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Abstract: Agriculture faces risks due to increasing stress from climate change, particularly in semi-arid 
regions. Lack of  understanding of  crop water requirement (CWR) and irrigation water requirement (IWR) 
in a changing climate may result in crop failure and socioeconomic problems that can become detrimental 
to agriculture-based economies in emerging nations worldwide. Previous research in CWR and IWR has 
largely focused on large river basins and scenarios from the Coupled Model Intercomparison Project 
Phase 3 (CMIP3) and Coupled Model Intercomparison Project Phase 5 (CMIP5) to account for the 
impacts of  climate change on crops. Smaller basins, however, are more susceptible to regional climate 
change, with more significant impacts on crops. This study estimates CWRs and IWRs for five crops 
(sugarcane, wheat, cotton, sorghum, and soybean) in the Pravara River Basin (area of  6537 km2) of  India 
using outputs from the most recent Coupled Model Intercomparison Project Phase 6 (CMIP6) General 
Circulation Models (GCMs) under Shared Socio-economic Pathway (SSP)245 and SSP585 scenarios. An 
increase in mean annual rainfall is projected under both scenarios in the 2050s and 2080s using ten 
selected CMIP6 GCMs. CWRs for all crops may decline in almost all of  the CMIP6 GCMs in the 2050s 
and 2080s (with the exceptions of  ACCESS-CM-2 and ACCESS-ESM-1.5) under SSP245 and SSP585 
scenarios. The availability of  increasing soil moisture in the root zone due to increasing rainfall and a 
decrease in the projected maximum temperature may be responsible for this decline in CWR. Similarly, 
except for soybean and cotton, the projected IWRs for all other three crops under SSP245 and SSP585 
scenarios show a decrease or a small increase in the 2050s and 2080s in most CMIP6 GCMs. These 
findings are important for agricultural researchers and water resource managers to implement long-term 
crop planning techniques and to reduce the negative impacts of  climate change and associated rainfall 
variability to avert crop failure and agricultural losses. 
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1  Introduction 

India's agricultural sector contributes 17.90% to the gross value added and provides employment 
to 56.40% of the total workforce of the country (Economic Survey, 2021). The Indian agriculture 
is heavily climate dependent with notable regional and climatic variability, and rain-fed area 
accounts for approximately 54.00% of the gross cropped area, despite notable efforts to increase 
the area under irrigation (Gulati et al., 2018). The agricultural sector is facing multi-dimensional 
pressure from many stressors, such as climate change and socio-economic factors (e.g., 
population growth, unbounded urbanization, and industrialization) (Dai et al., 2013; Yu et al., 
2019). Additionally, potential implications of climate change vary from a regional to local 
population scale (Farooq et al., 2022). Changes in climate primarily in the forms of rainfall, 
temperature, and radiation will impact the availability of water resources and water requirements 
for both irrigated and rain-fed crops (Jain and Singh, 2020). Masia et al. (2021) found that 
evaporative demand will increase in tandem with rising global temperature, thus increasing crop 
evapotranspiration. Crop water requirement (CWR) varies depending on the cropping system, and 
climate change may have a substantial impact on CWR (Sun et al., 2013; Ye et al., 2015). Elgali 
et al. (2007) found that CWR and irrigation water requirement (IWR) are very sensitive to 
changes in climatic variables and will vary due to climate change. Thus, climate change is 
increasingly threatening major crop production systems (Farooq et al., 2022). Ahmad et al. (2021) 
revealed that the risk of crop failure will be higher due to projected climate change under Coupled 
Model Intercomparison Project Phase 5 (CMIP5) General Circulation Models (GCMs). However, 
the actual impacts of climate change on CWR are complex and difficult to predict (Jain and 
Singh, 2020).  

According to the Fifth Assessment Report (AR5) of IPCC (2014), the surface temperature will 
increase during the 21st century under all emission scenarios and this will adversely impact the 
agriculture, land and water resources, environment, ecosystems, biodiversity, and even the society 
(Singh et al., 2015a; Jain and Singh, 2020). Therefore, it is vital to explore the links between 
agricultural water management and climate change looking into the regional and local variability 
of food and water security. Döll (2002) applied global irrigation model to assess the impacts of 
climate change on net IWR and found that there may be an increase in the global net IWR of 
5.00%–8.00% by the end of the 2070s and it might be the largest in the South Asia region. Wada 
et al. (2013) used CMIP5 GCMs and applied seven global hydrological models to evaluate the 
impacts of climate change on CWR and pointed out that there would be an increase in CWR and a 
decrease in water availability by the 2080s with pronounced regional patterns. Rehana and 
Mujumdar (2013) found that there will probably be an increase in CWR due to climate change. 
Elliot et al. (2014) revealed that there might be an inversion of 2.0×104–6.0×104 km2 cropland 
from irrigated system to rain-fed system due to the limitations of freshwater availability mostly in 
the irrigated regions of western United States, China, and West, South, and Central Asia.  

According to Jain and Singh (2020), the correlation between global CWR and global warming 
is high and the benefits of increasing rainfall for irrigation is small. Haz-Amor et al. (2020) used 
CMIP5 GCMs with CROPWAT model and found an increase in IWR based on the scenario 
projections. Shrestha et al. (2013) also used coupled CROPWAT model with HadCM3 GCM (A2 
and B2 scenarios) for future projections and found that IWR varied with physiographic regions 
and growth stages of crops. The IWRs in the middle and high hills of Nepal were found to have a 
decreasing trend, while IWR in the Terai region showed an increasing trend. De Silva et al. (2007) 
predicted the impacts of climate change by coupling CROPWAT model with HadCM3 GCM 
under A2 and B2 scenarios and found that IWR increased by 23.00% and 13.00% for paddy crop, 
respectively. Das et al. (2020) assessed the impacts of climate change on crop yield in the eastern 
Himalayas. More recently, Abdoulaye et al. (2021) and Poonia et al. (2021) assessed the impacts 
of climate change on CWR and IWR using CROPWAT model coupled with CMIP5 and 
Coordinated Regional Downscaling Experiment (CORDEX) GCMs, respectively, for river basins 
in Niger and eastern Himalayan region. Some other important work in this domain includes the 
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study of Li et al. (2020), who developed a structure for ''water suitable'' agriculture by analyzing 
factors affecting IWR. Overall, it can be stated that the climate change-induced increase in water 
demand will bring further challenges to farmers to irrigate and grow crops with limited water 
availability. However, the studies done by Flörke et al. (2018) and Gondim et al. (2018) opined 
that the improvements in agricultural water use efficiency through improved technological and 
scientific interventions will help to compensate the adverse impacts of climate change and may 
supply enough water to meet water demands of other sectors. For improving water use efficiency, 
it is critical to understand how much water crops require at different times of the year, as well as 
to develop rational irrigation schedule for irrigated areas. Tubiello and Fischer (2007) found that 
an alleviated climate may reduce the impacts of climate change on agricultural water 
requirements by about 40.00%, or 125×108–160×108 m3, compared with an unmitigated climate. 
Schwaller et al. (2021) underscore the importance of effective agricultural water management 
through a comprehensive understanding of CWR and IWR, but this information is frequently not 
readily available. Therefore, it is of paramount importance to understand the variability of the 
climate-induced CWRs and IWRs of different crops for effectively managing the agricultural 
water resources and mitigate the adverse impacts of climate change on agriculture.  

However, previous studies, as discussed above, have used climate projections mainly from 
Coupled Model Intercomparison Project Phase 3 (CMIP3) GCMs and CMIP5 GCMs to assess the 
future CWR and IWR, which inherited limitations, particularly in simulating the extreme events 
of rainfall (Kim et al., 2020). This bias in the estimation of rainfall results in higher uncertainties 
in projected CWR and IWR. More recently, a new generation of Coupled Model Intercomparison 
Project Phase 6 (CMIP6) framework has been introduced in recent years (Eyring et al., 2016; 
Gupta et al., 2020; Mishra et al., 2020) to overcome the drawbacks of CMIP3 and CMIP5 models 
and fulfil the need of a growing climate community. Therefore, in this study, downscaled and 
bias-corrected GCM outputs of different climatic parameters generated within new Shared 
Socio-economic Pathways (SSPs) developed as a part of CMIP6 GCM framework were applied 
for the estimation of CWR and IWR using CROPWAT model for five crops (i.e., sugarcane, 
cotton, soybean, wheat, and sorghum) of varying growth periods in a semi-arid river basin located 
in the state of Maharashtra in India for future periods (2050s and 2080s). This study will aid in 
the understanding of the long-term impacts of climate change on agriculture and the development 
of adaptation plans for local agricultural water management by local water managers, researchers, 
and policymakers.  

