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Abstract The mitochondrial translocator protein

(18 kDa; TSPO) is involved in a wide array of physio-

logical processes importantly including cholesterol trans-

port, steroidogenesis and immunomodulation. In the

central nervous system (CNS), TSPO expression regionally

increases in glial cells upon brain insult with a differential

pattern suggestive of cell-specific functions in inflamma-

tion and repair. These properties have made TSPO a

valuable marker to assess the state, and progression of

diverse neurological and psychiatric conditions, including

traumatic brain injury, stroke, neurodegenerative diseases,

anxiety, depression and schizophrenia. In the past years, an

increasing number of radiolabeled TSPO ligands for the

visualization and quantification of TSPO through positron

emission tomography (PET), single-photon emission

tomography (SPECT) and magnetic resonance imaging

(MRI) have been developed in the pursuit of higher sen-

sitivity and specificity for clinical applications. However,

TSPO is not the only molecule holding great potential as an

imaging marker of neuroinflammation; cell adhesion

molecules, such as VCAM-1 and ICAM-1, the myeloper-

oxidase, matrix metalloproteinases, the cannabinoid

receptor 2 (CB2), P2X7, cyclooxygenase 1 (COX-1), free

radicals and leukocyte populations have also been subjects

of study as targets to image inflammatory processes in the

injured or diseased brain. In this review, we present the

most relevant aspects of TSPO molecular features that

fundament its imaging applications in the context of neu-

roinflammation, and comment on the development of

imaging agents and strategies targeting TSPO as well as

other molecules and cells implicated in inflammatory

processes.

Keywords Translocator protein � Neuroinflammation �
Imaging � Microglia � Neuronal injury

Introduction

The mitochondrial translocator protein (18 kDa; TSPO)

was previously known as the peripheral-type benzodi-

azepine receptor (PBR) due to its ability to bind the ben-

zodiazepine diazepam. However, its structure, expression,

pharmacology and functions are different from those of the

central benzodiazepine receptor [1] leading to renaming the

protein TSPO [2]. The availability of high affinity specific

TSPO drug ligands allowed for the assessment of the

function of the protein. TSPO participates in many physi-

ological processes, including metabolism and cellular res-

piration, cholesterol transport and steroidogenesis,

immunomodulation, porphyrin transport and heme

biosynthesis [2, 3]. It has also been proposed that TSPO

may play roles in apoptosis and gluconeogenesis [4, 5].
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TSPO is expressed in very low levels in the central

nervous system (CNS) under physiological conditions;

however, its expression levels increase in astrocytes and

microglia as a result of brain injury and inflammatory

processes [6], and thus it has been a subject of intense study

interest, particularly during the past years. The binding of

labeled TSPO ligands can be visualized and quantified by

in vivo imaging techniques, and has become an important

approach to study various neurological and psychiatric

conditions. Despite TSPO has received a lot of attention in

recent years as a target to image neuroinflammation and is

the focus of this review, we will note that other inflam-

matory cells and molecules have been explored for imaging

purposes as well in a diversity of neurological conditions

involving inflammatory processes.

TSPO

Expression

The Tspo gene is evolutionarily conserved in most organ-

isms [7]. In human beings, this gene is located on chro-

mosome 22q13.3 and consists of 4 exons encoding a 169

amino acids protein [8, 9]. Although TSPO is expressed in

many organs, its highest levels can be found in tissues

containing steroid-synthesizing cells, such as adrenals,

gonads and the brain [10]. Virtually all immune cells

express TSPO [11]. In the brain, TSPO expression was

considered to be specific for activated microglia and infil-

trating macrophages; nevertheless, currently it is known

that reactive astrocytes also express TSPO, although with a

different spatiotemporal profile [5]. In addition, certain

neuronal cell types have been also shown to express TSPO,

such as those of the olfactory bulb [12] and dorsal root

ganglia sensory neurons [13], as well as neural stem cells

and post-mitotic neuronal precursors in developing or

damaged brain regions [14].

Protein structure and binding

TSPO is a ubiquitous protein encoded by nuclear DNA,

localized primarily in the mitochondrial outer membrane

[15]; however, there is evidence that it may also localize to

other subcellular structures such as the nucleus [16] and the

plasma membrane [17].

