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Abstract: Remote sensing tools are becoming increasingly important for providing spatial information on 
water use by different ecosystems. Despite significant advances in remote sensing based evapotranspiration 
(ET) models in recent years, important information gaps still exist on the accuracy of  the models particularly 
in arid and semi-arid environments. In this study, we evaluated the Penman-Monteith based MOD16 and 
the modified Priestley-Taylor (PT-JPL) models at the daily time step against three measured ET datasets. 
We used data from two summer and one winter rainfall sites in South Africa. One site was dominated by 
native broad leaf  and the other by fine leafed deciduous savanna tree species and C4 grasses. The third site 
was in the winter rainfall Cape region and had shrubby fynbos vegetation. Actual ET was measured using 
open-path eddy covariance systems at the summer rainfall sites while a surface energy balance system 
utilizing the large aperture boundary layer scintillometer was used in the Cape. Model performance varied 
between sites and between years with the worst estimates (R2<0.50 and RMSE>0.80 mm/d) observed 
during years with prolonged mid-summer dry spells in the summer rainfall areas. Sensitivity tests on MOD16 
showed that the leaf  area index, surface conductance and radiation budget parameters had the largest effect 
on simulated ET. MOD16 ET predictions were improved by: (1) reformulating the emissivity expressions 
in the net radiation equation; (2) incorporating representative surface conductance values; and (3) including 
a soil moisture stress function in the transpiration sub-model. Implementing these changes increased the 
accuracy of  MOD16 daily ET predictions at all sites. However, similar adjustments to the PT-JPL model 
yielded minimal improvements. We conclude that the MOD16 ET model has the potential to accurately 
predict water use in arid environments provided soil water stress and accurate biome-specific parameters 
are incorporated. 
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1  Introduction 

Effective management of water resources in arid and semi-arid environments requires accurate 
tools to quantify key components of the hydrological cycle such as the evapotranspiration (ET). 
More than 70% of precipitation received in arid environments is returned to the atmosphere via ET 
annually (Zhang et al., 2016; Dzikiti et al., 2018). Consequently, ET is a major component in the 
processes and models of climate change, water balance, groundwater recharge, net primary 
productivity, floods, droughts and irrigation (Fisher et al., 2008; Műnch et al., 2013). It is also the 
most difficult and complicated component to measure and predict because of the heterogeneity in 
the landscape and the large number of controlling factors which include climate, plant biophysics, 
soil properties and topography (Dzikiti et al., 2016; El Masri et al., 2019). Typically modelled ET 
data show uncertainties in the range of 15%–30% (Velpuri et al., 2013; Garcia et al., 2014). 
However, the errors can be as high as 50% or more in arid and semi-arid environments (Garcia et 
al., 2013). 

Physically based models of ET that use the combination Penman-Monteith (PM) approach have 
been evaluated in recent years using a range of satellite products (Nishida et al., 2003; Cleugh et 
al., 2007; Mu et al., 2007; Mu et al., 2011; Ershadi et al., 2014; Talsma et al., 2018; El Masri et al., 
2019). The models range in complexity from simple single source models (Cleugh et al., 2007; 
Ershadi et al., 2014) to dual source models (Mu et al., 2007; Talsma et al., 2018; El Masri et al., 
2019) and to more complex multi-source models (Mu et al., 2011, 2013). The ET model by Mu et 
al. (2007) that used remote sensing inputs from the moderate resolution imaging spectrometer 
(MOD16), was initially a dual source model. In this model ET was calculated as the algebraic sum 
of evaporation from the bare soil and transpiration from plant canopies. In recent years, MOD16 
has evolved into a multi-source PM based model, a culmination of numerous improvements that 
have occurred over the years. According to Mu et al. (2011, 2013), MOD16 ET is calculated as the 
sum of evaporation from wet canopy surfaces, plant transpiration, and evaporation from the wet 
and dry soil surfaces. In addition, all the fluxes are computed for both day and night time periods. 
Globally ET estimates over vegetated land surfaces are now operationally produced at 1-km2 
resolution using data from the moderate resolution imaging spectrometer and the MOD16 algorithm 
(Ruhoff et al., 2013). Examples of the application of this tool include groundwater recharge 
estimates in the dry Sandveld region of South Africa (Műnch et al., 2013) and for quantifying water 
use by agricultural crops in Brazil (Ruhoff et al., 2013). 

