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Abstract: To date, much of research on revegetation has focused on soil microorganisms due to their
contributions in the formation of soil and soil remediation process. However, little is known about the soil
bacteria and their functions respond to the diverse vegetational types in the process of vegetation
restoration. Effects of dominated vegetation, i.e., Artemisia balodendron Turcz Ex Bess, Caragana microphylla
Lam., Hedysarum fruticosum Pall. and Pinus sylvestris 1.. on bacterial community structures and their potential
functions in the Hulun Buir Sandy Land, China were determined using high-throughput 16S rRNA gene
sequencing and phylogenetic investigation of communities by reconstruction of unobserved states
(PICRUSY) in 2015. Although the dominant phyla of soil bacterial community among different types of
vegetation, including Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes and Firmicutes, were
similar, the relative abundance of these dominant groups significantly differed, indicating that different
types of vegetation might result in variations in the composition of soil bacterial community. In addition,
functional genes of bacterial populations were similar among different types of vegetation, whereas its
relative abundance was significantly differed. Most carbon fixation genes showed a high relative abundance
in P. sylvestris, vs. recalcitrant carbon decomposition genes in A. balodendron, suggesting the variations in
carbon cycling potential of different types of vegetation. Abundance of assimilatory nitrate reduction
genes was the highest in P. sylvestris, vs. dissimilatory nitrate reduction and nitrate reductase genes in 4.
halodendron, indicating higher nitrogen gasification loss and lower nitrogen utilization gene functions in 4.
halodendron. The structures and functional genes of soil bacterial community showed marked sensitivities
to different plant species, presenting the potentials for regulating soil carbon and nitrogen cycling,
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1 Introduction

Revegetation is considered as one of the most effective methods for constantly restoring degraded
ecosystems and improving harsh environments (Liao et al., 2019), and prevails as an important
tool in reversing desertification in northern China (Wang et al., 2013; Miyasaka et al., 2014). The
application of vegetation restoration effectively prevents wind erosion (Li et al., 2007; Pei et al.,
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2008), improves soil fertility, alters soil physical and chemical properties and even promotes soil
formation (Yuan et al.,, 2012; Li et al., 2017; Sun et al., 2019). However, the interrelations
between revegetation and soil microbial environments have not been sufficiently examined until
very recently, and a substantial gap remains regarding how the soil biotic community responds to
revegetation practices and how these changes influence soil functions, such as carbon and
nitrogen fixation (Cheng et al., 2017; Deng et al., 2019).

Soil microbial communities are composed of multiple microbial populations, the structure of
which is sensitive to micro-environments and affected by vegetational type and aboveground
diversity (Ferran et al., 2013; Shihan et al., 2016). In particular, vegetation patches in
desertification areas with a patchy landscape pattern can act as fertiliser islands that provide the
nutrients and water for the recruitment of soil microbes (Goberna et al., 2007; Ozgelik et al.,
2019). A few previous studies have documented the revegetation effects on soil microbial
community structure, and the majority addressed the effects of aboveground community
characteristics (e.g., diversity, abundance and species composition) (Hacker et al., 2015; Prober et
al., 2015), or focused on a single land use type (e.g., grassland, bush and forest) and a single
revegetation species (Zhang et al., 2019). However, comparison among different types of
vegetation is lacking. In particular, the variations in plant species give rise to environmental
heterogeneity through different quantity and quality of litter, vegetation excretion and water
availability, which offer sufficient conditions to alter the distribution patterns of soil microbial
communities (Boeddinghaus et al., 2019; Zhang et al., 2019). Hence, it is important to gain a
better understanding of the microbial distribution patterns under vegetation dominated by
different plant species, which may in turn provide a novel approach to evaluate revegetation
practices with respect to microbial community structure and composition, thus potentially
offering suggestions regarding the selection of plant species for ecological restoration.

Vegetation cannot only affect the composition and distribution of soil microbial communities
but also impact potential functions (Maestre et al., 2012; Zhou et al., 2019). Vegetation restoration
affects soil carbon and nitrogen cycling by shifting the input and decomposition of soil organic
matter (Liu et al.,, 2013; Chen et al., 2015) as well as other biological and non-biological
processes (Li et al., 2012; Yang et al., 2014). Decomposition of plant residues both increases the
soil organic carbon content and further releases carbon dioxide by metabolism and respiration
(Schneider et al., 2012; Voriskova et al., 2013; Castro et al., 2019). Therefore, the analysis of the
potential functions of soil bateria under different plant species can enhance our knowledge
regarding the functions of microbial decomposition, nutrient transformation and plant growth
promotion. This may in turn provide evidence for evaluating the contribution of sand stabilisation
by revegetation to carbon and nitrogen cycling in desert ecosystems.