2  Materials and methods 

2.1  Study area 

The selected study area is the Pravara River Basin (PRB; Fig. 1), located in the Ahmednagar 
District of Maharashtra State, India. Ahmednagar is one of the worst drought-hit districts in India. 
It is home to 4.5×106 people, of which about 80.00% are rural. Agriculture and animal husbandry 
are the prime economic activities and contribute significantly to the total income of the region. 
Pravara River is one of the smallest tributaries of the Godavari River (the second largest river 
system in Peninsular India) that originates near Akola on the eastern slopes of the Sahyadris 
(19°31′45′′N, 73°45′05′′E; 750 m) in the western Ghats. It is a rain-fed and intermittent river that 
generally dries out in summer. Mahalungi and Mula are two important left and right bank 
tributaries of the Pravara River that join at Sangamner and Nevasa, respectively. 

The river flows approximately 208 km from its origin Sahayadri to its mouth Pravara Sangam 
(19°37′00′′N, 75°01′00′′E; 531 m) and forms a basin with an area of approximately 6537 km2, 
which is confined between latitude of 19°02′16′′–19°41′40′′N and longitude of 73°6'1′′– 
75°01′33′′E. The entire basin is made up of Cretaceous–Tertiary extrusive basalt flows known as 
the Deccan Volcanic Province (Wellman and McElhinny, 1970; Alexander, 1981; Widdowson and 
Mitchel, 1999; Hooper et al., 2010). The major soil category includes shallow alluvium soil, 
medium black soil, deep black soil, and reddish soil, which account for nearly 38.00%, 48.00%, 
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13.00%, and 0.80% of the total cultivated area, respectively (http://www.kvk.pravara.com/). 
Topographically, a moderate relief variation is found in the basin, where altitude ranges from 404 
to 1424 m. The western section of the basin has a hilly landscape, whereas the eastern section is a 
relatively flat plateau. Because of its geographical location, the PRB has a semi-arid climate. The 
basin's average annual rainfall based on the gridded rainfall data (0.25°×0.25°) of the India 
Meteorological Department for 30 years (1991–2020) is 593.3 mm. The seasonal monsoonal 
rains, occurring between June and September, contribute to the majority (about 80.00%) of the 
total annual rainfall. The annual mean of the maximum temperature (Tmax) and the minimum 
temperature (Tmin) is 34.70°C and 18.90°C, respectively. During summer months (April–June), 
the maximum daily temperature soars to as high as 49.00°C in the basin. The basin has been 
brought under intensive agriculture because of the construction of the Bhandardara Dam (height 
of 507 m, width of 82 m, and capacity of 3.11×108 m3) upstream of the river in 1926. It is one of 
the major irrigation projects in the Ahmednagar District, accounting for nearly 8.70% (570 km2) 
of the total basin area. Sugarcane, cotton, soybean, wheat, and sorghum are important crops that 
are grown in the region (Table 1). Sugarcane has become the dominant commercial crop in this 
area, and the Pravara River serves as the primary irrigation source for agriculture. The region is 
vulnerable to climate change and has experienced persistent multi-year droughts in the recent 
past. Therefore, it is of paramount importance to understand the variability of the climate-induced 
CWRs and IWRs of different crops for effectively managing the agricultural water and mitigating 
the adverse impacts of climate change on agriculture in the PRB. 

 

Fig. 1  Overview of the Pravara River Basin (PRB) as well as the important places (cities, towns, and dams) in 
the basin 

 

Table 1  Planting and harvesting date for the major crops grown in the Pravara River Basin (PRB) 

Crop Scientific name 
Planting– 

harvesting date 

Critical  
depletion  

factor 

Rooting  
depth (cm) 

Length of crop growth stage (d) 

Initial Developing 
Middle 
season 

Late 
season 

Wheat Triticum aestivum 15 Oct–11 Feb 0.55 1.50 15 25  50 30 

Sorghum Sorghum bicolor 15 Oct–16 Feb 0.60 1.40 20 35  40 30 

Sugarcane Saccharum officinarum 15 July–14 July 0.65 1.50 30 60 180 95 

Cotton Gossypium 15 July–10 Jan 0.65 1.40 30 50  55 45 

Soybean Glycine max 15 July–1 Dec 0.50 1.00 30 30  50 30 
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2.2  Agro-meteorological data 

Figure 2 shows a schematic on the methodology and data adopted in this study. Data used for the 
calculations of CWR and IWR including climatic variables, soil parameters, and crop parameters 
were input in CROPWAT 8.0 model. Meteorological data including temperature (Tmax and Tmin), 
rainfall, wind speed, mean relative humidity, and sunshine hours were obtained on daily time 
scale for 30 years (1991–2020) from the India Meteorological Department 
(http://www.imdpune.gov.in/). Rainfall data were available at a grid resolution of 0.250°×0.250°, 
while other climatic variables were offered at a spatial resolution of 0.500°×0.500°. Soil data 
(total available moisture content, maximum rain infiltration rate, maximum rooting depth, initial 
soil moisture depletion, and initial available soil moisture) and crop parameters (planting date, 
length of crop growth stage, crop coefficient, rooting depth, critical depletion factor, yield 
response factor, and crop height) were obtained from the Food and Agriculture Organization 
(FAO) Manual 56 available at http://www.fao.org/land-water/database. 

 

 

Fig. 2  Flowchart showing the adopted methodology for estimating and investigating the implications of future 
climate change on CWRs and IWRs for major crops in the PRB. CWR, crop water requirement; IWR, irrigation 
water requirements; Kc, crop coefficient; CMIP6, Coupled Model Intercomparison Project Phase 6; GCMs, 
General Circulation Models; SSP, Shared Socio-economic Pathway; MK, Mann-Kendall; ET0, reference crop 
evapotranspiration; FAO, Food and Agriculture Organization; ETc, crop evapotranspiration; Reff, effective rainfall. 

 

2.3  Scenario data of CMIP6 GCMs 

In this study, we used the bias corrected downscaled CMIP6 GCM datasets developed by Mishra 
et al. (2020) for South Asia to investigate the impacts of future climate change on CWR and IWR. 
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They developed these bias corrected datasets based on Empirical Quantile Mapping approach for 
the historical (1951–2014) and future (2015–2100) periods under four scenarios: Shared 
Socio-economic Pathway (SSP)126, SSP245, SSP370, and SSP585. In this study, downscaled 
high spatial resolution (approximately 0.250°×0.250°) data of ten CMIP6 GCMs (Table 2) were 
used to reveal the middle (2041–2070) and far (2071–2100) future trends in climatic variables and 
their implications on CWR and IWR under two scenarios (SSP245 and SSP585) in the PRB. SSPs 
were used to explain the possible future greenhouse gas emissions under different global 
socio-economic changes that will take place by 2100 (Riahi et al., 2017). They present 
socio-economic and technological trajectories with a baseline in which no climate policies are 
enacted after 2010, resulting in 3.00°C–5.00°C of warming above pre-industrial levels by 2100. 
In addition, the four SSPs can be linked to climate policies to generate different outcomes at the 
end of the century (analogous to representative concentration pathways (RCPs)), with radiative 
forcing of 2.6, 3.4, 4.5, 6.0, 7.0, and 8.5 W/m2 in 2100. 
 
Table 2  Detailed description of Coupled Model Intercomparison Project Phase 6 (GMIP6) General Circulation 
Models (GCMs) used in this study 

CMIP6 GCM Description Spatial resolution Institution 

ACCESS-ESM-1.5 Australian Community Climate and 
Earth System Simulator-Earth System 
Model Version 1.0 

1.250°×1.875° Commonwealth Scientific and Industrial 
Organisation (CSIRO), Australia and Bureau 
of Meteorology (BOM), Australia 

ACCESS-CM-2 Australian Community Climate and 
Earth System Simulator-Coupled 
Model Version 2.0 

1.250°×1.875° Commonwealth Scientific and Industrial 
Organisation (CSIRO), Australia and Bureau 
of Meteorology (BOM), Australia 

BCC-CSM2-MR Beijing Climate Centre Climate 
System Model Version 2.0 

1.100°×1.100° Beijing Climate Centre, China 
Meteorological Administration, China 

EC-Earth3 Earth Consortium-Earth 3 Model 0.350°×0.350° Twenty-seven research institutes from 10 
European countries 

EC-Earth3-Veg Earth Consortium-Earth 3 Veg Model 0.350°×0.350° Twenty-seven research institutes from 10 
European countries 

INM-CM4-8 Institute for Numerical Mathematics 
Climate Model Version 4.8 

2.000°×1.500° Institute for Numerical Mathematics, Russia 

INM-CM5-0 Institute for Numerical Mathematics 
Climate Model Version 5.0 

2.000°×1.500° Institute for Numerical Mathematics, Russia 

MPI-ESM1-2-HR Max Planck Institute for Meteorology 
Earth System Model Version 1.2 with 
higher resolution 

0.940°×0.940° Max Planck Institute for Meteorology, 
Germany 

MRI-ESM2.0 Meteorological Research Institute 
Earth System Model Version 2.0 

1.125°×1.125° Meteorological Research Institute, Japan 

NorESM2-MM Norwegian Earth System Model 
Version 2.0 with medium resolution 

2.500°×1.890° Norwegian Community Earth System 
Model, Norway 

 