TSPO’s protein structure, as initially suggested by its

amino acid sequence, possesses five TM alpha helices

with two extra- and two intra-mitochondrial loops. The

five TM helices appear to be rigid while the terminal

portions of the protein may remain flexible to allow the

conformational changes necessary for protein–protein

interactions. The N-terminus is located on the inside of

the mitochondria while the C-terminus is located towards

the cell cytoplasm and highly positively charged. A

binding pocket is formed by the TM helices in the upper

part of the extra-mitochondrial side, closed by a long

loop between TM1 and TM2; nonetheless, additional

binding sites may provide a higher level of the protein’s

functional regulation [18–21].

It has been proposed that TSPO has a structure that

facilitates cholesterol translocation [22–24]. A sequence

denoted as the cholesterol recognition amino acid consen-

sus (CRAC) motif is located at the C-terminal region of the

protein, comprising residues 147–159 [23]. Within this

motif, amino acids Y153 and R156 are believed to be

critical for TSPO’s interaction with cholesterol [25].

Evidence exists that TSPO can polymerize by binding to

other TSPO proteins or interacting with a range of different

molecules. TSPO’s ability to form homopolymers appears

to increase with mitochondrial activity and the generation

of reactive-oxygen species (ROS) [26]. In support of these

findings, recent structure–function studies demonstrated

the role of TSPO in ROS generation [21]. Additionally, its

protein structure is stabilized by ligand binding, which

might mediate cholesterol transport by promoting binding

to TSPO polymers [18]. However, polymerization has been

found to increase ligand binding but reduce binding to

cholesterol, suggesting an important involvement of poly-

merization in the mediation of TSPO function regarding

cholesterol transport [20, 24, 26].

Specific mitochondrial proteins interact with TSPO,

suggesting the presence of complexes formed by proteins

from both the outer and inner mitochondrial membranes,

including the 32 kDa voltage-dependent anion channel

(VDAC) and the adenine nucleotide transporter (ANT)

[27], together with other cytosolic and mitochondrial pro-

teins [28]. These proteins include the mitochondrial per-

meability transition pore (MPTP) components, the

peripheral benzodiazepine receptor-associated protein 1

(PRAX-1) [29], steroidogenic acute regulatory protein

(STAR) and peripheral benzodiazepine receptor-associated

protein (PAP7), a member of acyl coenzyme A (acyl-CoA)

binding domain-containing proteins [28, 30] and ATPase

family AAA domain-containing protein 3A (ATAD3A)

[31]. Hence, it is likely that TSPO functions may be

determined by the tissue- and cell-specific composition of

mitochondrial membranes and mitochondria-associated

organelles [32, 33]. The fact that cytosolic proteins can also

interact with TSPO suggested a role of TSPO as a mito-

chondrial anchor transducing intracellular signals to mito-

chondria. As an example, it is suggested that acyl-CoA, or

its binding proteins, may regulate TSPO function in the

mitochondria and that TSPO participates in autocrine and

paracrine signaling responses of glial cells to injury and

pathogenic stimuli, mainly coming from the observations
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of TSPO interactions with endozepines in the peripheral

and central nervous systems [3].

TSPO binds putative endogenous ligands, including

cholesterol, protoporphyrin IX, phospholipase A2 (PLA2)

and diazepam binding inhibitor (DBI) [34], a member of

acyl-CoA binding domain-containing proteins [30], and a

range of structurally diverse synthetic ligands including

benzodiazepines, such as Ro5-4864 and diazepam, and

isoquinoline carboxamide derivatives, such as PK 11195

[4]. In the CNS, PK 11195 reduces microglial activation

and production of pro-inflammatory cytokines [35, 36].

How TSPO endogenous ligands, which are present at

various levels in the tissues and cells examined, may affect

endogenous drug ligand occupancy, affinity and residency

time is unknown. This is a research question to be

explored, considering the increasing use of radiolabeled

TSPO drug ligands as imaging tracers (discussed later in

this review) and potential changes in the levels of these

endogenous ligands in various disease states.

Cholesterol and porphyrins show high affinities for

TSPO, although porphyrins have affinity at the high

nanomolar range, compared to the low nanomolar affinity

for cholesterol [23, 37]. While cholesterol binds to the

C-terminus, other ligands bind mostly to a region within

the N-terminus [23, 38], although additional both steroidal

and non-steroidal compounds binding at the CRAC motif

have been recently reported [39, 40].