The Hulun Buir Sandy Land is located in a transitional zone from forest steppe to dry steppe in
northeastern China (Zhang et al., 2013a). In recent decades, the land has undergone severe
desertification resulting from long-term natural and anthropogenic disturbances, such as
overgrazing, excessive farming and fuel wood gathering (Guo et al., 2010). Establishing the
shrubs including Artemisia halodendron Turcz Ex Bess, Caragana microphylla Lam., Hedysarum
fruticosum Pall. and Pinus sylvestris L. has constituted the main measures used for many years to
abate wind-induced soil erosion and improve the environment in this region (Du et al., 2012).
Previous studies have shown the effects of revegetation on soil abiotic environment (e.g.,
microclimate, wind erosion and soil characteristics) (Wang et al., 2013; Fu et al., 2015); however,
soil bacteria and their potential functions are poorly understood. To address this issue, we selected
four types of dominated vegetation in the Hulun Buir Sandy Land to gain insight into the structure
of soil bacterial community and predict their functional gene using high-throughput sequencing
analysis methods and phylogenetic investigation of communities by reconstruction of unobserved
states (PICRUSt; Langille et al., 2013; Xiao et al., 2017). Our study focused on two aims: (1)
identifying the soil bacterial assemblages under different types of vegetation; and (2) determining
how the soil bacteria affect soil carbon and nitrogen cycling under different types of vegetation.
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2 Materials and methods

2.1 Study area, soil sampling and analysis

The experiment was conducted at the Hulun Buir Sandy Land (48°50.4'N, 119°54.0'E; 670 m
a.s.l.), Ewenki Autonomous Banner, Inner Mongolia Autonomous Region in northeastern China.
This area has a temperate semi-arid continental climate with —2.6°C annual mean temperature and
307.7 mm mean annual precipitation received mainly in the summer and autumn (approximately
70% from June to September). The soil is classified as sandy chestnut and is susceptible to wind
erosion (Zhang et al., 2013a). To control desertification, people have established the sand-fixation
vegetation in this region since 2006. Before revegetation, the landscape was characterised as
semi-fixed (with a vegetation coverage <15%) sandy lands, with the sparse xeric vegetation. Our
study selected four types of vegetation that was dominated by P. sylvestris, C. microphylla, H.
fruticosum and A. halodendron and these plant species had a similar restoration age (around
8-year) and more than 60% vegetation coverage.

Field sampling was carried out in July 2015, near the period of the highest plant biomass
production and species richness. A total of 12 plots of 20 mx20 m were established for the four
types of vegetation, with each type of vegetation containing different plant species and having
three replicates. Basic information of the sampled vegetation is shown in Table 1. In each plot,
three plant species were randomly selected for soil sample collection and mixture. For each plant,
we set two different patch types (beneath plant mid-canopy and plant interspace) to collect and
mix four samples (north, south, east and west of the site) as one sample for each patch type. Soil
samples (0—10 cm) were collected with a 4.5-cm diameter soil auger, excluding the litter layer.
Then, three samples in the same patch type were mixed to create one composite sample. A total of
24 composite samples were collected (four plant speciesxthree replicatesxtwo patch types). The
composite soil samples were sieved through a 2.0-mm mesh to remove roots and rocks,
homogenised and separated into two parts, one being preserved for soil property analysis and the
other being placed into a sterile plastic bag and immediately returned to the laboratory following
storage in a vehicle refrigerator at —18°C. In the laboratory, samples were stored in a refrigerator
at —20°C to inhibit microbial metabolism before DNA extraction. It takes about 2-3 d from
sample storage to DNA extraction (Sun et al., 2017).

Soil water content (SWC) was determined using the oven-drying method. Total soil organic
carbon (SOC) was determined using the dichromate oxidation method (Walkley et al., 1934).
Total nitrogen (TN) content was determined using a Kjeldahl Apparatus Nitrogen Analyser
(FOSS2200, Foss, Denmark). Soil hydrolysable nitrogen (HN) was determined using the alkaline
hydrolysis diffusion method. Total phosphorus (TP) and available phosphorus (AP) contents were
measured using an ultraviolet spectrophotometer (Shimadzu UV- 2550, Kyoto, Japan). Soil pH
was measured after creating a 1:2.5 (25 g/100 mL) soil-to-distilled water slurry.

Table 1 Basic information of the sampled vegetation

Mean canopy

Dominant plant species ~ Vegetation coverage (%) Mean height (m) Main associated plant species

area (m?)
.. Cleistogenes; Saussurea salsa,
Artemisia halodendron 60 0.63 0.80 X
Agropyron cristatum
Caragana microphylla 85 1.30 4.41 . Setaria Wr.ldlS; Agropyron
cristatum; Cleistogenes squarrosa
Hedysarum fruticosum 90 1.40 6.19 Cle'zs.t()'genes Squarrosd; Setaria
' viridis; Agropyron cristatum
Pinus sylvestris 70 500 784 Saussurea salsa; Artemisia

frigida; Carex spp.