Another remote sensing ET model that has been the subject of extensive research is the radiation 
based Priestley-Taylor model (Priestley and Taylor, 1972) modified by the Jet Propulsion 
Laboratory at NASA (PT-JPL; Fisher et al., 2008; Yao et al., 2013; Yao et al., 2015). A key 
advantage of the PT-JPL over the MOD16 model is that it requires less input variables. Large 
amounts of input data lead to an accumulation of errors which magnify the uncertainties in ET 
predictions. Some studies have in fact, reported higher accuracy with the PT-JPL (Garcia et al., 
2013; Ershadi et al., 2014). Furthermore, the PT-JPL avoids the calculation of the aerodynamic and 
surface resistances thus substantially simplifying the model. A common weakness of most remote 
sensing ET models however, is that results at dry sites tend to be less accurate than at more humid 
sites (Zhang et al., 2008, 2010; Marshall et al., 2013; Mu et al., 2013; Polhamus et al., 2013). A 
possible reason for the loss of accuracy is the difficulty in parameterizing the soil-plant-atmosphere 
interactions and other biophysical constraints under arid conditions where latent heat fluxes are 
relatively low especially under sparse vegetation cover. Consequently, more data and improved 
parameterization of the ET models remain a priority in arid and semi-arid environments where these 
tools are most needed for water resources management. 

The aims of this study were firstly to compare the performance of two widely used remote 
sensing ET models (i.e., MOD16 and PT-JPL) using actual ET measurements from semi-arid sites 
with contrasting vegetation characteristics in South Africa. Secondly, improvements to the models 
were proposed and the models were validated using in situ ET measurements. Besides the work by 
El Masri et al. (2019) in China and Mu et al. (2013) in the Nile valley, few studies have focused on 
the physics of the MOD16 model using daily data from seasonally arid ecosystems. We used soil, 
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plant and atmospheric data from deciduous broad and fine leafed native savannas with C4 grasses 
found in most parts of summer (October–March) rainfall region in Southern Africa. These savannas 
are prone to long mid-summer dry spells often lasting several weeks to months (Makarau and Jury, 
1997). This unavoidably induces severe water stress during the active transpiration period and we 
sought to establish how the ET models can be improved under these conditions. The other data was 
collected in the fynbos biome, a sclerophyllous shrub dominated by species of the Proteaceae, 
Ericaceae, and Restionaceae (Low and Rebelo, 1996) found in the winter (May–August) rainfall 
Cape Floral Region of South Africa. Model simulations were compared with field data collected 
using eddy covariance systems and an energy balance approach that combined sensible heat flux 
data collected using a large aperture boundary layer scintillometer with net radiation and soil heat 
flux measurements.  

2  Materials and methods 

2.1  Study area 

South Africa hosts several climatic zones within its borders (Schulze et al., 2008). These are 
determined by the country's location in the Southern Hemisphere's subtropics (22°–35°S) and 
between the two oceans of the Atlantic to the west and the Indian Ocean to the east. The 
northeastern parts of the country have a predominantly humid subtropical climate (Fig. 1). These 
regions receive summer rainfall between October and March the next year. The southwestern corner 
(the Cape region) has a Mediterranean type climate with most rain falling in winter between May 
and August. Vegetation in these regions reflects the prevailing climatic and edaphic conditions. 
Data used in this study were collected in three seasonally arid biomes with native vegetation namely 
Skukuza, Malopeni and Elandsberg. A summary of the prevailing conditions at each site is given 
in Table 1.  