2.4  Screening of data and trend analysis  

The inhomogeneity in time series introduces statistical errors that may lead to false analysis and 
interpretation of climatic events (Peterson et al., 1998; WMO, 2011). Therefore, initial data 
quality check (e.g., screening data for outliers, trends, and discontinuities) is recommended on 
time series (monthly, seasonal, and annual) of climatic variables (WMO, 2011). Outliers and 
inhomogeneity in the historical data were detected using generalized Extreme Studentized 
Deviate (ESD) test (Rosner, 1983) and Buishand's Range test (Buishand, 1982) methods, 
respectively. ESD method was used to test the null hypothesis (Ho) that there are no outliers 
versus the alternative hypothesis (H1) that there are 'r' outliers in the dataset. The test statistic 'r' 
was defined by the following equation: 

 

max
,i

i

x x
r

s

−
=    (1)  
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where x , xi, and s are the sample mean, the ith observation of the sample, and standard deviation, 
respectively. The r test value is compared with the tabulated critical value at a given level of 
significance (5% significance level). The null hypothesis that the suspected value is not an outlier 
is rejected if the r test value is greater than the tabulated critical value. However, in Buishand's 
Range test method, the test statistic adjusted partial sum (Sk) was calculated by: 

 1

( )   (1 ).
k

k i
i

S x x i n
=

≤− ≤=   (2) 

It is a measure of cumulative deviation from the mean for the kth observation in time series (x1, 
x2, …, xi, …, xn). The series is homogenous without any change point if Sk fluctuates around zero. 
When a break point is present in the series, Sk reaches a maximum value (negative shift) or 
minimum value (positive shift) for the year i=k. The significance of shift was tested using 
rescaled adjusted range (R) defined by the following equation: 

 
max( ) min( )

.k kS S
R

x

−
=  (3) 

The ratio of R to square root (n) was compared with the tabulated critical values (Buishand, 
1982) at given significance level (Table 3). It should be noted that 'n' represents the total number 
of observations in the time series. The null hypothesis of no change point is rejected if the ratio is 
less than the critical value (1.43) at 5% significance level. These time series of observations were, 
further, homogenised using a multistep process based on non-parametric statistics as described in 
Peterson and Easterling (1994). 

Table 3  Statistical information of annual and seasonal climatic variables averaged over 1991–2020 in the PRB 

Climatic 
variable 

Mean 
Standard 
deviation 

Coefficient 
of skewness 

Coefficient 
of kurtosis 

 Coefficient 
of variance 

(%) 

Buishand's Range test 

Cumulative 
deviation/square 

root (n) 

R/square 
root (n) 

Break 
year 

Annual 

Tmax (°C)  33.72   0.50 –0.27  0.26   1.50 1.38 1.99* 2016 

Tmin (°C)  18.99   0.26  0.04 –0.07   1.40 0.54 0.87  

Rainfall (mm) 593.38 176.10  1.17  1.58  29.68 0.75 0.75  

Pre-monsoon season (March–May) 

Tmax (°C)  38.99   0.54  0.01  0.46   1.40 1.06 1.50  

Tmin (°C)  21.07   0.56 –0.37  0.34   2.68 0.58 1.03  

Rainfall (mm)  18.03 22.34  1.88  3.92 123.87 1.09 1.16  

Monsoon season (June–September) 

Tmax (°C)  31.93   0.69 –0.22 –0.79   2.18 1.37 1.51* 2016 

Tmin (°C)  23.57   0.70 –1.04  0.51   2.99 1.66 1.70* 2016 

Rainfall (mm) 470.25 150.39  1.40  2.57  31.98 1.65 1.65* 2017 

Post-monsoon season (October–November) 

Tmax (°C) 32.68   0.88 –0.52  0.63   2.71 1.03 1.53* 2016 

Tmin (°C) 17.77   0.67 –0.08  0.25   3.78 0.89 1.12  

Rainfall (mm) 98.17  75.02  0.94  0.35  76.43 0.89 0.98  

Winter season (December–February) 

Tmax (°C) 31.49   0.67 –0.01 –0.28   2.13 1.04 1.87* 2019 

Tmin (°C) 11.51   0.93  1.42  1.70   8.11 1.56 1.60* 2017 

Rainfall (mm)  6.91  16.81  3.49 13.02 243.05 1.07 1.23  

Note: Tmax, maximum temperature; Tmin, minimum temperature; R, rescaled adjusted range. 
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After the screening of data, the non-parametric (Mann-Kendall (MK)) test and Sen's slope 
estimator methods were employed for detecting trends in climatic variables. A detailed 
description of the methods can be found in Singh et al. (2015b). 

2.5  Estimations of reference crop evapotranspiration (ET0), effective rainfall (Reff), CWR, 
and IWR  

CROPWAT 8.0 model was used to estimate ET0, Reff, and water requirements (CWR and IWR) for 
the different investigated crops. CROPWAT 8.0 model calculates ET0, Reff, CWR, and IWR based 
on climate, crop, and soil data. It has been widely used as a decision-support tool in international 
settings to calculate regional irrigation needs (Smith et al., 2002; Poonia et al., 2021). The model 
uses Penman-Monteith (FAO 56 PM) (Savva et al., 2002; Schwallar et al., 2021) equation to 
calculate ET0. This equation uses Tmax, Tmin, humidity, wind speed, and sunshine hours as input 
data, and CROPWAT model uses these data to calculate ET0 by the following expression (Allen et 
al., 1998): 

 

2

0
2

900
0.408 ( ) ( )

273 ,
(1+0.

–

34 )

–n s aR G + U e e
T +ET =

+ U

γ

γ

Δ

Δ
  (4) 

where, ET0 is the reference crop evapotranspiration (mm/d); Rn is the mean daily net radiation 
(MJ/(m2

•d)); G is the soil heat flux density (MJ/(m2
•d)); γ is the psychometric constant (0.067 

kPa/°C); T is the mean daily air temperature (°C), and the value of (Tmax+Tmin)/2 was measured 
between 1.5 and 2.0 m height above the ground; U2 is the wind speed at 2.0 m height above the 
ground (m/s); es is the saturation vapour pressure (kPa); ea is the actual vapour pressure (kPa); 
(es–ea) is the vapour pressure deficit (kPa); and Δ is the slope of vapour pressure curve (kPa/°C).  

Similarly, Reff was estimated using the following relationship for the two conditions (when 
Rmonth<250.00 mm and Rmonth >250.00 mm, where Rmonth is the monthly average rainfall (mm)) as 
described in Moseki et al. (2019): 

 

eff month month

ef

month

montf month h

if <250.00 (125 0.2 ),  
.

125 0.1 , 

mm

if >250.00 mm

R R R

R

R

RR

= × − ×
 = + ×

   (5) 

The CWR was calculated using FAO 56 PM equation coupled with the single crop coefficient 
method as follows (Allen et al., 1998; Luo et al., 2022): 

 0 ,c cET K ET= ×          (6) 

where, ETc and Kc are the crop evapotranspiration (crop water requirement; mm/d) and crop 
coefficient, respectively. The Kc was determined from the variation in climatic variables, crop 
types, and growing stages of crops. Notably, in this work, CWR was computed during the whole 
growth period for all five crops, i.e., sugarcane, wheat, cotton, soybean, and sorghum. Further, 
IWR was estimated by subtracting Reff from ETc (Moseki et al., 2019; Poonia et al., 2021): 

 effIWR .–c= ET R                     (7) 

3  Results and discussion 

3.1  Trends in climatic variables for historical period (1991–2020) 

Temporal variability in temperature (Tmax and Tmin) and rainfall directly affects the sowing and 
growing stages of crops. The best way to explain this variability is to look at anomalies in Tmax, 
Tmin, and rainfall and analyze their patterns during the study period (Singh et al., 2016). In this 
study, anomalies in temperature and rainfall were calculated by subtracting the annual and 
seasonal time series from the yearly mean averaged for the years 1991–2020 (historical period). 
Using MK and Sen's slope estimator methods, we determined the magnitudes and directions of 
changes in Tmax, Tmin, and rainfall. The results of MK test (Zs) and Sen's slope test (Q) are given in 
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Table 4. At the annual scale, statistically insignificant decreasing trends in Tmax and rainfall are 
observed in the PRB for the study period. However, no definite trend in annual Tmin is detected. 
Similar patterns are observed for these variables in the post-monsoon but with varying 
magnitudes. During monsoon, statistically insignificant increasing trends in Tmax and Tmin are 
detected, while rainfall reveals a decreasing trend. However, during winter, no trend in rainfall but 
a decreasing trend in temperature are observed. 

Table 4  Annual and seasonal trends in temperature and rainfall anomalies in the PRB for historical period 
(1991–2020) 

Period 
Tmax Tmin Rainfall 

Zs Q (°C/a) Zs Q (°C/a) Zs Q (°C/a) 

Annual –0.71 –0.01 –0.14 No trend –1.32 –4.61 

Monsoon  0.96  0.02  0.96  0.02 –1.21 –3.78 

Pre-monsoon –0.82 –0.01  0.18 No trend –0.04 No trend 

Winter –0.71 –0.01 –1.25 –0.02  0.13 No trend 

Post-monsoon –0.71 –0.02  0.86  0.01 –0.25 –0.62 

Note: Zs, Mann-Kendall (MK) test; Q, Sen's slope test. 