2.2 Microbial sequencing analysis

DNA was extracted from the 0.2 g homogenised soil sample using the E.Z.N.A.® soil DNA kit
(D5625-01; Omega Bio-tek, Norcross, GA, USA) following the manufacturer's instructions. The
V3 and V4 regions of the 16S rRNA gene amplicon for bacteria were sequenced by the Sangon
Biotech Co. Ltd. (Shanghai, China), where they were defrosted and analysed using the Illumina
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MiSeq sequencing system (Illumina, San Diego, CA, USA) with the 341F
(5'-CCCTACACGACGCTCTTCCGATCTG (barcode) CCTACGG-GNGGCWGCAG-3') and
805R (5'-GACTGGAGTTCCTTGGCACCCGAGAATT-CCAGACTACHVGGGTATCTAATCC
-3") primers set. The sequences were clustered into operational taxonomic units (OTUs) at the
>97% identity threshold using Uclust v1.1.579 (Edgar, 2010), after being merged (Mago¢ et al.,
2011) and filtered (Edgar et al., 2011). Taxonomic assignment was performed using the
Ribosomal Database Project (RDP) classifier. The relative abundance of different phyla or other
taxonomic categories in each sample was calculated. Alpha diversity index was calculated using
Mothur v1.30.1 (Kozich et al., 2013). Full details of the DNA extraction, sequencing and
bioinformatics processing followed the method described by Sun et al. (2017).

We used PICRUSt to investigate the metabolic potential of the soil bacteria. The OTU table
was input into PICRUSt on the Galaxy web platform (Goecks et al., 2010) for metagenome
prediction using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The output
results consisted of tables of predicted functional gene (KEGG Ortholog) abundance at various
levels.

2.3 Statistical analyses

Two-way ANOVAs (analysis of variances) were performed to test the effects of vegetation, patch
type and their interaction on soil properties, soil bacterial diversity, relative abundance of soil
bacteria and relative abundance of functional genes. The differences of these variables were
compared among four types of vegetation using one-way ANOVA for normal distribution or the
Kruskal-Wallis test for non-normal distribution. Post-hoc comparisons were performed using
Tukey's Honestly Significant Difference Test or Wilcoxon test. Bartlett and Shapiro-Wilk tests
were used to check the homogeneity of variance and normality, respectively. All statistical
analyses were performed using SAS JMP Statistical Discovery v11.0 (Cary, NC, USA). Further
statistical analyses were performed using R software v3.3.2 (R Development Core Team, R
Foundation for Statistical Computing, Vienna, Austria). Alpha diversity was calculated using the
Shannon index and Chaol, and beta diversity was shown by non-metric multidimensional scaling
(NMDS) with the Bray-Curtis index (Sun et al., 2017). The redundancy analysis (RDA) and
Mantel test were used to determine the major environmental attributes shaping bacterial structures.
RDA was determined by the variance inflation factors (VIF) with attributes having VIF over 20
removed and detrended correspondence analysis (DCA) with the maximum axis lengths less than
3. A heat map was used to analyse the differences in relative abundance of functional genes of
four types of vegetation.

3 Results

3.1 Soil property and soil bacterial diversity

Soil property and soil bacterial diversity are shown in Table 2. The contents of SOC, TN, HN, pH,
Shannon index and Chaol were significantly different among four types of vegetation (P<0.05).
The contents of SOC and TN were also influenced by patch types with SOC content being
markedly higher in the soil beneath plant mid-canopy than plant interspace in H. fruticosum
(P<0.05). The interaction between vegetation and patch type had non-significant effect on soil
property. Moreover, values of SOC, TN, HN, Shannon index and Chaol were markedly higher in
P sylvestris and lower in A. halodendron than in the other plant species (P<0.05), whereas pH
value showed a reverse trend (P<0.05). Conversely, values of TP, AP, SWC and EC did not exhibit
significant differences among four types of vegetation (P<0.05).

3.2 Diversity of bacterial community

Across all samples, a total of 431,792 high-quality microbial sequences were identified before
resampling with an average of 17,991 sequences per sample (ranging from 10,828 to 32,697). The
sequences were grouped into 72,679 OTUs using an arbitrary 97% sequence similarity cut-off.
These sequences were classified into 49 phyla, 86 classes, 117 orders, 279 families and 1217
genera.
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Table 2 ANOVA results of soil property and bacterial diversity under different types of vegetation and patch
types

Two way ANOVAs One way ANOVA
Variable Vegetation Patch type VegetationxPatch type
AH CM HF PS
F P F P F P
Soil property
SoC 7.00 0.003 15.05 0.001 225 0.122 1.47° 1.32° 1.97% 2.37*
N 6.37 0.005 7.04 0.017 1.66 0.216 0.06° 0.13* 0.13* 0.13*
HN 9.63  0.001 238  0.142 1.50 0.252 7.93° 13.91* 15.59* 14.86*
TP 1.99 0.157 0.03  0.866 0.94 0.446 91.60 81.64 86.86 67.72
AP 246  0.100 199  0.178 0.10 0.961 422 4.68 4.88 6.02
SwWC 1.96  0.161 0.02  0.881 0.69 0.571 0.03 0.02 0.03 0.01
EC 1.81  0.187 3.65 0.074 0.81 0.508 29.22 31.59 23.50 24.44
pH 725 0003 025 0.625 1.86 0.177 7.20* 6.86% 6.66° 6.71°
Soil bacterial diversity
Shannon 9.07  0.001 421 0.057 0.84 0.491 7.68° 7.91° 7.88° 8.242
Chaol 5.78  0.007 1.49  0.240 0.69 0.570 14,042.00° 18,893.00®  17,517.00®  21,574.00*