Table 1  Characteristics of the study sites 

Site Location Climatic region Temperature
Rainfall 

Vegetation characteristics 
(mm/a) 

Skukuza 
25°12′S, 
31°30′E 

Summer rainfall
(Oct–Mar) 

14.5°C–
29.5°C 

547 

Mixture of tall (>9.0 m) broad-leafed 
Combretum savanna and fine-leafed 
Acacia savanna. Approx. 20%–40% 
canopy cover. 

Malopeni 
23°50′S, 
31°13′E 

Summer rainfall
(Oct–Mar) 

12.0°C–
30.5°C 

472 

Hot and dry savanna vegetation 
dominated by short (<5.0 m) broad-leafed 
Colophospermum mopane vegetation. 
Approx. 15%–40% canopy cover. 

Elandsberg 
33°28′S, 
19°04′E 

Winter rainfall 
(May–Aug) 

9.0°C–
35.0°C 

600 

Shrubby fynbos dominated by 0.7–0.9 m 
small leaved proteoid shrubs and reed-like 
restiods. Approx. 20%–50% canopy 
cover. 

2.1.1  Skukuza 
The Skukuza site was located in a semi-arid region with subtropical climatic conditions in South 
Africa (Fig. 1). This site was established in 2000 and full details can be found in Scholes et al. 
(2001). The site is situated within the greater Kruger National Park, a 2×106 hm2 game reserve 
located in the northeastern part of the country. Vegetation consisted of the Granite Lowveld 
vegetation type according to the classification by Mucina and Rutherford (2006). This comprised 
a mixed lowland bushveld with elements of the "Legogote Sour Bushveld" typical of the savanna 
biome. Mean tree height was around 9.0 m with a tree density of about 128 stems/hm2 (Scholes et 
al., 2001). Dominant tree species included the Combretum apiculatum, Terminalia sericea, 
Sclerocarya birrea, and Senegalia nigrescens, among others. A perennial grass layer formed most 
of the basal cover dominated by the Panicum maximum and Digitaria erianthia species. The site 
had both broad and fine-leaved savanna with a long-term mean annual rainfall of about 547 mm. 
So the location of the flux tower allowed ET from the different savanna types to be quantified. 
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Fig. 1  Location of the study sites: Skukuza, Malopeni and Elandsberg and the associated vegetation types derived 
from the national land cover map of 2000 

2.1.2  Malopeni 
The Malopeni flux tower was located at the northern part of Kruger National Park (Fig. 1), 
dominated by the broad-leaf Cholophospermum mopane, a typical species of hot and dry savannas 
found in low-lying regions of Southern Africa. The dominant grass species was Panicum maximum 
while mopane trees made up more than half of the tree composition at the site. The average tree 
height was approximately 5.3 m and tree density was about 828 stems/hm2. The average 
temperature ranged from 12.4°C to 30.5°C with the maximum temperature reaching up to 45.0°C 
in the hot summer months (October–March). Minimum temperatures seldom dropped to below 
5.0°C, even during winter. The soils were shallow sandy loam luvisol formed from a base of 
Archaean granites and gneisses (Cleverly and Bristow, 1979), with a depth of less than 40 cm. 
2.1.3  Elandsberg 
The Elandsberg site was situated in a 2000 hm2 nature reserve on the west-facing foot slopes of the 
Elandskloof mountain range in the Western Cape Province of South Africa (Fig. 1). A detailed 
description of the site is given by Dzikiti et al. (2014). The dominant vegetation type was the 
Swartland alluvial fynbos (Mucina and Rutherford, 2006) on deeper sandy soils interspersed with 
patches of Swartland shale renosterveld on more stony, shale-derived soils. The Swartland alluvial 
fynbos was dominated by 0.7–0.9 m tall, small-leaved proteoid shrubs, with a lower layer of fine 
leafed shrubs and reed-like restioids. Where the shale was exposed, renosterveld vegetation 
replaced the fynbos. In the shallow stream valleys sandy, alluvial soils have accumulated which, 
together with the additional moisture supported a community which had a greater cover of sedges 
and grasses than the adjacent dry land fynbos. The climate at Elandsberg was Mediterranean type 
with rain falling during winter (May–August). 