 
These results show dissimilarity with previous studies of Guhathakurta et al. (2013) and Singh 

et al. (2021) where a statistically insignificant decreasing trend of rainfall in winter and an 
increasing trend of rainfall in pre-monsoon, monsoon, and post-monsoon and annual rainfall are 
reported in the Ahmednagar District. However, a recent report ''Observed Rainfall Variability and 
Changes over Maharashtra State'' published in 2020 by the India Meteorological Department 
shows a decreasing trend in mean annual and monsoonal rainfall in the Ahmednagar District 
(Guhathakurta et al., 2020). The difference in these results might be attributed to the length of the 
data period used for the trend analysis. Specifically, Guhathakurta et al. (2013) and Singh et al. 
(2021) used long-term gridded data obtained from the India Meteorological Department for 
1901–2006 and 1901–2018, respectively, while the data period in the report was 1989–2018. 
Furthermore, the decreasing trend observed in rainfall can be attributed to the decreased number 
of rainy days recorded in the Ahmednagar District in the recent decades (1990–2020s). 

3.2  Changes in climatic variables under SSP245 and SSP585 scenarios in the 2050s and 
2080s  

Figures 3 and 4 show projected changes in mean annual Tmax, Tmin, and rainfall under SSP245 and 
SSP585 scenarios for future periods 2041–2070 (2050s) and 2071–2100 (2080s) with respect to 
the baseline period 1991–2020. All models under both scenarios predict rises in mean annual Tmin 

and rainfall in the 2050s and 2080s. The increasing ranges are 0.59°C–3.47°C in the 2050s and 
1.21°C–6.47°C in the 2080s for Tmin, and 11.70%–73.05% in the 2050s and 2.80%–163.80% in 
the 2080s for rainfall. Within scenarios, relatively high increases in mean annual Tmin and rainfall 
are observed under SSP585 scenario compared to SSP245 scenario. However, in general, eight 
out of ten models predict a decrease in mean annual Tmax under all scenarios in all future periods 
except for a higher emission scenario (i.e., SSP585) in the 2080s. 

Projected changes in seasonal rainfall under both SSP245 and SSP585 scenarios are 
investigated. In general, nine out of ten CMIP6 GCMs predict a significant increase in monsoonal 
rainfall under both scenarios in the 2050s and 2080s. Specifically, the increasing ranges are 
21.00%–73.00% in the 2050s and 4.00%–99.00% in the 2080s under SSP245 scenario, and 
17.00%–94.00% in the 2050s and 17.00%–176.00% in the 2080s under SSP585 scenario. 
However, a decrease in post-monsoonal rainfall ranging from –0.02% to –73.00% is projected 
under SSP245 scenario in the 2050s. Similarly, the analysis of future scenarios in general reveals 
a decrease in Tmax for all seasons under a lower emission scenario of SSP245 in the 2050s; 
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however, an increase in Tmax is predicted under a higher emission scenario of SSP585 for all 
seasons in the 2080s. Opposite to this, the increase in Tmin is predicted for all seasons under both 
scenarios for most of the models in the 2050s and 2080s. The predicted increase is relatively high 
for Tmin as compared to Tmax under both scenarios for all seasons. The results discussed here are in 
accordance to previous work of Todmal et al. (2021) who reported increase in mean annual and 
monsoonal rainfall and minimum temperature over the state of Maharashtra in India for future 
period (2015–2100) using REgional MOdel (REMO). 

 

 

Fig. 3  Projected changes in annual Tmin (a–d) and Tmax (e–h) in the PRB using different CMIP6 GCMs under 
SSP245 and SSP585 scenarios in the 2050s and 2080s. Tmin, minimum temperature; Tmax, maximum temperature. 
 

3.3  Estimations of CWR and IWR for historical period (1991–2020) 

3.3.1  ET0 and Reff  
Table 5 presents ET0 and Reff estimated for different months using data of 1991–2020. ET0 
exhibits variations in different months. Due to high temperature in summer, it has the maximum 
value in April (7.92 mm/d); however, the minimum value occurs in August (4.12 mm/d) as 
temperature is likewise low in this month. From 1991 to 2020, the long-term yearly average of 
ET0 is 5.27 mm/d. The volatility in ET0 is attributed to changes in other climatic variables. Low 
humidity, high wind speed, and high temperature cause ET0 to be at its highest level during the 
summer season (i.e., dry season). Reff experiences similar variations throughout the year owing to 
variations in rainfall, with September having the highest value (113.34 mm/month) and January 
having the lowest value (1.02 mm/month). The long-term (1991–2020) yearly average of Reff is 
492.21 mm/month. 
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Fig. 4  Projected changes in mean annual rainfall in the PRB using different CMIP6 GCMs under SSP245 and 
SSP585 scenarios in the 2050s (a and b) and 2080s (c and d). 

 
Table 5  Estimations of monthly reference crop evapotranspiration (ET0) and effective rainfall (Reff) in the PRB 
from meteorological data averaged over 1991–2020 

Month 
Temperature (°C) Humidity 

(%) 
Wind speed  

(km/d) 
Sunshine  
hours (h) 

Rn (MJ 
/(m2•d)) 

ET0  

(mm/d) 
Rainfall  

(mm/month) 
Reff 

(mm/month) Tmin Tmax 

Jan 10.41 30.81 36 182 5.21 13.41 4.44 1.01 1.02 

Feb 13.12 33.52 27 203 5.52 15.22 5.54 1.41 1.42 

Mar 17.41 37.01 26 233 5.42 16.73 6.80 6.42 6.34 

Apr 21.7 39.62 24 291 5.34 17.64 7.92 2.81 2.82 

May 24.14 40.42 53 311 5.01 17.44 7.29 8.91 8.82 

Jun 24.63 35.12 72 319 5.12 17.52 5.52 115.82 94.34 

Jul 23.54 31.01 82 292 5.01 17.35 4.31 98.01 82.62 

Aug 23.42 30.21 84 236 5.32 17.52 4.02 107.72 89.13 

Sep 22.82 31.62 70 187 5.34 16.81 4.40 148.71 113.34 

Oct 20.23 33.42 58 174 5.54 15.62 4.61 77.01 67.56 

Nov 15.32 31.92 50 174 5.42 13.91 4.33 21.22 20.51 

Dec 11.21 30.41 44 176 5.23 12.82 4.11 4.51 4.53 

Average 18.99 33.73 53 232 5.31 16.01 5.27 593.42 492.21 

Note: Rn, mean daily net radiation. 
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3.3.2  Estimations of CWRs and IWRs for different crops 
CWR of any crop is the total amount (depth) of water lost owing to evapotranspiration and is 
determined from ETc. Every crop has various water requirements depending on the location, 
climatic conditions, soil type, cultivation technique, and Reff (Ewaid et al., 2019). Tables 6–10 
show that Reff, CWR, and IWR fluctuate across the developmental stages of all crops. Moreover, 
Kc values are not constant at any development stage that indicates seasonal crop water needs 
(Allen et al., 1998; Azevedo et al., 2007; Irmark et al., 2013). ETc increases during the growth 
stage and lowers significantly during the later phases based on Kc values. Tables 6–10 indicate 
that ETc values are lower in the early and late stages when crops are in the productive stage and 
higher in the middle stage. IWRs for all five crops in 10 d are descended in the order of 1707.00 
mm/10 d (sugarcane)>500.80 mm/10 d (wheat)>401.60 mm/10 d (cotton)>381.50 mm/10 d 
(sorghum)>212.80 mm/10 d (soybean), as shown in Tables 6–10. 

Table 6  Estimations of CWR and IWR for wheat in the PRB for historical period (1991–2020) 

Month 
Number of cycles

per 10 d 
Growth  

stage 
Kc 

CWR Reff 
(mm/10 d) 

IWR 
(mm/10 d) (mm/d) (mm/10 d) 

Oct 2 Initial 0.75 3.44 20.61 13.50 9.40 

Oct 3 Developing 0.75 3.39 37.30 17.30 20.10 

Nov 1 Developing 0.88 3.89 38.90 11.10 27.80 

Nov 2 Developing 1.06 4.57 45.70 5.40 40.30 

Nov 3 Middle 1.19 5.04 50.41 4.10 46.30 

Dec 1 Middle 1.19 4.97 49.71 2.90 46.80 

Dec 2 Middle 1.19 4.89 48.90 0.90 47.90 

Dec 3 Middle 1.19 5.02 55.20 0.70 54.50 

Jan 1 Middle 1.19 5.15 51.50 0.60 50.90 

Jan 2 Late 1.15 5.10 51.00 0.20 50.80 

Jan 3 Late 1.03 4.96 54.60 0.30 54.30 

Feb 1 Late 0.91 4.72 47.21 0.30 47.00 

Feb 2 Late 0.85 4.72 4.70 0.00 4.70 

Average 555.84 57.30 500.80 

Note: Kc, crop coefficient; CWR, crop water requirement; IWR, irrigation water requirement.  

