excluded 
(n =27) 

Records assessed for 
eligibility 
(n = 12) 

Records excluded  
(Missing essential data :4) 

Records included in 
qualita�ve synthesis 

(n = 8) 
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including patients with unresectable primary or metastatic 
liver malignancy. However, yttrium 90 radiotherapy can only 
be performed in this select patient population, hence, the appli-
cability was judged to be good. All patients included in the 
study underwent both the index and reference test during pre-
treatment evaluation. A major concern was the lack of clarity 
whether the investigator was blinded to the reference standard 
results while interpreting the index test.

Discussion

Image-guided oncological interventions have significantly 
increased over the past decade. Studies have shown that 
90Y can prolong recurrence-free survival, overall survival 
and potentially curative therapy for liver cancer [19, 20]. 
The optimal threshold dose of 190 Gy has been shown to 

Table 1   Included studies

Study Country Year Study design Level of 
evidence

Sample size, n Pathology

Dittmann et al. [9] Germany 2018 Prospective 2 50 Hepatocellular carcinoma (15)
Metastasis (35)

Elsayed et al. [10] USA 2020 Retrospective 3 293 Hepatocellular carcinoma (293)
Lopez et al. [11] USA 2019 Retrospective 3 52 Hepatocellular carcinoma (52)
Allred et al. [12] USA 2018 Retrospective 3 40 Hepatocellular carcinoma (16)

Metastasis (24)
Kao et al. [13] Singapore 2014 Retrospective 3 30 Hepatocellular carcinoma (25)

Metastasis (5)
Georgiou et al. [14] USA 2018 Abstract 3 21 Hepatocellular carcinoma (21)

Metastasis (9)
Poon-iad et al. [15] Thailand 2019 Abstract 3 16 Hepatocellular carcinoma (16)
Gill et al. [16] USA 2019 Abstract 3 50 Hepatocellular carcinoma (18)

Metastasis (33)

Table 2   Comparison of 2D planar and 3D SPECT/CT lung shunt fraction

Study Yttrium 90 spheres SPECT/CT Planar LSF SPECT/CT LSF Statistical analysis

Dittmann et al. Resin Discovery 670 Pro, GE 
healthcare

Median 6.8%
Mean 8.3%
Range 3.4–32.3%

Median 1.9%
Mean 2.9%
Range 0.8–15.7%

P < 0.0001

Elsayed et al. – Siemens Symbia T6 Mean 8.2%
SD 4.8

Mean 3.2%
SD 2.6

P < 0.0001

Lopez et al. TheraSphere Siemens Symbia system 
(Intevo or T series)

Median 7% Median 2% P < 0.001

Allred et al. TheraSphere Siemens Symbia system Mean 5.4%
Range 1.2–15.7%

Mean 1.5%
Range 0.4–6.0%

P < 0.0001

Kao et al. Resin Philips Precedence Mean 7.36 ± 4.96%
Median 6.03%
95% CI 5.58–9.14
Range 2.20–25.2%

Mean 5.96 ± 4.59%
Median 4.97%
95% CI 4.32–7.61
Range 0.98–21.7%

P < 0.0001

Georgiou et al. Resin or TheraSphere – LSF was overestimated in 2D planar vs SPECT 
with a mean value of 45% (range 14–73%)

–

Poon-iad et al. – – Mean 8.68 ± 6.4% Mean 4.45 ± 4.20% P < 0.000
Gill et al. Resin Philips Brightview XCT Median 7%

Range 1.1–32%
Median 3.2%
Range 1.3–21.2%

–



185Clinical and Translational Imaging (2021) 9:181–188	

1 3

achieve complete tumoricidal effect using pathologic cor-
relation [21]. Hence, it is vital to administer an appropriate 
radiopharmaceutical activity for local tumor control while 
minimizing non-targeted delivery, which is conditional 
upon LSF quantification. In the era of modern medicine, 

many authors have questioned the current clinical practice 
for calculating LSF using 2D planar scintigraphy [9–16].

In this systematic review, the included data suggests that 
planar scintigraphy overestimates the LSF when compared 
to SPECT/CT. Based on the data, there is a wider range of 

Fig. 2   Comparison of LSF using SPECT/CT and planar scintigraphy. (The results are expressed as mean percentage values except Gill et al. and 
Lopez et al. where median percentages are reported)

Fig. 3   Quality appraisal of stud-
ies using the QUADAS-2 tool

Study RISK OF BIAS APPLICABILITY CONCERNS 
PATIENT 

SELECTION 
INDEX TEST REFERENCE 

STANDARD 
FLOW AND 

TIMING 
PATIENT 

SELECTION 
INDEX TEST REFERENCE 

STANDARD 

Di�mann 
et al [9] 

☺ ☺ ☺ ☺ ☺ ☺ ☺

Elsayed et 
al [10] 

☺   ? ☺ ☺ ☺ ☺ ☺

Lopez et al 
[11] 

☺   ? ☺ ☺ ☺ ☺ ☺

Allred et al 
[12]  

☺   ? ☺ ☺ ☺ ☺ ☺

Kao et al 
[13]  

  ?   ? ☺ ☺ ☺ ☺ ☺

Georgiou 
et al [14] 

  ? �  ? ☺ ☺ ☺ ☺

Poon-iad 
et al [15] 

  ? �  ? ☺ ☺ ☺ ☺

Gill et al 
[16] 