The classical/diagnostic synthetic ligands for TSPO are

PK 11195 and Ro5-4864 (benzodiazepine 7-chloro-5-(4-

chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4-benzodi-

azepin-2-one). These ligands have been crucial for the

characterization of TSPO’s expression and function and,

particularly PK 11195, for the development of new TSPO

ligands. For example, novel compounds synthesized to

study TSPO’s binding properties have suggested the exis-

tence of multiple binding sites with possible allosteric

effects in the human TSPO [41].

A single nucleotide polymorphism in the exon 4 of the

TSPO gene, rs6971, resulting in the substitution of the

amino acid alanine for threonine at position 147 of the

TSPO protein (A147T variant), has proven to affect ligand-

binding affinity [42, 43] of TSPO and affecting preg-

nenolone biosynthesis [20, 42, 44], although this might

only be true for certain ligands as it was recently demon-

strated that the variant shows an affinity to PK 11195

comparable to that observed for the wild-type protein, and

retains the structure and dynamic profile [20, 45].

The ability of TSPO to bind cholesterol via the CRAC

domain, and the ability of A147T polymorphism to affect

cholesterol binding was recently confirmed in a series of

structure–function studies where the presence of a choles-

terol binding enhancement motif able to induce bacterial

TSPO to bind cholesterol was also shown [19, 46].

The synthesis of the TSPO-specific ligand indol-ac-

etamide FGIN-1-27 (2-[2-(4-fluorophenyl)-1H-indol-3-yl]-

N,N-dihexylacetamide) [47] advanced the understanding of

the TSPO pharmacology and led to the synthesis of a series

of ligands which were safe in humans, such as emapuril

(XBD-173; N-benzyl-N-ethyl-2-(7-methyl-8-oxo-2-phe-

nyl-purin-9-yl)acetamide), which was shown in a clinical

study to be safe and exert anti-anxiety activity while, in

contrast to benzodiazepines, did not cause sedation and

withdrawal symptoms [48].

Functions

It has been largely accepted that TSPO mediates various

mitochondrial functions, including cholesterol transport

and steroid hormone synthesis, porphyrin transport and

heme biosynthesis, mitochondrial respiration, MPTP

opening, calcium homeostasis, oxidation, apoptosis and

cellular proliferation and differentiation [2, 49]. However,

few of these functions have been directly demonstrated as

most TSPO functions have been so far studied through its

ligands’ actions. A function for TSPO in normal emotional

regulation has also been suggested by the findings of a

genetic association of the rs6971 polymorphism with

bipolar disorder and adult separation anxiety disorder

(ASAD) [50, 51].

TSPO can be found in intracellular locations other than

mitochondria, such as the (peri)nuclear region and plasma

membrane, playing different functions on a location-de-

pendent manner. Nevertheless, non-mitochondrial TSPO,

representing less than 5 % of TSPO [17], has received little

attention so far. It is important to note that a Tspo paral-

ogous gene, Tspo2, has been identified encoding an evo-

lutionarily conserved family of proteins that arose by gene

duplications [52]. Comparative analysis of Tspo1 and

Tspo2 structure and function indicated that TSPO2 was

characterized by the loss of diagnostic drug ligand-binding

but retention of cholesterol-binding properties, and is

involved in cholesterol redistribution during erythropoiesis

[52].

The complex formed by mitochondrial TSPO in asso-

ciation with VDAC and ANT has been suggested to have a

role in apoptosis, possibly through MPTP opening [34].

However, treatment with TSPO ligands has shown the

ability to provide neuroprotection [53–55]. In fact, ligands

such as PK 11195 and Ro5-4864 possess both pro- and

anti-apoptotic properties, making PK 11195 and other

TSPO ligands interesting targets for cancer therapies.