Table 7  Estimations of CWR and IWR for sorghum in the PRB for historical period (1991–2020) 

Month 
Number of cycles 

per 10 d 
Growth  

stage 
Kc 

CWR Reff 
(mm/10 d) 

IWR 
(mm/10 d) (mm/d) (mm/10 d) 

Oct 2 Initial 0.30 1.38 8.30 13.50   0.00 

Oct 3 Initial 0.30 1.35 14.80 17.30   0.00 

Nov 1 Developing 0.36 1.59 15.90 11.10   4.80 

Nov 2 Developing 0.57 2.45 24.50  5.40  19.20 

Nov 3 Developing 0.78 3.32 33.20  4.10  29.20 

Dec 1 Middle 0.99 4.14 41.40  2.90  38.50 

Dec 2 Middle 1.05 4.31 43.10  0.90  42.20 

Dec 3 Middle 1.05 4.43 48.70  0.70  48.00 

Jan 1 Middle 1.05 4.55 45.50  0.60  44.80 

Jan 2 Late 1.04 4.62 46.20  0.20  46.00 

Jan 3 Late 0.92 4.41 48.50  0.30  48.30 

Feb 1 Late 0.76 3.95 39.50  0.30  39.20 

Feb 2 Late 0.65 3.58 21.50  0.20  21.30 

Average 431.20 57.40 381.50 
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Table 8  Estimations of CWR and IWR for soybean in the PRB for historical period (1991–2020) 

Month 
Number of cycles  

per 10 d 
Growth  

stage 
Kc 

CWR Reff 
(mm/10 d) 

IWR 
(mm/10 d) (mm/d) (mm/10 d) 

Jul 2 Initial 0.40 1.67 10.00 16.00 0.00 

Jul 3 Initial 0.40 1.65 18.10 27.70 0.00 

Aug 1 Initial 0.40 1.64 16.40 28.50 0.00 

Aug 2 Developing 0.47 1.88 18.80 28.90 0.00 

Aug 3 Developing 0.72 2.97 32.70 31.90 0.80 

Sep 1 Developing 0.98 4.16 41.60 37.30 4.30 

Sep 2 Middle 1.13 4.97 49.70 41.10 8.60 

Sep 3 Middle 1.14 5.06 50.60 34.90 15.70 

Oct 1 Middle 1.14 5.14 51.40 27.60 23.80 

Oct 2 Middle 1.14 5.22 52.20 22.50 29.70 

Oct 3 Middle 1.14 5.12 56.30 17.30 39.00 

Nov 1 Late 1.05 4.60 46.00 11.10 35.00 

Nov 2 Late 0.84 3.62 36.20 5.40 30.90 

Nov 3 Late 0.63 2.69 26.90 4.10 22.80 

Dec 1 Late 0.52 2.17 2.20 0.30 2.20 

Average 509.10 334.40 212.80 

 
Table 9  Estimations of CWR and IWR for sugarcane in the PRB for historical period (1991–2020) 

Month 
Number of cycles  

per 10 d 
Growth  

stage 
Kc 

CWR Reff 
(mm/10 d) 

IWR 
(mm/10 d) (mm/d) (mm/10 d) 

Jul 2 Initial 0.81 3.39 20.40 16.00 0.20 

Jul 3 Initial 0.40 1.65 18.10 27.70 0.00 

Aug 1 Initial 0.40 1.64 16.40 28.50 0.00 

Aug 2 Developing 0.44 1.77 17.70 28.90 0.00 

Aug 3 Developing 0.60 2.46 27.10 31.90 0.00 

Sep 1 Developing 0.76 3.22 32.20 37.30 0.00 

Sep 2 Developing 0.91 3.97 39.70 41.10 0.00 

Sep 3 Developing 1.06 4.71 47.10 34.90 12.20 

Oct 1 Developing 1.21 5.47 54.70 27.60 27.10 

Oct 2 Middle 1.31 6.00 60.00 22.50 37.50 

Oct 3 Middle 1.31 5.88 64.70 17.30 47.50 

Nov 1 Middle 1.31 5.77 57.70 11.10 46.60 

Nov 2 Middle 1.31 5.65 56.50 5.40 51.10 

Nov 3 Middle 1.31 5.55 55.50 4.10 51.50 

Dec 1 Middle 1.31 5.46 54.60 2.90 51.70 

Dec 2 Middle 1.31 5.37 53.70 0.90 52.70 

Dec 3 Middle 1.31 5.51 60.60 0.70 59.90 

Jan 1 Middle 1.31 5.66 56.60 0.60 55.90 

Jan 2 Middle 1.31 5.80 58.00 0.20 57.80 

Jan 3 Middle 1.31 6.28 69.10 0.30 68.80 

Feb 1 Middle 1.31 6.76 67.60 0.30 67.30 

To be continued 
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Continued 

Month 
Number of cycles  

per 10 d 
Growth  

stage 
Kc 

CWR Reff 
(mm/10 d) 

IWR 
(mm/10 d) (mm/d) (mm/10 d) 

Feb 2 Middle 1.31 7.24 72.40 0.30 72.10 

Feb 3 Middle 1.31 7.79 62.30 0.90 61.40 

Mar 1 Middle 1.31 8.34 83.40 1.80 81.60 

Mar 2 Middle 1.31 8.89 88.90 2.50 86.40 

Mar 3 Middle 1.31 9.38 103.20 2.00 101.20 

Apr 1 Middle 1.31 10.05 100.50 1.10 99.40 

Apr 2 Late 1.28 10.39 103.90 0.50 103.40 

Apr 3 Late 1.23 9.62 96.20 1.30 94.90 

May 1 Late 1.17 8.88 88.80 0.30 88.50 

May 2 Late 1.12 8.28 82.80 0.00 82.80 

May 3 Late 1.06 7.20 79.20 8.60 70.60 

Jun 1 Late 1.01 6.15 61.50 25.00 36.50 

Jun 2 Late 0.95 5.26 52.60 36.00 16.50 

Jun 3 Late 0.90 4.60 46.00 33.20 12.70 

Jul 1 Late 0.85 3.92 39.20 28.30 10.90 

Jul 2 Late 0.81 3.39 13.60 10.70 0.20 

Average 2162.10 492.40 1707.00 

 
Table 10  Estimations of CWR and IWRs for cotton in the PRB for historical period (1991–2020) 

Month 
Number of cycles  

per 10 d 
Growth  

stage 
Kc 

CWR Reff 
(mm/10 d) 

IWR 
(mm/10 d) (mm/d) (mm/10 d) 

Jul 2 Initial 0.35 1.46   8.80  16.00   0.00 

Jul 3 Initial 0.35 1.44  15.90  27.70   0.00 

Aug 1 Initial 0.35 1.43  14.30  28.50   0.00 

Aug 2 Developing 0.40 1.59  15.90  28.90   0.00 

Aug 3 Developing 0.57 2.37  26.00  31.90   0.00 

Sep 1 Developing 0.75 3.21  32.10  37.30   0.00 

Sep 2 Developing 0.93 4.06  40.60  41.10   0.00 

Sep 3 Developing 1.10 4.89  48.90  34.90  14.00 

Oct 1 Middle 1.21 5.46  54.60  27.60  27.00 

Oct 2 Middle 1.21 5.56  55.60  22.50  33.00 

Oct 3 Middle 1.21 5.45  59.90  17.30  42.60 

Nov 1 Middle 1.21 5.34  53.40  11.10  42.30 

Nov 2 Middle 1.21 5.23  52.30   5.40  46.90 

Nov 3 Late 1.20 5.09  50.90   4.10  46.80 

Dec 1 Late 1.09 4.55  45.50   2.90  42.60 

Dec 2 Late 0.97 3.96  39.60   0.90  38.70 

Dec 3 Late 0.83 3.51  38.70   0.70  37.90 

Jan 1 Late 0.70 3.04  30.40   0.60  29.70 

Average 683.30 339.30 401.60 



1248 JOURNAL OF ARID LAND 2022 Vol. 14 No. 11  

 

 

3.4  Estimations of CWR and IWR for crops under future scenarios 

3.4.1  ET0 and Reff 
Using CROPWAT 8.0 model, we calculated ET0 for different months in the 2050s and 2080s 
under SSP245 and SSP585 scenarios, as shown in Tables 11 and 12. In the 2050s and 2080s, ET0 
is highest in April and lowest in August as compared to the other months for both the scenarios. 
The volatility in ET0 is attributed to changes in climatic variables. Low humidity, high wind 
speed, and high temperature cause ET0 to be at its highest level during the summer season (i.e., 
dry season). Here, it can be deduced that ACCESS-CM-2 GCM consistently projects the highest 
average ET0 as compared to the rest of the CMIP6 GCMs under both scenarios, i.e., SSP245 and 
SSP585, in the 2050s and 2080s.  