2.2  Measurements of evapotranspiration (ET), weather and ancillary data 

2.2.1  Skukuza and Malopeni 
Actual ET was measured at Skukuza and Malopeni using open path eddy covariance systems 
mounted on towers. We used two years' data for Skukuza collected from January 2010 to December 
2011 for this study. This time span was sufficiently long given that we used daily ET data for our 
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assessments. For Malopeni, we used data from February 2009 to March 2010 which were the only 
available data. The eddy covariance equipment at Skukuza comprised a 3-D sonic anemometer 
(CSAT-3, Campbell Scientific, Inc., Logan, UT, USA) and an infrared gas analyser (LI-7500; Li-
Cor, Lincoln, Nebraska, USA) all installed at a height of about 16 m above the ground with a flux 
footprint of about 700 m around the tower considering the fact that the fetch of the eddy covariance 
system increases by about 100 m for every 1.0 m above the mean canopy height. At Malopeni, 
another 3-D sonic anemometer (Gill WindMaster Pro, Gill Instruments, Lymington, UK) was 
installed together with a LI-7500 infrared gas analyser and the instruments were mounted at 7 m 
height with a flux footprint of around 300 m radius. The 3-D wind speed (u, v, w) and water vapour 
concentration were sampled at 20 Hz frequency and the outputs processed at 30 min intervals. Post-
processing of the high frequency data was done including coordinate rotations, corrections for air 
density fluctuations, de-spiking, etc. using the EddyPro software (EddyPro v 6.2.0; Li-Cor, 
Lincoln, Nebraska, USA), to ensure good quality ET measurements (Burba and Verma, 2005). At 
both sites, the eddy-covariance data were logged using data-loggers (CR3000; Campbell Scientific, 
Inc., Logan, UT, USA). 

Available energy data (net radiation-soil heat flux) were collected at both sites using net 
radiometers (NR-Lite, Kipp & Zonen, Delft, The Netherlands) mounted on the flux towers and soil 
heat flux plates (HFT3; Campbell Scientific, Inc., Logan UT, USA) installed at depths of 50 and 
700 mm at Skukuza and 80 mm at Malopeni near the flux towers. Volumetric soil water content 
was measured using water content reflectometers (CS615; Campbell Scientific, Inc., Logan UT, 
USA) at 50, 130, 290 and 610 mm depths at Skukuza and using EC-5 (Decagon Devices, Pullman, 
WA, USA) sensors at 50, 150, 250 and 350 mm depths at Malopeni. Climate data were measured 
using automatic weather stations installed on the flux towers. Temperature and relative humidity 
were monitored using HMP50 sensors (Vaisala, Helsinki, Finland), rainfall with tipping bucket rain 
gauges (TE525-M; Campbell Scientific, Inc., Logan UT, USA), wind speed and direction with wind 
sentries (03001, R.M. Young; Campbell Scientific, Inc., Logan UT, USA), and photosynthetically 
active radiation (PAR) with quantum sensors (Li-190; Li-Cor, Lincoln, Nebraska, USA). All 
sensors were installed at a height of 16 m, except for the rain gauge and wind sensor which were 
placed at 22 m at Skukuza and at 5 m at Malopeni. 
2.2.2  Elandsberg 
Climate, soil water content and actual ET data were collected from November 2012 to October 
2013. Weather data were collected using an automatic weather station which measured the 
temperature and relative humidity using a temperature and humidity probe (CS500; Vaisala, 
Finland). Wind speed and direction were measured using a wind sentry (03001, R.M. Young; 
Campbell Scientific, Inc., Logan, USA) installed at 2.0 m height while the solar irradiance was 
measured using a pyranometer (SP 212; Apogee Instruments, Inc., Logan UT, USA). Rainfall was 
monitored using a tipping bucket rain gauge (TE525-L; Campbell Scientific, Inc., Logan UT, USA). 
Net radiation at the surface was measured using a net radiometer (CNR 1; Kipp & Zonen, Delft, 
The Netherlands) mounted at a height of 2.5 m above the ground while the soil heat flux (G) was 
measured using a cluster of four soil heat flux plates (REBS, Inc., Seattle, WA, USA) installed at 
80 mm depth at different locations within the study area. To correct for the heat stored above the 
soil heat flux plates, we measured the soil temperatures at 20 and 60 mm depth, respectively, using 
the soil averaging thermocouples (TCAV-L; Campbell Scientific, Inc., Logan UT, USA) while the 
soil water content was measured using water content reflectometers (CS616; Campbell Scientific, 
Inc., Logan UT, USA). All the sensors were connected to a data logger (CR23X; Campbell 
Scientific, Inc., Logan UT, USA) programmed with a scan interval of 10 s and all the outputs were 
processed every 30 min. 