Although the pro-apoptotic effects may or may not involve

TSPO, the anti-apoptotic effects shown by these molecules

are likely to take place through inhibition of TSPO’s

apoptotic function, for which TSPO remains as a potential

therapeutic target [11].
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TSPO is thought to be important for tissue development

and function. It may also participate in the biogenesis of

mitochondrial membranes during cell proliferation and/or

repair [3]. Furthermore, resulting from studies in animal

models of neurodegenerative diseases, the observations

that TSPO up-regulation in microglia and astrocytes asso-

ciates with deleterious and beneficial effects, respectively

[56], not only raise the possibility for a role of TSPO in

regenerative processes but also suggest cell-specific func-

tions. It has been shown that TSPO can modulate steroid

production and, in turn, steroids are also able to affect

TSPO’s ligand-binding properties [57]. A series of studies

have supported a role for TSPO in inflammatory processes

in peripheral tissues and the nervous system as a response

to injury and disease, possibly through the regulation of

steroid production [11, 58]. Nevertheless, recent studies

have challenged the view of TSPO’s role in steroidogen-

esis, viability [59, 60] and MPTP [61], showing that knock-

down/-out of TSPO in animal models does not affect

steroid hormone biosynthesis, cell viability or MPTP

activation even when induced by TSPO-binding molecules,

suggesting that the mechanisms for these actions may not

involve TSPO, as previously believed, and thus providing

evidence to refute the major previously proposed functions

for TSPO. Nonetheless, conditional knockout mice lacking

TSPO in steroidogenic cells recently suggested that TSPO

is indeed necessary for embryonic development during the

pre-implantation phase and has a role in the mediation of

stress responses [62]. Interestingly, similar discrepancy in

genetic models has been reported for mitochondrial

VDAC, where deletion of Vdac1 has been reported as both

lethal and viable with minor phenotype [63]. Taken toge-

ther these findings suggest that genetic models have to be

analyzed with caution when dealing with evolutionary

conserved proteins and conclusion should be reached when

combining with biochemical, pharmacological and struc-

tural studies.

The TSPO-mediated pharmacology of cholesterol

transport and steroidogenesis is well defined [24, 64], and

supported by the biochemical and recent structural studies

[2, 3, 19–21, 24, 45]. Indeed, TSPO drug ligands offered

pharmacological means to regulate neurosteroid formation

both in vitro and in vivo [3, 65]. This field expanded to

neuropsychiatric and neurodegenerative disorders as well

as neurotrauma [34, 66] and led to the use of TSPO drug

ligands to alleviate neuropsychiatric disease symptoms

mediated by increased neurosteroid formation in brain [3].

TSPO seems to be a sensitive biomarker of brain dam-

age and neurodegeneration, particularly of inflammation

and reactive gliosis. In the CNS, up-regulation of TSPO in

response to damage is delayed in astrocytes as compared to

microglia; however, the up-regulation in astrocytes is long-

lasting, suggesting it may be crucial for its functions in

neuronal survival and regeneration [67, 68]. Hence, TSPO

expression can be expected to result modified in response

to stressful stimuli and show alteration in diverse neuro-

logical and psychiatric conditions. A schematic represen-

tation of TSPO topology, effectors and functions is

depicted in Fig. 1.

Radiolabeled ligands and neuroimaging

TSPO is expressed at low levels in the normal brain but

is locally up-regulated in sites of injury, possibly even

before evident pathological and structural changes can be

observed. This has provided a sensitive approach to

accurately localize lesions and active disease processes

[3] through the in vivo visualization and quantification of

the binding of radiolabeled TSPO ligands as imaging

agents for, mainly, positron emission tomography (PET)

and, in a lesser extent, single-photon emission computed

tomography (SPECT) and magnetic resonance imaging

(MRI).

While Ro5-4864 and PK 11195 are the prototype diag-

nostic ligands for TSPO and have been long used to

characterize the protein’s function, the development of new

synthetic ligands has opened the doors for a wider array of

applications which include, importantly, in vivo imaging of

activated microglia and macrophage infiltration in the

CNS, important markers of ongoing inflammation, in dif-

ferent pathological conditions. A range of synthetic TSPO

ligands of diverse structural classes has emerged in past

years, such as isoquinoline carboxamides, benzoth-

iazepines and benzoxazepines, indoleacetamides, pyra-

zolopyrimidines, vinca alkaloids and aryloxyanilides,

among others [69]. Examples of such compounds include

DPA-713 and DPA-714 [70], DAA1106 [71] and its

derivative, FEDAA1106 [72], PBR28 [73] and PBR111

[74], AC-5216 [75], CLINDE [76] and vinpocetine [77]

(Table 1). Nevertheless, several characteristics need to be

taken into account when evaluating these compounds, such

as sensitivity, specificity, stability, clearance, species-

specific metabolism and even the variable binding affinity

in humans resulting from the rs6971 genetic polymor-

phism, for which new and improved TSPO ligands con-

tinue to be developed and evaluated for clinical purposes.