 
Table 11  Projected estimations of monthly ET0 using different CMIP6 GCMs in the PRB under SSP245 and 
SSP585 scenarios in the 2050s 

Month 

ET0 (mm/d) 

ACCESS- 
ESM-1.5 

ACCESS- 
CM-2 

BCC- 
CSM 
2-MR 

EC- 
EARTH3 

EC- 
EARTH 
3 VEG 

INMCM4 
-8 

INMCM5 
-0 

MPI- 
ESM1- 
2-HR 

MRI- 
ESM2-0 

NorESM2 
-MM 

Baseline 
period 

SSP245 scenario 

Jan 4.40 4.47 4.49 4.42 4.44 4.43 4.42 4.41 4.40 4.44 4.44 

Feb 5.42 5.56 5.47 5.45 5.51 5.55 5.62 5.39 5.39 5.46 5.54 

Mar 6.69 6.86 6.67 6.73 6.72 6.95 6.92 6.59 6.69 6.83 6.80 

Apr 7.85 7.89 7.78 7.86 7.81 7.87 7.92 7.72 7.75 7.89 7.92 

May 7.16 7.14 7.07 7.11 7.09 6.96 6.90 7.06 7.09 7.08 7.29 

Jun 5.62 5.87 5.16 5.71 5.76 5.56 5.50 5.57 5.82 5.56 5.52 

Jul 4.25 4.63 4.02 4.23 4.27 4.21 4.21 4.12 6.02 4.21 4.31 

Aug 3.94 4.11 3.86 3.94 3.96 4.02 3.94 3.89 3.83 3.95 4.02 

Sept 4.58 4.56 4.22 4.23 4.25 4.31 4.20 4.27 4.23 4.22 4.40 

Oct 5.00 4.95 4.69 4.36 4.38 4.43 4.37 4.43 4.42 4.53 4.61 

Nov 4.55 4.62 4.53 4.13 4.14 4.25 4.20 4.21 4.20 4.38 4.33 

Dec 4.18 4.19 4.25 4.03 4.03 4.03 4.07 4.03 4.07 4.14 4.11 

Average 5.30 5.40 5.18 5.19 5.20 5.22 5.19 5.14 5.33 5.23 5.27 

SSP585 scenario 

Jan 4.46 4.50 4.52 4.45 4.47 4.48 4.46 4.42 4.47 4.50 4.46 

Feb 5.49 5.61 5.44 5.53 5.57 5.58 5.68 5.43 5.49 5.55 5.49 

Mar 6.73 6.89 6.77 6.80 6.83 6.93 7.02 6.77 6.75 6.90 6.73 

Apr 7.93 7.97 7.90 7.98 7.92 7.96 7.94 6.56 7.82 7.96 7.93 

May 7.14 7.21 7.02 6.74 7.14 7.01 6.97 7.02 7.09 7.16 7.14 

Jun 5.75 5.97 5.19 5.69 5.77 5.64 5.61 5.53 5.86 5.67 5.75 

Jul 4.31 4.71 4.06 4.26 4.26 4.28 4.20 5.86 4.34 4.28 4.31 

Aug 3.96 4.19 3.89 3.99 4.01 4.05 3.97 3.93 3.88 3.99 3.96 

Sept 4.59 4.61 4.25 4.28 4.28 4.35 4.23 4.28 4.27 4.29 4.59 

Oct 5.01 5.02 4.74 4.42 4.45 4.47 4.41 4.45 4.46 4.60 5.01 

Nov 4.59 4.58 4.58 4.21 4.21 4.31 4.28 4.29 4.24 4.47 4.59 

Dec 4.20 4.23 4.29 4.07 4.09 4.15 4.11 4.08 4.08 4.24 4.20 

Average 5.35 5.46 5.22 5.20 5.25 5.27 5.24 5.22 5.23 5.30 5.35 

Note: The baseline period is from 1991 to 2020. 
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Table 12  Projected estimations of monthly ET0 using different CMIP6 GCMs in the PRB under SSP245 and 
SSP585 scenarios in the 2080s 

Month 

ET0 (mm/d) 

ACCESS- 
ESM-1.5 

ACCESS- 
CM-2 

BCC- 
CSM2- 

MR 

EC- 
EARTH3 

EC- 
EARTH3 

VEG 

INMCM
4-8 

INMCM
5-0 

MPI- 
ESM1- 
2-HR 

MRI- 
ESM2-0 

NorESM2-
MM 

Baseline 
period 

SSP245 scenario 

Jan 4.47 4.55 4.47 4.48 4.53 4.45 4.50 4.44 4.44 4.46 4.44 

Feb 5.51 5.64 5.47 5.62 5.67 5.57 5.60 5.44 5.46 5.57 5.54 

Mar 6.75 6.91 6.77 6.9 6.87 6.94 7.01 6.68 6.74 6.88 6.80 

Apr 7.88 8.01 7.91 7.98 7.95 8.00 7.59 7.84 7.81 7.93 7.92 

May 7.19 7.27 7.07 7.17 7.18 7.02 6.94 7.15 7.11 7.18 7.29 

Jun 5.77 6.01 5.21 5.81 5.77 5.65 5.58 5.58 5.93 5.74 5.52 

Jul 4.34 4.74 4.07 4.29 4.32 4.24 4.20 4.16 4.40 4.28 4.31 

Aug 3.95 4.26 3.89 4.01 3.99 4.04 3.96 3.92 3.90 3.98 4.02 

Sept 4.58 4.62 4.21 4.28 4.29 4.33 4.22 4.27 4.32 4.27 4.40 

Oct 5.03 5.02 4.74 4.38 4.38 4.47 4.39 4.46 4.51 4.55 4.61 

Nov 4.61 4.66 4.59 4.17 4.16 4.29 4.22 4.28 4.22 4.44 4.33 

Dec 4.27 4.27 4.26 4.06 4.08 4.12 4.09 4.08 4.06 4.22 4.11 

Average 5.36 5.5 5.22 5.26 5.27 5.26 5.19 5.19 5.24 5.29 5.27 

SSP585 scenario 

Jan 4.63 4.82 4.69 4.65 4.72 4.65 4.61 4.59 4.65 4.69 4.63 

Feb 5.68 6.02 5.74 5.91 5.94 5.83 5.77 5.62 5.72 5.83 5.68 

Mar 7.06 7.25 6.98 7.17 7.21 7.19 7.15 6.85 7.02 7.14 7.06 

Apr 8.23 8.33 8.08 8.21 8.20 8.17 8.15 7.97 8.05 8.19 8.23 

May 7.37 7.52 7.23 7.36 7.35 7.16 7.14 7.27 7.29 7.35 7.37 

Jun 5.91 6.26 5.37 6.01 5.99 5.79 5.76 5.59 5.97 5.91 5.91 

Jul 4.42 5.03 4.13 4.44 4.44 4.38 4.39 4.23 4.42 4.45 4.42 

Aug 4.04 4.55 3.96 4.09 4.11 4.12 4.03 4.02 3.95 4.08 4.04 

Sept 4.64 4.98 4.34 4.39 4.40 4.42 4.29 4.33 4.36 4.38 4.64 

Oct 5.13 5.27 4.86 4.50 4.50 4.61 4.51 4.50 4.64 4.68 5.13 

Nov 4.86 4.97 4.71 4.30 4.34 4.51 4.39 4.37 4.40 4.64 4.86 

Dec 4.46 4.55 4.44 4.21 4.23 4.27 4.17 4.22 4.27 4.39 4.46 

Average 5.54 5.80 5.38 5.44 5.45 5.42 5.36 5.30 5.39 5.48 5.54 

Note: The baseline period is from 1991 to 2020. 

Further, Figure 5 shows the percentage change in ET0 under SSP245 and SSP585 scenarios in 
the 2050s and 2080s. For all of the CMIP6 GCMs, the percentage change in ET0 is negative (i.e., 
ET0 is decreasing) under SSP245 scenario in the 2050s and 2080s, except for the three CMIP6 
GCMs, i.e., ACCESS-CM-2, MRI-ESM2-0, and ACCESS-ESM-1.5, in which the percentage 
change in ET0 is positive, i.e., 2.70% and 4.60%, respectively, in the 2050s and 2080s with 
respect to average ET0 in the baseline period (1991–2020). Specifically, in the 2080s, only two 
CMIP6 GCMs (i.e., ACCESS-CM-2 and ACCESS-ESM-1.5) predict a positive increase in ET0 
under SSP245 scenario. Mondal et al. (2021) reported an increase of 4.00% in ET0 over the Indus 
River Basin under the medium emission scenario (SSP245). A similar pattern is observed under 
SSP585 scenario in the 2050s in this study, where for almost all of the CMIP6-GCMs, the 
percentage change in ET0 is negative (i.e., ET0 is decreasing), except for the two CMIP6 GCMs, 
i.e., ACCESS-CM-2 and ACCESS-ESM-1.5, in which the percentage change in ET0 is positive, 
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i.e., 3.80% and 1.70%, respectively, with respect to average ET0 in the baseline period 
(1991–2020). However, under SSP585 scenario in the 2080s, all of CMIP6 GCMs reveal 
consistently a positive change in ET0 (i.e., ET0 is increasing), up to 20.30%, which is much higher 
than the percentage increase in ET0 (4.60%) under SSP245 scenario in the 2080s. Overall, ET0 is 
predicted to increase for all ten CMIP6 GCMs under SSP585 scenario (high emission scenario) in 
the 2080s, while both increasing and declining trends are observed with decreasing pronounced 
pattern for the remaining periods and scenarios. 