☺   ? ☺ ☺ ☺ ☺ ☺

☺Low Risk �High Risk            ? Unclear Risk        
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LSF percentages using planar imaging (range 1.2–33.3%) 
when compared to SPECT/CT (range 0.4–21.7%). The 
median LSF percentages were 6.7 and 2.9% using planar 
scintigraphy and SPECT/CT, respectively. These results are 
in accordance with prior anthropomorphic phantom stud-
ies suggesting SPECT/CT as a precise methodology [12, 
22]. This is of important clinical significance, especially 
in patients with higher LSF (> 10%) which could result in 
dose reduction, potentially additional treatment procedure or 
even contraindication, according to current clinical practice 
[9, 10]. Higher LSF’s have been reported in hepatocellular 
malignancy than other hepatic tumors and may even serve 
as a biomarker for survival [23, 24]. Elsayed et al. suggested 
that there is a greater discrepancy of LSF in patients with 
worse Child–Pugh score and tumors larger than 5 cm [10]. 
It is important to acknowledge that a very small number 
of patients, 13 out of 552 (0.02%), had planar LSF lower 
than SPECT/CT LSF [10, 14, 15]. These patients had focal 
hepatic lesions near the diaphragm resulting in possible erro-
neous delineation of liver activity leading to underestimation 
of planar LSF.

Optimal lung dosimetry calculations require accurate 
LSF estimations. An initial study by Yu et al. concluded 
that “99mTc-MAA SPECT/CT provides a more accurate esti-
mation of radiation risk to lungs”, particularly in patients 
with large LSF from planar imaging [25]. A standard lung 
mass value of 1000 g is often assumed for every patient irre-
spective of underlying lung disease, prior surgery or irradia-
tion, which risks inaccurate absorbed lung dose. Kao et al. 
and Lopez et al. detailed a novel approach to overcome this 
limitation using a preprocedural diagnostic CT to estimate 
patient specific lung mass and volume, thereby emphasizing 
the need of precise and personalized dosimetry for thera-
peutic guidance [11, 13]. A prospective study of 50 patients 
by Dittmann et al. corroborated these results by stating that 
absorbed lung doses may be higher when calculated by pla-
nar methodology [9]. However, further clinical studies are 
required to establish safety of SPECT/CT derived lung dose 
limits.

The hybrid SPECT-CT scanners overcome the drawbacks 
of planar scintigraphy by three-dimensional anatomic locali-
zation and allowing for better quantification of radiotracer 
distribution by incorporating parameters such as photon 
attenuation, scatter attenuation and reconstruction algo-
rithms. Hence, scanners from different vendors can have a 
certain degree of variability when using these quantification 
variables. The included studies were performed on different 
scanners manufactured by General Electric, Siemens and 
Phillips. A pilot study by Peter et al. showed that absolute 
SPECT quantification is feasible in multi-vendor settings 
which would be beneficial in dosimetry aimed at personal-
ized radionuclide therapy [26].

Despite the advantages of SPECT/CT, there remains 
concern regarding additional radiation exposure associated 
with the CT portion of SPECT/CT. In addition to acquisition 
parameters such as pitch, rotation time, tube voltage (kV), 
and tube current (mA), CT dose optimization is also patient 
dependent. In general, a low-dose acquisition CT protocol 
is suggested for concurrent use with SPECT, resulting in an 
additional effective dose range of 1–4 mSv [27, 28]. It would 
be reasonable to state that a low-dose CT scan is justified 
for the advantage of attenuation correction and anatomical 
mapping.

A major limitation for lung shunt or dose calculation is 
the misregistration of SPECT/CT images from free breath-
ing, particularly near the diaphragm, which results in a spill-
over of liver activity into the right lung base. Volumes of 
interest (VOIs) are drawn separately for the entire lung and 
liver using vendor-specific software. To avoid liver spill over 
activity, Yu et al. proposed to use the left lung for quantifica-
tion whereas other investigators have suggested excluding 
1.5–2 cm of the right lung base [12, 13, 24]. However, these 
approaches are based upon the assumption of homogenous 
perfusion of the lungs which may not be attained in every 
case [29]. Dittmann et al. delineated the entire right lung 
outside the liver activity using CT Hounsfield units [9].

Limitations of this review include small number of low-
quality studies and limited overall level of evidence II/III. 
Another significant limitation was heterogenous patient 
population within the included studies, hence, metaanalysis 
could not be performed. There is a lack of true gold standard 
to validate LSF independent of 99mTc-MAA distribution, 
which is an imperfect surrogate s due to slightly dissimi-
lar physical properties [30]. 99mTc-MAA contains smaller 
diameter particles (< 20 μm) which are more prone to shunt-
ing than the therapeutic microspheres. This was evaluated 
by Elschot et al. by comparing 99mTc-MAA with a novel 
radiotracer 166Holmium and concluded that Holmium micro-
spheres enable a more accurate assessment of lung doses 
[31]. Larger prospective studies would be required to yield 
a higher quality of evidence.

Conclusion

In the recent decade, there have been many publications 
emphasizing the need to reassess the current methodol-
ogy for estimating LSF and lung dosimetry with growing 
consensus regarding the use of SPECT/CT. Despite differ-
ences in the SPECT/CT-based methodology, there is general 
agreement that 2D planar scintigraphy substantially over-
estimates the LSF. SPECT/CT strategy is clinically feasi-
ble, more precise and can be incorporated into treatment 
planning for optimal tumoricidal response. In the era of 
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personalized medicine, clinicians should provide advanced 
imaging-based methods for 90Y radiotherapy planning.
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