Latent heat flux, which is the energy equivalent of actual ET (λE, in W/m2) was determined using 
the shortened surface energy balance equation (Monteith and Unsworth, 1990) in which: 

  nE R G Hλ = − − ,                               (1) 

where E is the evaporation rate (kg/(m2
•s)); Rn is the net radiation (W/m2); G is the soil heat flux 
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(W/m2); H is the sensible heat flux (W/m2); and λ is the latent heat of vaporization (J/kg). The 
sensible heat flux component was measured using the large aperture boundary layer scintillometer 
(Model: BLS 900, Scintec, AG, Germany). The scintillometer measures changes in the refractive 
index of the air between a transmitter of monochromatic infrared radiation (880 nm; 33°28′13′′S, 
19°03′29′′E; 152 m a.s.l.) and a receiver (33°28′27′′S, 19°03′46′′E; 157 m a.s.l.). The distance 
between the scintillometer transmitter and receiver was about 1000 m. Effective height of the 
scintillometer beam above the ground was about 4.8 m and this was calculated using detailed 
transect elevation and vegetation height data according to the approach by Savage et al. (2004). 
Measurements were taken within a 1 km2 area that matched a MOD16 pixel. The fewer points at 
Elandsberg were a result of loss of data due to power failure to the scintillometer. 

2.3  Remote sensing data 

MODIS Terra 1 km data products were used as inputs for the simulations. These included the 8-d 
fraction of the photosynthetically active radiation (FAPAR) and leaf area index (LAI, ratio of leaf 
area to ground area; m2/m2), MCD15A2; 16-d surface albedo, MCD43C1; and 16-d normalised 
difference vegetation index (NDVI), MCD13A2. These data were downloaded from the Land 
Processes Distributed Active Archive Centre of the United States (http://lpdaac.usgs.gov). The data 
for each study site were extracted for each input, and interpolated linearly to obtain the daily values. 
The FAPAR was used a surrogate for the fractional vegetation cover according to Mu et al. (2011). 
So we assumed a constant value over the 8-d period. 

2.4  Model improvements 

A detailed description of the MOD16 model is given by Mu et al. (2011). Here the focus is on 
changes that improved the performance of MOD16 at the semi-arid sites. According to the PM 
equation, the latent heat flux (λE (W/m2)) is calculated as:  

sat( ) /

(

–

1 / )

ap a

s a

A C e r
E

r r

eρλ
γ

Δ +=
Δ + +

,                           (2) 

Where λ is the latent heat of vaporization (J/kg); ∆ is the slope of the saturation vapour pressure-
temperature curve (kPa/K); A is the available energy at the given surface (W/m2); ρ is the density 
of air (kg/m3); Cp is the specific heat capacity of air at constant pressure (J/(kg•K)); esat is the 
saturated vapour pressure; ea is the actual vapour pressure of the air (kPa); ra is the aerodynamic 
resistance (s/m); γ is the psychrometric constant (kPa/K); and rs is the surface resistance (s/m). Mu 
et al. (2011) defined A as: 

nA R= ,                                    (3) 

where Rn is the net radiation absorbed by the surface. This equation assumes that the soil heat flux 
is negligible. The Rn is calculated using readily available climate data namely the solar irradiance 
(S; W/m2) and air temperature (Ta; °C) as: 