Some of the developed compounds may as well hold

therapeutic potential for a number of neurological and

psychiatric conditions, whether they selectively bind to

TSPO or also bind to gamma-aminobutyric acid A

(GABAA), or other types of receptors, which adds value to

research in this field. For example, etifoxine, a benzox-

azine, binds to TSPO and GABAA receptors and, while its

anxiolytic effects have been suggested to involve the

GABAA receptors [78], its neuroregenerative effects have

been mainly attributed to TSPO [79].
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TSPO neuroimaging applications

Up-regulation of TSPO expression in glial cells in response

to injury and inflammation is associatedwith brain pathology

[6] and its timing can track glial cell activation also during

regenerative processes, which makes TSPO imaging a

valuable tool to assess state, progression and repair in

heterogeneous brain lesions, such as those resulting from

traumatic brain injury (TBI) [66] and stroke [80]. Although

up-regulation of TSPO has also been observed in the normal

ageing brain using tracers such as [11C]PK11195 and

[11C]vinpocetine [77, 81], suggesting that the activation of

glial cells as well develops as part of the ageing process, the

association between ageing andTSPOup-regulation remains

controversial. A more recent PET study using the second-

generation tracer [18F]FEPPA examined this association,

finding no differences in TSPO expression related to normal

ageing [82]. It is possible that the discrepancies between

studies might be the result of not only the binding properties

of different TSPO radioligands, but also of varying outcome

measures and methods of analysis.

Up-regulation of TSPO at sites of neurodegeneration,

and even more remote brain regions, has been observed in

patients and animal models of diseases such as Alzheimer’s

(AD), Parkinson’s (PD), Huntington’s (HD), amyotrophic

lateral sclerosis (ALS), multiple sclerosis (MS) and fron-

totemporal dementia (FTD) [3, 83–85]. It is important to

note that, in some cases (e.g., AD), the use of a specific

TSPO tracer failed to confirm the increases in TSPO

reported using other tracers [86]. In contrast to neurode-

generative diseases, and consistent with the role of neu-

rosteroids as modulators of depression and anxiety [87],

decreases in TSPO have been reported in a number of

psychiatric disorders with anxious or depressive symptoms,

including adult separation anxiety, post-traumatic stress

disorder (PTSD) and schizophrenia [3, 88].

TSPO levels are increased in several types of cancer,

including brain tumors, and thus it has been gaining

attention in this area not only as an imaging agent but also

as a target for the development of anti-cancer treatments

[89–92]. In the peripheral nervous system, up-regulation of

TSPO in Schwann cells, macrophages and neurons occurs

in response to peripheral nerve injury, and TSPO ligands

have shown to promote repair and provide neuroprotection

[79, 93–96], in many cases likely to be mediated by

increased neurosteroid production [3, 97].

Ten studies are currently registered using TSPO as a

marker of neuroinflammation, mainly through PET imag-

ing, in clinical trials for TBI, ALS, MS, PD, AD, mild

cognitive impairment (MCI), schizophrenia, psychosis,

major depressive disorder (MDD) and brain metastasis

[ClinicalTrial.gov; accessed in June, 2015].

Other targets for imaging neuroinflammation

Besides TSPO, different types of molecules are also under

investigation as targets to image ongoing neuroinflamma-

tory processes in animal models and patients of a variety of

neurological and psychiatric disorders using common and

emerging imaging technologies (Table 1). One type of

such is the cell adhesion molecules. Cell adhesion is

essential for the migration of immune-competent cells to

sites of injury, including leukocyte entry into the brain

[98]. These molecules thus play an important role in

inflammatory processes and have been targeted to observe

infiltrating neutrophils, macrophages and T lymphocytes as

Fig. 1 Schematic representation of TSPO topology, effectors and

functions. TSPO is localized in the outer mitochondrial membrane,

where it is found either alone or as part of a multiprotein complex

together with VDAC and ATAD3. Cytosolic proteins, such as

ACBD3, can also associate with TSPO. In active steroidogenic cells,

this complex also contains the CYP11A1 enzyme responsible for the

metabolism of cholesterol to pregnenolone, precursor of androgen,

estrogen, mineralocorticoids, glucocorticoids and neurosteroids.