 

 

Fig. 5  Projected percentage change in ET0 using different CMIP6 GCMs in n the PRB under SSP245 (a and b) 
and SSP585 (c and d) scenarios in the 2050s and 2080s 

3.4.2  Estimations of CWRs and IWRs for different crops 
Table 13 shows CWR estimates for different crops using ten CMIP6 GCMs under two scenarios, 
i.e., SSP245 and SSP585, in the 2050s and 2080s. It can be observed from Table 13 that two 
CMIP6 GCMs, namely ACCESS-CM-2 and ACCESS-ESM-1.5, project increases in CWRs for 
cotton and soybean crops under both SSP245 and SSP585 scenarios as compared to the rest of the 
eight CMIP6 GCMs, which estimate decreases in CWRs for all crops in the 2050s and 2080s. 
However, the overall averages of projected CWRs for cotton, sorghum, sugarcane, soybean, and 
wheat for all ten models are 667.80, 417.20, 2102.40, 501.20, and 542.80 mm in the 2050s, and 
671.70, 420.50, 2112.40, 500.90, and 547.50 mm in the 2080s, respectively. These values are 
comparatively lower than those during historical period (1991–2020). Figure 6 also shows the 
projected percentage change (percentage increase or decrease) of CWRs for all crops using the 
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ten CMIP6 GCMs under SSP245 and SSP585 scenarios in the 2050s and 2080s, with respect to 
the baseline period 1991–2020. With the exceptions of ACCESS-CM-2 and ACCESS-ESM-1.5, 
which predict increases of CWRs in soybean, cotton, and wheat under SSP245 scenario in the 
2050s and 2080s, decreases in the estimated percentage change of CWRs for all crops are found 
for nearly all of the CMIP6 GCMs. Similarly, under SSP585 scenario, there are decreases in the 
projected percentage change of CWRs for almost all of the CMIP6 GCMs in the 2050s, except for 
ACCESS-CM-2 and ACCESS-ESM-1.5. However, a detailed analysis shows that there exist 
increases in the projected percentage change of CWRs for all crops under SSP585 scenario in the 
2080s as compared to the SSP245 scenario in the 2050s. This could be related to the rise in Tmax 
during this period. Additionally, results of ACCESS-CM-2 and ACCESS-ESM-1.5 indicate that 
there are larger increases in the projected percentage change of CWRs for soybean, cotton, and 
wheat than for sugarcane and sorghum under both scenarios in the 2050s and 2080s. Overall, the 
results show that the projected percentage change of CWR is decreasing for almost all of CMIP6 
GCMs (except for ACCESS-CM-2 and ACCESS-ESM-1.5) under SSP245 scenario in the 2050s 
and 2080s. However, under SSP585 scenario, the projected percentage change of CWRs for all 
crops may increase for five GCMs (ACCESS-ESM-1.5, ACCESS-CM-2, BCC-CSM2-MR, 
INMCM4-8, and NorESM2-MM) in the 2080s. As an example, by using MRI-ESM2-0, the 
projected percentage change of CWR for sugarcane is –2.30%, whereas the values are –4.60%, 
–3.90%, –3.60%, and –2.30%, respectively, for sorghum, wheat, cotton, and soybean. 

Table 13  Projected CWRs of five crops using different CMIP6 GCMs in the PRB under SSP245 and SSP585 
scenarios in the 2050s and 2080s 

CMIP6 GCM Scenario 

Average CWR (mm) 

2050s 2080s 

Cotton Sorghum Sugarcane Soybean Wheat Cotton Sorghum Sugarcane Soybean Wheat 

ACCESS-ESM-1.5 SSP245 702.80 419.30 2123.20 534.30 551.90 708.30 425.50 2144.90 536.60 559.90 

SSP585 703.30 421.10 2133.40 535.30 554.80 726.50 435.90 2199.20 547.90 576.80 

ACCESS-CM-2 SSP245 710.80 426.00 2166.70 539.70 559.80 720.70 430.60 2193.50 548.40 566.10 

SSP585 713.00 426.70 2177.80 542.70 560.80 761.80 453.10 2295.30 581.10 596.90 

BCC-CSM2-MR SSP245 673.60 426.10 2076.50 502.80 555.80 674.20 425.10 2069.00 501.80 556.10 

SSP585 678.90 427.80 2086.60 506.40 559.10 694.40 437.70 2131.70 517.00 573.50 

EC-EARTH3 SSP245 644.60 411.40 2079.50 482.60 531.90 647.00 414.60 2099.20 458.30 536.10 

SSP585 649.00 412.80 2073.50 486.80 535.50 659.10 425.80 2144.40 496.10 552.30 

EC-EARTH3 VEG SSP245 646.30 411.70 2080.70 484.80 532.70 648.90 416.20 2099.20 485.90 538.30 

SSP585 650.60 414.90 2093.10 488.50 537.70 654.20 420.80 2133.40 492.60 546.70 

INMCM4-8 SSP245 664.70 412.60 2106.50 496.90 536.80 673.00 418.60 2128.00 501.50 544.10 

SSP585 673.80 420.20 2126.50 500.70 546.80 695.20 436.40 2191.10 513.60 567.30 

INMCM5-0 SSP245 655.20 417.30 2102.50 485.40 540.20 658.30 419.90 2093.30 487.70 543.40 

SSP585 662.60 420.70 2119.30 490.20 545.30 673.50 427.60 2156.80 498.20 555.30 

MPI-ESM1-2-HR SSP245 654.80 414.10 2070.90 490.50 536.40 658.50 417.70 2084.90 493.00 541.50 

SSP585 667.50 417.20 2052.80 503.40 540.80 666.40 425.30 2109.80 498.50 552.30 

MRI-ESM2-0 SSP245 659.00 411.40 2113.40 497.50 533.90 656.30 412.90 2092.40 494.50 536.90 

SSP585 653.70 413.40 2086.20 490.90 537.40 672.30 424.30 2138.80 505.70 553.80 

NorESM2-MM SSP245 666.90 421.60 2103.60 497.40 548.10 671.80 424.00 2120.00 501.30 552.20 

SSP585 676.40 426.00 2123.20 505.00 555.10 693.60 438.30 2181.30 516.80 572.30 
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Fig. 6  Projected percentage change in CWRs of five crops using different CMIP6 GCMs in the PRB under 
SSP245 (a and b) and SSP585 (c and d) scenarios in the 2050s and 2080s 

However, the overall averages of the projected percentage decrease of CWRs for all five crops 
using the ten CMIP6 GCMs reveal that cotton has the largest percentage decrease of CWR 
(–3.70%), followed by sorghum (–3.60%), sugarcane (–3.30%), soybean (–3.30%), and wheat 
(–2.9%) under SSP245 scenario in the 2050s and 2080s (Fig. 6), with respect to the baseline 
period (1991–2020) as given in Tables 6–10. Similarly, under SSP585 scenario, sugarcane shows 
the largest percentage decrease in projected CWR (–3.10%), followed by cotton (–2.80%), 
sorghum (–2.80%), soybean (–2.50%), and wheat (–2.00%) (Fig. 6). This indicates that the 
pattern of the percentage decrease in CWRs for all five crops is similar in the 2050s under both 
scenarios (i.e., SSP245 and SSP585), except for sugarcane, which shows a larger percentage 
decrease in CWRs under SSP585 scenario in the 2050s as compared to the other crops. Similarly, 
in the 2080s, the overall averages of the projected percentage decrease of CWRs for all five crops 
using the ten CMIP6 GCMs show that soybean exhibits the largest percentage decrease in 
projected CWR (–3.70%), followed by cotton (–3.30%), sugarcane (–3.00%), sorghum (–2.90%), 
and wheat (–2.20%) under SSP245 scenario. The availability of increasing soil moisture in the 
root zone due to increasing rainfall and a decrease in projected Tmax may be responsible for this 
decline in CWR. 

Figure 6 indicates that the percentage decreases in CWR for wheat crop under both SSP245 and 
SSP585 scenarios in the 2050s and 2080s are lower as compared to the other crops for most of the 
CMIP6 GCMs, in which CWR is projected to increase. This shows that crops like wheat and 
sugarcane will have higher CWRs in future than other crops in the PRB. However, at the same 
time, if we look into the CWRs projected by ACCESS-ESM-1.5 and ACCESS-CM-2 GCMs, 
CWRs of cotton and soybean will increase under both SSP245 and SSP585 scenarios in the 2050s 
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and 2080s. Acharjee et al. (2017) found that future CWRs are projected to fluctuate and depend 
on the rainfall pattern. Overall, our results imply that projected CWRs are decreasing for most of 
the CMIP6 GCMs (except for ACCESS-CM-2 and ACCESS-ESM-1.5) under SSP245 scenario in 
the 2050s and 2080s. However, under SSP585 scenario, projected CWRs for all crops show 
increases for half of the CMIP6 GCMs in the 2080s in comparison to the 2050s. This analysis 
indicates that crops such as wheat and sugarcane have lower decreases in CWRs as compared to 
other crops in the PRB in comparison to the baseline period (1991–2020).  