4(1 ) ( ) ( 273.15)n a s aR S Tα ε ε σ= − + − + ,                     (4) 

where α is the surface albedo; and εa and εs are the emissivities of the atmosphere and surface, 
respectively; and σ is the Stefan-Boltzmann constant (W/(m2

•K4)). Comparison between the 
modelled net radiation with that measured by net radiometers at the flux towers showed large 
differences. Likely sources of error for this term resided with the albedo and emissivity calculations 
given that S and Ta used in this study were measured on site and the sensors were calibrated 
regularly. So, we adopted alternative expressions for the simulated emissivities (Table 2) which 
have been used elsewhere in seasonally dry climates (Carrasco and Ortega-Farias, 2007; Dzikiti et 
al., 2014). Accurate n simulations are also critical for the PT-JPL model. In the current MOD16 
model, the available energy at the plant canopies (Ac) and the soil surface (Asoil) are calculated as 
linear functions of the fractional vegetation cover (Mu et al., 2007, 2011). In this study, we adopted 
a Beer's law approach (Table 2) in which net radiation extinction decreased exponentially with LAI, 
consistent with numerous other studies (Fisher et al., 2008; Garcia et al., 2013; El Masri et al., 
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2019). 
Sensitivity tests were performed by varying the parameters in the MOD16 model over the range 

±30% of the values (Mu et al., 2011) for specific biomes to establish parameters that had the largest 
impact on ET. Parameters linked to the transpiration sub-model had the largest effect on ET. In the 
present version of MOD16 (Mu et al., 2011), the surface conductance to transpiration (Cs=1/rs) is 
constrained only by climatic stress factors namely the minimum air temperature (Tmin) and the 
vapour pressure deficit of the air (VPD)  

min( ) (VPD)s LC C f T f= × × ,                       (5) 

where CL is the mean stomatal conductance per unit leaf area. Full expressions for the stress factors 
f(Tmin) and f(VPD), which take values between 0 and 1, are shown in Table 2. Sensitivity tests 
showed that Tmin, based on the values proposed by Mu et al. (2011) did not have any effect on ET. 
For this reason, we replaced the current minimum temperature based stress factor with one that 
uses the average air temperature (Garcia et al., 2013) (Table 2) since both the minimum and 
maximum air temperatures affect stomatal conductance. The VPD stress function was eliminated 
given that air temperature is not independent from VPD. Moreover, applying the VPD stress 
function (Mu et al., 2007) decreased the accuracy of the model while alternative equations use site-
specific parameters (Green et al., 2003; Wever et al., 2002; Dzikiti et al., 2016). 

Table 2  Proposed revisions to the MOD16 ET model using data from South African biomes 

Original equation Revised equation 

1.0  Net radiation   

(a) 0.97sε =  s0.95 0.01 LAI;  =0.98;  LAI>3sε ε= + ×  Allen et al. (2002); 
Brutsaert (1975); 
Carrasco and 
Ortega-Farias 
(2007); 
Dzikiti et al. (2014) 

(b) 
4 2( 7.77 )1 0.26e x xT

aε
−−= −  

1

7
1.31

a
a

a

e

T
ε  = ×   

 

2.0  Available energy   

(a) c cA F A= ×  LAI
soil e RkA A G− ×= −  Garcia et al. (2013); 

Fisher et al. (2008);  
El Masri et al. 
(2019) 

(b) soil (1 )cA F A G= − × −  soilcA A A= −  

3.0  Transpiration sub-model   

(a) 

min min_open

min min_close
min min_close min min_open

min_open min_close

min min_close

1.0,   >

( ) ,   < <

0.1,   <

T T

T T
f T T T T

T T

T T


 −=  −


 

opt
10.2( 10 )

10.3( Topt 10 )

( ) 1.1814 1 e

             1 e

aT T

Ta

f T
−− −

−− − −

 = + 

 × + 

 

Garcia et al. (2013) 

(b) 

open

close
open close

close open

close

1.0,   VPD VPD

VPD VPD
(VPD) ,   VPD <VPD VPD

VPD VPD

0.1,   VPD VPD

f

≤
 −= ≤ −
 ≥

 