TSPO drug ligands (e.g., PK 11195, Ro5-4864, FGIN-1-27,

DAA1106, AC5216/XBD173, etifoxine), endogenous ligands (e.g.,

protoporhyrin IX, DBI and its metabolite TTN, PLA2), as well as

associated proteins (e.g., ACBD3, PRAX1), could act as effectors and

sometimes regulators of TSPO function. TSPO drug ligands could

also serve as imaging agents to assess TSPO protein levels as related

to various disease states (e.g., neurodegeneration, traumatic brain

injury, cancer). TSPO functions, as assessed by the effects of its

ligands, in mitochondrial respiration, cholesterol binding, import and

steroidogenesis, porphyrin binding for heme biosynthesis, protein

import for membrane biogenesis, control of free radical production,

regulation of MPTP, apoptosis, cell proliferation, microglia activation

and immune function
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Table 1 Summary Table: targets and example agents to image neuroinflammation

Target Technologies Agents

TSPO PET [11C]PK 11195 [18F]FEDAA1106

[11C]-(R)-PK 11195 [18F]DPA-714

[11C]Ro5-4864 [18F]PBR111

[11C]DAC [18F]FEBMP

[11C]DAA1106 [18F]FPBMP

[11C]PBR28 [18F]PBR06

[11C]vinpocetine [18F]FEPPA

[11C]AC-5216 [18F]GE-180

[11C]DPA-713

[11C]SSR180575

[11C]CLINME

[11C]CB184

SPECT [123I]CLINDE [125I]DPA-713

MRI [123I]PK 11195 DPA-C(6)-(Gd)DOTAMA

VCAM-1 MRI Antibodies conjugated with MPIOs

ICAM-1 MRI Antibody-conjugated paramagnetic liposomes

E-/P-selectin MRI GNP-sLex

Free radicals EPRI Hydroxymethyl-PROXYL PCAM

ESR-CT, OMRI MC-PROXYL

MPO MRI Gd-bis-5-HAT-DTPA

Bioluminiscence imaging Luminol

Superoxide Bioluminiscence imaging Luminol-Lucigenin

MMPs NIRF, optical imaging MMPSense probes

CB2 PET [11C]A836339 [18F]CB91

[11C]RS-016 [18F]Dideutero-3

[11C]KD2 [18F]Triazine derivatives

[11C]PK23 [18F]FE-PEO

[11C]NE40 [18F]Oxiquinoline derivatives

[11C]Quinoline derivatives [18F]FE-GW405833

[11C]Triaryl ligands

[11C]methoxy-Sch225336

NIRF NIR760-XLP6 NIR760-mbc94

Cathepsin B FMT Cat B 680 FAST ProSense 750 EX

COX-1 PET [11C]ketoprofen methyl ester

P2X7 PET [11C]A-740003

I2Rs PET [11C]FTIMD

b-Glucuronidase PET [18F]FEAnGA

Infiltrating leukocytes SPECT 111In 99mTc

PET [18F]FDG 64Cu

MRI USPIO 19F

Gadofluorine M Mal-BSA (Gd-DOTA)n

PARACEST agents

TSPO 18 kDa translocator protein, VCAM-1 vascular cell adhesion molecule 1, ICAM-1 intracellular adhesion molecule 1, MPO myeloper-

oxidase, MMPs matrix metalloproteinases, CB2 cannabinoid receptor 2, COX-1 cyclooxygenase-1, I2Rs I2-imidazoline receptors, PET positron

emission tomography, SPECT single-photon emission computed tomography, MRI magnetic resonance imaging, NIRF near-infrared fluores-

cence, EPRI electron paramagnetic resonance imaging, ESR-CT computerized electron spin resonance tomography, OMRI Overhauser magnetic

resonance imaging, FMT fluorescence molecular tomography, PARACEST paramagnetic chemical exchange saturation transfer
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well as activated platelets and endothelial cells using, for

example, antibodies directed against the vascular cell

adhesion molecule-1 (VCAM-1) and the intracellular

adhesion molecule 1 (ICAM-1) conjugated with micron

particles of iron oxide (MPIO) or paramagnetic liposomes

[99–102], or a glyconanoparticle conjugated with syalil

Lewisx (GNP-sLex) for the E- and P-selectins [103].