Table 14 shows the estimations of future IWRs for the five selected crops using ten CMIP6 
GCMs under two different scenarios, i.e., SSP245 and SSP585, in the 2050s and 2080s. The 
overall averages of projected IWRs for cotton, sorghum, sugarcane, soybean, and wheat in the 
2050s for all CMIP6 GCMs are 415.00, 357.30, 1730.70, 249.60, and 471.10 mm under SSP245 
scenario, and 367.40, 317.80, 1562.90, 213.10, and 430.00 mm under SSP585 scenario, 
respectively. Similarly, projected IWRs in the 2080s are 405.30, 350.60, 1720.80, 230.80, and 
474.40 mm under SSP245 scenario, and 354.30, 318.30, 1575.80, 196.9, and 427.5 mm under 
SSP585 scenario, for cotton, sorghum, sugarcane, soybean, and wheat crops. In general, there is a 
decrease in the overall projected IWRs for both scenarios in the 2050s and 2080s with respect to 
baseline period (1991–2020). We evaluated the percentage deviation between the overall average 
of projected IWRs for all five crops under SSP245 and SSP585 scenarios with respect to the 
baseline period (1991–2020). The results show that under SSP245 scenario, sorghum has the 
largest percentage decrease in projected IWR (–6.30%), followed by wheat (–5.90%) as compared 
to the other crops, whereas soybean has the largest percentage increase in projected IWR 
(17.30%), followed by cotton (3.30%) in the 2050s. Under SSP585 scenario, again, sorghum crop  

 
Table 14  Projected IWRs of five crops using different CMIP6 GCMs in the PRB under SSS245 and SSP585 
scenarios in the 2050s and 2080s 

CMIP6 GCM Scenario 

Average IWR (mm) 

2050s 2080s 

Cotton Sorghum Sugarcane  Soybean  Wheat Cotton Sorghum Sugarcane  Soybean  Wheat 

ACCESS-ESM-1.5 SSP245 453.90 395.90 1755.20 319.60 430.20 443.50 311.90 1763.90 296.40 447.00 

SSP585 397.30 259.00 1713.00 293.80 392.00 392.40 275.40 1720.90 270.10 418.30 

ACCESS-CM-2 SSP245 416.30 286.20 1724.10 289.80 422.70 404.90 316.30 1724.00 243.00 451.00 

SSP585 374.20 290.00 1683.10 218.30 409.70 350.90 266.00 1718.90 224.70 381.90 

BCC-CSM2-MR SSP245 499.80 408.80 1732.50 317.20 538.70 452.50 402.00 1686.90 264.50 533.30 

SSP585 495.80 411.20 1757.10 310.30 542.60 497.50 417.70 1759.10 302.20 553.80 

ECEARTH3 SSP245 352.60 353.20 1680.90 172.90 468.20 348.80 354.60 1682.90 163.10 471.20 

SSP585 346.90 356.30 1655.30 168.60 470.60 286.70 341.20 1659.00 113.10 438.60 

ECEARTH3 VEG SSP245 360.10 350.10 1686.50 176.90 470.80 356.20 356.80 1680.90 173.00 475.70 

SSP 585 365.60 355.20 1695.00 182.20 478.10 305.40 352.70 1665.60 117.50 453.30 

INMCM4-8 SSP245 454.70 314.00 1808.30 322.00 438.20 475.30 329.90 1814.30 317.30 455.40 

SSP585 472.70 349.40 1834.50 314.60 477.40 502.90 380.40 1884.30 329.50 511.30 

INMCM5-0 SSP245 445.30 370.80 1812.80 277.00 493.80 428.10 373.30 1767.50 253.40 495.00 

SSP585 431.80 376.10 1802.20 248.50 500.80 396.30 354.80 1770.90 219.50 473.10 

MPI-ESM1-2-HR SSP245 389.20 378.10 1702.60 196.20 495.80 399.20 379.70 1666.90 205.10 504.50 

SSP585 396.30 382.40 1642.30 202.20 503.20 364.20 396.60 1646.50 162.60 503.90 

MRI-ESM2-0 SSP245 397.30 337.20 1739.20 238.90 458.80 364.20 310.40 1710.80 210.90 416.70 

SSP585 371.90 344.10 1710.70 208.00 461.70 417.80 334.60 1774.40 248.70 463.30 

NorESM2-MM SSP245 380.60 379.10 1664.60 185.30 493.80 380.40 371.10 1709.90 181.30 493.90 

SSP585 389.30 371.50 1698.40 197.70 493.50 383.10 381.40 1733.70 178.10 505.20 
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crop has the largest decrease in projected IWR (–16.70%) with respect to the baseline period, 
followed by wheat (–14.40%), cotton (–8.50%), and sugarcane (–8.40%) in the 2050s. 

Similarly, Figure 7 shows the projected percentage change in IWRs for all crops under SSP245 
and SSP585 scenarios in both periods. In general, the projected percentage change of IWRs for all 
crops under SSP245 and SSP585 scenarios are decreasing or slightly increasing, except for 
soybean and cotton, which have the largest increase in IWRs (up to 51.30% and 24.50%, 
respectively) in the 2050s under SSP245 scenario. Sorghum has the largest percentage decrease in 
IWR (–25.00%) in the 2050s under SSP245 and SSP585 scenarios (Fig. 7). Similar pattern (with 
slight increase or decrease) is observed for this crop in the 2080s under both scenarios. The main 
reason for the decrease in projected IWR may be attributed to the increase in average annual 
rainfall. The projected percentage change of IWR show high variations under SSP245 and 
SSP585 scenarios in the 2050s and 2080s mainly due to large variability in projected rainfall. 
Figure 7 further indicates that in general there are increases in the projected percentage change of 
IWRs in the 2050s and 2080s under both scenarios for soybean and cotton by using five CMIP6 
GCMs (ACCESS-ESM-1.5, ACCESS-CM-2, BCC-CSM2-MR, INMCM4-8, and INMCM5.0). 
Konzmann et al. (2013) observed that increased rainfall resulted in a modest drop in irrigation 
needs in several regions worldwide, including southeastern China and India. There is also the 
argument that the structural crop responses caused by elevated CO2 concentrations may offset the 
negative impacts of climate change on agriculture, which would result in lower IWRs in many 
parts of the world (Konzmann et al., 2013). 

 

 

Fig. 7  Projected percentage change in IWRs using different CMIP6 GCMs in the PRB under SSP245 (a and b) 
and SSP585 (c and d) scenarios in the 2050s and 2080s 
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4  Conclusions 

In this study, multi-scenario projections from CMIP6 GCMs were used to investigate the impacts 
of climate change on CWR and IWR in a semi-arid river basin of India under two future scenarios 
(SSP245 and SSP585) in the 2050s and 2080s. We found that projected CWRs decrease for all 
five crops for almost all of the CMIP6 GCMs (except for ACCESS-CM-2 and ACCESS-ESM-1.5 
for soybean and cotton) under SSP245 and SSP585 scenarios in the 2050s and 2080s. This 
increase in CWRs observed for ACCESS-CM-2 and ACCESS-ESM-1.5 under both scenarios, i.e., 
SSP245 and SSP585, is more pronounced in the 2080s. The study also found that CWRs in crops 
such as sugarcane, sorghum, and wheat would decrease for all ten CMIP6 GCMs under both 
scenarios in the 2050s and 2080s. This could be attributed to the projected decrease in Tmax. 
Similarly, projected IWRs for all five crops under SSP245 scenario would decrease or slightly 
increase in the 2050s and 2080s, except for soybean and cotton. For about four CMIP6 GCMs 
(EC-Earth3, EC-Earth-veg, MPI-ESM1-2-HR, and NorESM2-MM), a decrease in IWR is found 
in the 2050s and 2080s under both scenarios. Sorghum crop has the largest decrease in IWR in the 
2050s and 2080s under both scenarios, followed by wheat and sugarcane. However, at the same 
time, soybean exhibits the largest increase in IWR in the 2050s and 2080s under both scenarios, 
followed by cotton. The main reason for the drop in IWRs may be attributed to the increase in 
average annual rainfall. The results further show that crops like cotton and soybean are more 
vulnerable to climate change than other crops in the PRB. This implies that farmers may opt to 
increase the acreage of sorghum and wheat as compared to soybean and cotton. These results will 
be of great assistance to agricultural researchers and water resource managers in adopting 
long-term crop planning techniques to lessen the detrimental impacts of climate change on water 
resources management in agricultural semi-arid regions like the PRB. 
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