Note: F value is the ratio of mean variance between groups to mean variance within groups. P value is statistical significance. AH,
Artemisia halodendron; CM, Caragana microphylla; HF, Hedysarum fruticosum; PS, Pinus sylvestris. SOC, soil organic carbon; TN,
total nitrogen; HN, hydrolytic nitrogen; TP, total phosphorus; AP, available phosphorus; SWC, soil water content; EC, electrical
conductivity. Different lowercase letters within the same row indicate significance among four types of vegetation at P<0.05 level.

Bacterial alpha diversity was estimated by OTU richness (Chaol) and Shannon index. The
richness of the bacterial community ranged from 11,650 to 27,976 phylotypes per sample with all
samples obtained from an identical sequencing depth. The average number of bacterial alpha
diversity indices (Chaol and Shannon index) of each type of vegetation followed the order A.
halodendron<H. fruticosum<C. microphylla<P. sylvestris (Table 2). Additionally, of all
environmental variables examined, SOC, TN and HN were most correlated with Shannon index
and Chaol. Moreover, TP, AP and SWC were also correlated with Shannon index (P<0.05),
whereas soil pH and EC were not correlated with soil bacterial alpha diversity (Table 3).

Table 3 Spearman correlation coefficient between soil bacterial alpha diversity (Shannon index and Chaol) and
environmental variable

Index SOC TN TP AP HN SwcC pH EC
Shannon 0.5365™ 0.5336™ -0.5365" 0.5044™ 0.5997* -0.4652" -0.3197 0.1587
Chaol 0.4374" 0.5653" —-0.3530 0.4043 0.4410° —0.3652 —0.3071 0.0752

Note: SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus; AP, available phosphorus; HN, hydrolytic nitrogen; SWC, soil
water content; EC, electrical conductivity; “and ** represent significant correlations at P<0.05 and P<0.01 levels, respectively.

The NMDS plot of Bray-Curtis distance ordination clearly showed that points of the same
vegetation were clustered together (Fig. 1). Significant differences were observed in the soil
bacterial community composition (P<0.05) among four types of vegetation pairings by ANOSIM
(analysis of similarities) analysis (Table 4), with the exception of C. microphylla and H.
fruticosum.

3.3 Taxonomic composition of soil bacterial community

As shown in Figure 2, the phyla including Proteobacteria, Actinobacteria, Acidobacteria,
Bacteroidetes and Firmicutes accounted for more than 70% of the bacterial sequences in the four
types of vegetation. Additional phyla including Chlamydia, Gemmatimonadetes, Nitrospirae,
Planctomycetes, Verrucomicrobia and Candidatus Saccharibacteria (relative abundance>1%) were
also found in all soil samples; however, the genera (relative abundance>1%) showed significant
differences among four types of vegetation.

Further analysis of the relative abundance of dominant soil bacterial phyla and genera (Fig. 2
and Table S1) indicated that vegetation had a significant effect on the relative abundance of most
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Fig. 1 Non-metric multidimensional scaling (NMDS) ordination based on Bray-Curtis distance showing soil
bacterial beta diversity under different vegetation and patch types. AH, Artemisia halodendron; CM, Caragana
microphylla; HF, Hedysarum fruticosum; PS, Pinus sylvestris; Be, beneath plant mid-canopy; In, plant interspace.

Table 4 Significance test on the effects of different types of vegetation pairings on the soil bacterial community
structure as detected by the analysis of similarities (ANOSIM)

Vegetation pairing r P
AH-CM 0.5741 0.003
AH-HF 0.7185 0.001
AH-PS 1.0000 0.002
CM-HF —0.0852 0.752
CM-PS 0.4953 0.006
HF-PS 0.3722 0.005

Note: AH, Artemisia halodendron; CM, Caragana microphylla; HF, Hedysarum fruticosum; PS, Pinus sylvestris. r, correlation
coefficient; P, statistical significance.
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Fig. 2 Bacteria taxonomic classification at the phyla and genus levels. The inner circle is the dominant phyla
(relative abundance>1%), and the outer circle is the dominant genus (relative abundance>1%). The same colour
represents a phylum, and the lowercase letters in each colour represent a certain genus in the phylum. Each
quarter represents a plant species. PS, Pinus sylvestris; AH, Artemisia halodendron; CM, Caragana microphylla;
HF, Hedysarum fruticosum.



YAN Ru et al.: Effect of vegetation on soil bacteria and their potential functions for ecological... 479

dominant phyla, except for Bacteroidetes, Firmicutes and Planctomycetes (P<0.05). In particular,
the relative abundance of Proteobacteria was significantly higher in 4. halodendron than in the
other plant species (P<0.05). The relative abundance of Acidobacteria, Actinobacteria, Chlamydia,
Nitrospirae and Verrucomicrobia was higher in P. sylvestris than in the other plant species. No
significant effects of patch type were found in the relative abundance of all bacterial phyla.