Strategies to measure oxidative stress-induced mito-

chondrial dysfunction and proteolytic activity have also

been a subject of study to shed light on the inflammatory

processes resulting from brain injury and disease. For

example, approaches targeting free radicals through

electron paramagnetic resonance imaging (EPRI), com-

puterized electron spin resonance tomography (ESR-CT)

or Overhauser magnetic resonance imaging (OMRI)

using agents (or its precursors) with unpaired electrons,

such as nitroxide radicals and methoxycarbonyl-

PROXYL (MC-PROXYL) probes [104–107], have been

developed. The myeloperoxidase (MPO) has been tar-

geted using the MRI probe Gd-bis-5-HT-DTPA (MPO-

Gd) [108] and luminol [109, 110]. Furthermore, a

method has been proposed in which a combination of

luminol and lucigenin bioluminescence enables the

specific detection of acute (MPO-dependent) and chronic

(NADPH oxidase-dependent) inflammation, respectively

[111].

In response to CNS insult, infiltrating leukocytes,

microglia and endothelial cells show increases in the

expression of matrix metalloproteinases (MMPs) [112],

whose activity is believed to play important roles in

inflammation and blood–brain barrier breakdown. MMP

activity has been visualized through non-invasive near-in-

frared fluorescence (NIRF) and, more recently, optical

imaging, using activatable probes [113–115]. Imaging of

MMP activity has been proposed as a useful measure to

monitor anti-inflammatory effects [116] and, as well due to

the important implication of MMPs in tumor formation, new

combinatorial imaging methods are currently under

exploration.

Much attention has been given to the cannabinoid

receptor 2 (CB2), for which a diversity of PET tracers

[117–124] and NIRF imaging probes [125, 126] have

been developed. However, additional molecules impli-

cated in a range of inflammatory processes have been

targeted to image neuroinflammation, some examples

include: cathepsin B, imaged using NIRF agents [127];

the cyclooxygenase 1 (COX-1), targeted using the PET

tracer [11C]ketoprofen methyl ester [128]; P2X7, which

has been gaining attention, targeted using the recently

synthesized PET tracer [11C]A-740003 [129, 130]; I2-

imidazoline receptors (I2Rs) detected using the PET

tracer [11C]FTIMD [131]; and b-glucuronidase activity,

visualized using [18F]FEAnGA for PET [132]. Toll-like

receptors, receptor for advanced glycation end products,

cytokines and chemokines [133] may represent good

targets to image inflammatory status in the injured or

diseased brain.

Finally, radiolabels such as technetium-99m (99mTc),

indium-111 (111In), [18F]FDG and 64Cu enable the visual-

ization of infiltrating leukocytes and may be used for

labeling of specific leukocyte subpopulations. Phagocytic

cells can be labeled using perfluorocarbons 19F and gad-

ofluorine M. Another approach is to use iron oxide parti-

cles, such as ultra-small superparamagnetic iron oxide

(USPIO), superparamagnetic iron oxide (SPIO) and MPIO,

for in vitro or in vivo labeling [134].

Conclusions

Studies in animal models and early trials in humans

suggest that the mitochondrial TSPO may be a sensitive

biomarker of neuroinflammation and reactive gliosis.

Although changes in TSPO expression are likely

indicative of changes in mitochondrial function, the

pathophysiological significance of increased TSPO

expression in these processes is not well understood.

However, the availability of specific imaging probes for

TSPO makes this target attractive to assess the evolution

and response to treatment of diseases with a major

neuroinflammatory component.

In recent years, different types of molecules involved in

inflammatory processes, other than TSPO, have been tar-

geted for neuroimaging purposes. However, these studies

have been relatively limited, thus rendering difficult the

objective comparison of their advantages and disadvantages

over TSPO imaging in the assessment of the inflammatory

status of the injured CNS. Further studies on the most

promising targets should shed light into their specificity, and

the safety of the imaging molecules used to label them,

compared to TSPO. Considering the complexity and

dynamic nature of neuroinflammation, it is likely that more

than one target may be required to assess its onset and

progression.
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77. Gulyás B, Vas A, Tóth M, Takano A, Varrone A, Cselényi Z,
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