The relative abundance of most genera in the Proteobacteria division was higher in A.
halodendron, except for Sphingomonas, Bradyrhizobium, Rhizobium, Mesorhizobium and
Microvirga spp. The relative abundance of Bradyrhizobium, Rhizobium and Mesorhizobium that
are symbiotic nitrogen fixation bacteria, was higher in C. microphylla and H. fruticosum than in
the other two plant species. Additionally, Bactericides (Bacteroidetes), Lactococcus and
Streptococcus (Firmicutes) were significantly higher in 4. halodendron than in the other plant
species (P<0.05). The relative abundance of Nocardioides, Blastocatella, Flavitalea, Terrimonas,
Bacillus and Nitrospira were significantly higher in C. microphylla and H. fruticosum than in the
other two plant species (P<0.05). Except for these, the other genera that were affected by
vegetation were significantly higher in P. sy/vestris than in the other plant species (£<0.05). Only
genera Terrimonas and Ferruginibacter were affected by patch type, exhibiting a higher relative
abundance beneath plant mid-canopy.

3.4 Structure of potential functional gene of soil bacteria

The heat map (Fig. 3) showed that the abundance of most carbon fixation genes and
methanogenesis genes under different types of vegetation followed the order of P. sylvestris>H.
fruticosum>C. microphylla>A. halodendron, except that genes pckA and ppc showed the highest
abundance in A. halodendron. The dominant genes (relative abundance>0.025%) of carbon
fixation found in all soil samplings were IDH1, coxS, coxM, pckA, korA, korB and pcc. For
carbon degradation genes (Fig. 3), a multitude of cellulose degradation and hemi-cellulose
degradation genes appeared to govern carbon degradation processes as they were detected in a
high abundance across all samples, and included man, xynAd, abfA, beta-glucosidase, bglx, bgiB,
bgl4 and endoglucanase. The genes amyA and chitinase were also detected in a large proportion.
Among carbon degradation genes, amyA, puld, bgiB, celF, bglA, putative chitinase, chitinase and
pectinesterase were significantly higher in A. halodendron (P<0.05). In contrast, the genes
glucoamylase, man, xynA, abf4, bglX, endoglucanase and polygalacturonase were significantly
higher in P. sylvestris (P<0.05). In addition, only a few genes (cd, man, xynA and endoglucanase)
were influenced by patch type in P. sylvestris.

Figure 3 also showed that the gene abundance of nitrogen fixation (nifH, nifD and nifK),
nitrification (kao), and denitrification (nirK) was significantly lower in 4. halodendron (P<0.05),
whereas the abundance of nitrogen reduction genes was higher than those in the other plant
species. For nitrate reduction, the relative abundance of narG, narH, narl, napA, napB, nirB and
nasA was significantly higher in A. halodendron (P<0.05). Specifically, genes of narB and nirA,
whose function occurred in dissimilatory nitrate reduction and assimilatory nitrate reduction,
respectively, showed a higher abundance in P. sylvestris. In addition, the dominant genes of
nitrogen metabolism were nirB, nirD and nasA. The patch type had no effect on the relative
abundance of nitrogen cycling genes (Fig. 3 and Table S2).

3.5 Relationships of soil variable with bacterial community structure and functional gene

The RDA was performed to identify the major soil variables influencing the formation of bacterial
community structure. VIFs and BIO-ENV were used to eliminate multicollinearity among
variables. We selected four variables as inputs for the RDA (Fig. 4). As shown in Figure 4a,
bacterial diversity, SOC, TN, HN, TP and SWC showed significant relationships with bacterial
community structure (P<0.05), which was also supported by the Mantel test at P<0.05 level
(Table 5). In addition, soil bacterial communities were clearly separated among four types of
vegetation despite an occasional overlap. Furthermore, variance partition analysis was
subsequently performed to dissect the contribution of vegetation and environmental variables to
bacterial community structure (Fig. 4c). A total of 53.1% of the community variations could be
explained by these selected variables. Vegetation and soil variables contributed to 19.7% and
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Fig. 3 Heat map indicating difference in the relative abundance of specific genes among four types of vegetation.
AH, Artemisia halodendron; CM, Caragana microphylla; HF, Hedysarum fruticosum; PS, Pinus sylvestris; Be,
beneath plant mid-canopy; In, plant interspace. * represents the significant difference between beneath plant

mid-canopy and plant interspace at P<0.05 level.

Table 5 Correlations of environmental variable with bacterial community structure and functional gene

Bacterial community structure

Functional gene

Index Index
r P r P
Bdiv 0.3628 0.001 Bdiv 0.3624 0.001
TP 0.3101 0.002 TP 0.2341 0.006
HN 0.289 0.004 HN 0.3198 0.006
TN 0.2581 0.006 TN 0.2587 0.006
SWC 0.2065 0.009 SWC 0.2099 0.008
SOC 0.1658 0.034 SOC 0.1041 0.081
AP 0.1484 0.055 AP 0.0101 0.418
pH 0.1298 0.096 pH 0.2179 0.014
EC 0.0370 0.284 EC 0.0574 0.215
Bdiv+TP 0.4626 0.001 Bdiv+HN 0.4235 0.001
Bdiv+TP+HN 0.5024 0.001 Bdiv+tHN+TN 0.4011 0.001
Bdiv+TP+HN+TN 0.4595 0.001 Bdiv+HN+TP 0.4396 0.001
Bdiv+TP+HN+SWC 0.4944 0.001 Bdiv+HN+TP+pH 0.4744 0.001
Bdiv+TP+HN+SOC 0.4815 0.001 Bdiv+HN+TP+pH+SWC 0.4844 0.001
Bdiv+TP+HN+AP 0.5037 0.001 Bdiv+HN+TP+pH+SWC+EC 0.4732 0.001
Bdiv+TP+HN+AP+pH 0.4694 0.001 Bdiv+tHN+TP+pH+SWC+AP 0.4511 0.001
Bdiv+TP+HN+AP+EC 0.4772 0.001

Note: Bdiv, bacterial diversity; TP, total phosphorus; HN, hydrolytic nitrogen; TN, total nitrogen; SWC, soil water content; SOC, soil
organic carbon; AP, available phosphorus; EC, electrical conductivity. Correlation () and significance (P) were determined by the
Mantel test based on 9999 permutations between community structure (Bray-Curtis distance) and environmental variables (Standardized
Euclidean distance).
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10.0% of the total variance, respectively, and together contributed 23.3% of the total variance.

We also used the same process to identify the major soil variables shaping functional genes.
The top six variables including bacterial diversity, HN, TP, SWC, TN and pH that depended on
VIF and BIO-ENV were selected. These variables showed significant relationships (P<0.05) with
functional genes, as supported by RDA (Fig. 4b) and the Mantel test (Table 5). Additionally, the
samples from the same plant species were clustered together. A total of 78.5% of the bacterial
community variation could be explained by these selected variables. Vegetation and soil variables
contributed to 23.1% and 6.1% of the total variance, respectively, together contributing 49.3% of
the total variance (Fig. 4d).
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Fig. 4 Relationships of soil variable with bacterial community structure (a) and functional gene (b). Variation
partitioning analyses of soil variable and vegetational type on functional gene (c) and bacterial composition (d).
SOC, soil organic carbon; TN, total nitrogen; HN, hydrolytic nitrogen; TP, total phosphorus; AP, available
phosphorus; SWC, soil water content; EC, electrical conductivity. AH, Artemisia halodendron; CM, Caragana
microphylla; HF, Hedysarum fruticosum; PS, Pinus sylvestris. The environmental variables are divided into
groups of soil (SOC, TN, TP, AP, HN, SWC, EC, pH and bacterial diversity) and vegetation. The numbers present
percentage (%) of variation explained by the factors.

4 Discussion

4.1 Difference of soil bacterial community structure under different types of vegetation

As expected, all soil samples had the same dominant bacterial phyla of Proteobacteria,
Actinobacteria, Acidobacteria, Bacteroidetes and Firmicutes (Fig. 2). These dominant phyla are
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ubiquitous in desert soils worldwide (Fierer et al., 2013). Among these bacterial phyla,
Proteobacteria dominated all soil samples (Fig. 2) in our study, which agreed with previous
surveys of the Tengger Desert, Horqin Sandy Land and Mu Us Sandy Land (Zhang et al., 2012;
Jiang et al., 2013; She et al., 2018), but differed from Atacama Desert, Negev Desert and
Taklimakan Desert where Actinobacteria dominated (Fierer et al., 2009; Orlando et al., 2010;
Vered et al., 2011; Neilson et al., 2012; Wang et al., 2012; Yu et al., 2015). This could be due to
Proteobacteria and Actinobacteria belong to the different ecological categories. Proteobacteria as
the copiotrophic taxa preferentially consumed labile soil organic C pools with high nutritional
requirements, and its relative abundance was positively correlated with soil carbon cycling and
photosynthetic intensity of plants (Zeng et al., 2017; Che et al., 2019). In contrast, Actinobacteria
as the oligotrophic taxa had a higher adaptive capacity under limited nutrients conditions (Fierer et
al., 2007). In our study, soil samples were taken from vegetation restoration areas that had better
soil conditions than the other barren deserts. Therefore, the relative abundance of Proteobacteria
in this study was higher than that of Actinobacteria. Additionally, the weakly effect of different
types of vegetation on soil bacterial populations could be due to the strong adaptability of
dominant bacterial groups to environmental heterogeneity (Evans and Wallenstein, 2014). Many
studies have shown that spatial patterns of soil microorganisms were shaped by environmental
factors, such as soil pH (Griffiths et al., 2011; Feng et al., 2019), soil organic carbon (Chen et al.,
2015; Zhao et al., 2016), climatic and geographic distance in a regional scale (Wang et al., 2015;
Wang et al., 2017). However, without considering climatic and geographic distance in this study,
we speculated that the environmental heterogeneity was primarily caused by different plant
species. The variations of pH (6.66 to 7.2), SOC (1.32 to 2.37 g/kg) and other soil chemistry were
relatively smaller than that of ecological niche of bacteria, and therefore, they had a similar
bacterial community.

Strikingly, the diversity indices (Chaol and Shannon) (Table 2) and the relative abundance of
dominant phyla and genera (Figs. 1 and 2; Table 2) significantly varied with different types of
vegetation, indicating that the application of different types of vegetation in degraded lands
altered the bacterial diversity and bacterial community structure. One possible interpretation is
that desert vegetation, compared with the other ecosystems, is discontinuous and patchy, and
hence leading to a heterogeneous distribution of sediments, water and nutrients (Yadav et al.,
2010; Chen et al., 2017; Unc et al., 2019). Under the inhomogeneous nutrition and water supply
of different types of vegetation, soil microorganisms can adjust community structure to deal with
the shortage of living resources. For example, our results showed that the positive correlation
between soil fertility factors (SOC, TN and HN) and soil bacterial diversity was found, and those
indices were detected at significantly lower levels in A. halodendron than in P. sylvestris (Table 2).
In addition, the relative abundance of Proteobacteria increased from 21% in P. sylvestris to 45%
in A. halodendron (Fig. 2), while most other dominant phyla decreased in A. halodendron, e.g.,
Actinobacteria, Acidobacteria, Chlamydia, Nitrospirae and Verrucomicrobia. These results
indicated that, in 4. halodendron, soil bacterial community imposed limits on species diversity
and evenness and consequently enhanced their capacity to adapt to soil nutrient deficiency. Thus,
shifts in the vegetational type could affect soil bacteria community assembly by changing the
bacterial living environment.

Also, desert vegetation provides an essential energy source for soil microbial communities
through the production of litter and secretion of root exudates (Jangid et al., 2011; Zhang et al.,
2013b), which may constitute another reason for the soil bacterial community structure variation
after applied different types of vegetation. For instance, the number of dominant genera (relative
abundance>1%) including Enterobacter, Klebsiella, Kluyvera and Morganella in the
Proteobacteria division were enriched in A. halodendron. These genera comprise y-proteobacteria
and facultatively anaerobic bacteria that have a strong ability to adapt to the environment and may
promote recalcitrant organic carbon decomposition and nitrogen fixation (Kim et al., 1998; Hayat
et al.,, 2010). Compared with A. halodendron, we observed some genera were consistently
enriched in the other vegetational types, e.g., Chitinophaga, Terrimonas, Gaiella, Conexibacter,
Rhodococcus and Aciditerrimonas that have been shown to have the ability to promote
recalcitrant organic carbon decomposition (Tiwari et al., 2013; Larsbrink et al., 2017). We also
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found that C. microphylla and H. fruticosum showed higher relative abundances of
Bradyrhizobium, Rhizobium and Mesorhizobium, as they are legumes that form symbioses with
nitrogen-fixing microorganism, thus resulting in the increased nitrogen input into the environment
(Erisman et al., 2008; Gruber et al., 2008). Together these results suggested that aboveground
vegetation could significantly affect the structure of soil microbial communities and select the soil
microbes with which they associate.

To further evaluate the relative importance and effects of vegetational types and environmental
parameters on the assembly of soil bacterial communities, we quantified their contributions
through the redundancy analysis and variation partition analysis. We found that the interaction of
vegetation and soil variable explained 23.3% of the variation in the assembly of bacterial
communities, followed by vegetation (19.7%) and soil variable (10.0%) (Fig. 4c), indicating that
both vegetational type and soil property had the ability to drive soil bacterial community structure
and application of different types of vegetation led to a greater variation of bacterial assembly
than soil variable. Furthermore, soil bacterial community structure analysis also indicated that the
variations of bacterial community assembly were mainly attributed to the different types of
vegetation (Fig. 4a). This further confirmed that vegetational types were significant in shaping the
bacterial communities in the Hulun Buir Sandy Land and that plant species needed to be
considered for ecological restoration. However, we also found that nearly half of the variation of
bacterial community assembly was not explained, indicating that bacterial community was shaped
not only by the vegetation and soil variable parameters but also by the other factors such as
climate, pH and distance (Zhang et al., 2013; Cao et al., 2016).

4.2 Difference of soil bacterial functional gene under different types of vegetation

Microbes are crucial for ecosystem function as important engines in driving biogeochemical
processes such as carbon and nitrogen cycling (Madsen, 2011; Schimel et al., 2012; Nelson et al.,
2016). Although vegetation is various in assembly of soil bacterial community, it is difficult to
evaluate its contribution in regulating material and energy flow of degeneration ecosystem via the
composition of the dominant bacterial species. To address it, we adopted KEGG to evaluate the
differences in functional potential of the soil bacterial community under different types of
vegetation. Our research showed that the samples from four types of vegetation displayed similar
KEGG profiles (Fig. 3), suggesting that vegetation did not influence the dominant genes of
carbon and nitrogen cycling. However, the distinctly different plant species altered the relative
abundance of dominant genes. These results showed that variations of functional genes were
consistent with the changes in soil bacterial community, indicating that different types of
vegetation constituted an important factor in driving the relative abundance of soil bacteria to
regulate soil nutrient cycling. On the other hand, our results showed only 6.1% of the variations
of the functional genes were attributed to the soil variable, while interaction of vegetation and soil
variable explained 49.3% and vegetational type explained 23.1% (Fig. 4d), respectively. This
further confirmed that vegetational type was significant in driving microbe-mediated carbon and
nitrogen cycling in the Hulun Buir Sandy Land.

With respect to the carbon cycle, carbon fixation genes were dominated by pck4, ppc, korA,
korB, IDH1, coxS and coxM (Fig. 3). This suggested that the main carbon-fixation processes were
C4 Dicarboxylic Acid Cycle, Reductive Citrate Cycle and Reductive Acetyl-CoA pathway in the
Hulun Buir Sandy Land. Interestingly, abundances of most carbon fixation genes were
significantly higher in P. sylvestris, only the genes pck4 and ppc related to C4 Dicarboxylic Acid
Cycle were higher in 4. halodendron (Fig. 3), suggesting that the bacteria in P. sylvestris can
facilitate the accumulation of carbon. Meanwhile, different dominant labile carbon degradation
genes were detected in different types of vegetation, while most recalcitrant carbon degradation
genes were higher in A. halodendron in terms of their relative abundances, indicating that
microbe-mediated carbon decomposition was higher in A. halodendron. These results indicated
that application of different types of vegetation led to a greater variation in carbon cycling genes
and consequently affected soil carbon reservoir. This might be a reason for the higher and lower
respective soil organic carbon contents in P. sylvestris and A. halodendron (Table 2).

For nitrogen cycling genes, higher abundant genes of nitrate reduction were detected than the
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other genes involved in the nitrogen cycle (Fig. 3). Nitrate reduction is a major source of nitrite
for aerobic nitrite oxidation and anammox (Kuypers et al., 2018), which converts nitrite to nitric
oxide and dinitrogen gas. Although we did not detect the key gene hzs that catalysed the
hydrazine production from ammonia and nitric oxide (Tu et al., 2017; Kuypers et al., 2018), we
found abundant gene nirB encoding nitrite reductase (NADH) large subunit that supplied
ammonia for anammox (Fig. 3). These results might implicate that denitrification and anammox
processes were the major process of nitrogen emission of the Hulun Buir Sandy Land.
Furthermore, our results showed that nar, nap and nas converting nitrate into nitrite were more
abundant in A. halodendron, indicating that more nitrogen emission occurred in A. halodendron
than in the other three plant species. In addition, nirB involved in dissimilatory nitrate reduction
to ammonium was abundant in A. halodendron, whereas nrfd involved in assimilatory nitrate
reduction to ammonium was abundant in P. sylvestris (Fig. 3). This indicated that more
ammonium of dissimilatory nitrate reduction could combine with the nitrite, thus resulting in the
loss of nitrogen to the atmosphere in 4. halodendron, and that more ammonium of assimilatory
nitrate reduction as a nitrogen source was absorbed in P. sylvestris. This may underlie why the TN
and HN contents were lower in A. halodendron (Table 2).

It should be noted that, although our results confirm that different types of vegetation alters soil
bacterial community structure and potential functional gene, the effect of vegetation on the soil
fungi structure and distribution remains unknown. Fungi, as important components of soil
microorganisms, have a competitive advantage over many bacteria in decomposing tissues with
low nutrient concentrations because of their ability to import nitrogen and phosphorus (Marcel et
al., 2008; Chen et al., 2015; Zhao et al., 2019). Therefore, the study of plant-related fungi will
help to further understand the community structure and functional gene of bacterial during the
process of ecosystem rehabilitation in drylands.

5 Conclusions

This study revealed the responses of soil bacteria and their potential functions to different
plant-dominated revegetation of the Hulun Buir Sandy Land, which may be of significance in
evaluating the optimal plant species for ecological restoration in the desert ecosystems. The
dominant soil bacterial phyla under different types of vegetation were similar and mainly included
Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes and Firmicutes. The relative
abundance of soil bacteria and soil functional genes significantly differed across different types of
vegetation. Among the four types of vegetation, soil bacteria under P. sylvestris exhibited the
highest diversity, good potential for carbon accumulation and mitigation of nitrogen emissions.
Therefore, P. sylvestris appears to be a suitable species in fixing mobile dunes and improving soil
fertility more than the other three plant species in the Hulun Buir Sandy Land. Further studies
investigating fungi in the Hulun Buir Sandy Land are necessary to reveal the detailed variation in
soil microbes across revegetated plants, thus gaining a more complete understanding of the
relationships among plant, soil and microbial communities in the desert ecosystems.
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