(VPD) 1f =  This study 

(c) (SWC) 1f =  min

max min

SWC SWC
(SWC)

SWC SWC
f

−=
−

 
Fisher et al. (2008); 
this study 

(d) 4
wet RHf =  10

wet RHf =  Marsh et al. (2013); 
this study 

Note: The original equations are sourced from Mu et al. (2011). εs, emissivity of the ground surface; εa, emissivity of atmosphere; LAI, 
leaf area index; ea, actual vapour pressure of air; Ta, mean daily air temperature; Ac, available energy at the canopy level; Fc, fractional 
vegetation cover (equal to FPAR in Mu et al. (2011)); Asoil, available energy at soil surface; kR, extinction coefficient for net radiation 
(equal to 0.6 (Impens and Lemeur, 1969)); G, soil heat flux; Tmin_open, minimum temperature for stomatal opening; Tmin, minimum 
temperature; Tmin_close, minimum temperature for stomatal closure; VPD, vapor pressure deficit ; VPDopen, minimum vapor pressure deficit 
required for stomata to open; VPDclose, maximum vapor pressure deficit for stomatal closure; SWC, soil water content; SWCmin, minimum 
soil water content; SWCmax, maximum soil water content at field capacity for specific sites; fwet, relative surface wetness; Topt, optimum 
temperature for plant growth (25°C); RH, measured relative humidity. 

Despite the fact that soil water deficit influences transpiration, MOD16 does not directly account 
for this variable. We therefore propose a simple soil water stress function, i.e., f(SWC) in Table 2, 
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principally to illustrate that the accuracy of MOD16 can significantly be improved by accounting 
for soil water deficit in seasonally arid ecosystems. A component-by-component inspection of the 
ET predictions revealed that simulated night time ET was significantly higher than the measured 
values. We traced this to very high values of the relative surface wetness (fwet) which is calculated 
as the fractional relative humidity raised to the fourth power (Table 2). According to Fisher et al. 
(2008), the relative surface wetness represents the fraction of time when the surface is wet. A slight 
modification to this expression (Table 2) improved the night time ET predictions. 

In the PT-JPL model, actual ET is calculated as the sum of canopy transpiration (λEc), soil 
evaporation (λEs) and wet canopy evaporation (λEw) wherein 

wet PT nc

wet SM wet PT ns

wet PT nc

(1 )

( )(1 ) ( )

g T M

s

w

E f f f f R

E f f f R G

E f R

λ α
γ

λ α
γ

λ α
γ

 Δ= − × × × × × × Δ +
 Δ= + − × × × − Δ +
 Δ= × × ×

Δ +

,               (6) 

where fwet is the relative surface wetness; fg is the green canopy fraction; fT is an air temperature 
constraint; fM is the empirical factor used as a proxy for plant; αPT is the Priestley-Taylor coefficient 
considered equal to 1.26 assuming large uniform fetch with no advection of energy at each site 
(Priestley and Taylor, 1972); Rnc is the net radiation absorbed by the canopy (W/m2); fSM is the 
empirical factor used as a proxy for soil water stress; Rns is the net radiation absorbed by the soil 
(W/m2); and G is the soil heat flux (W/m2). Full equations for these variables are defined in Fisher 
et al. (2008), Garcia et al. (2013) and Ershadi et al. (2014). In this study, simulations were ran first 
with the original model as published (Fisher et al., 2008) and then with the soil water stress function 
(fSM) replaced with the one proposed in Table 2. 

3  Results 

3.1  Microclimates and evapotranspiration (ET) 

Main drivers of ET are plant and soil characteristics and the atmospheric evaporative demand. At 
Skukuza, for example, the green vegetation cover, and hence ET, showed clear seasonal trends in 
response to rainfall. We used the NDVI as a proxy for vegetation greenness and this peaked at about 
0.8 in 2010 and 0.7 in 2011 (Fig. 2a). The corresponding maximum LAI was about 2.4 in 2010 and 
1.9 in 2011. The dry winter season (May–August) had the lowest canopy cover as most of the 
species were deciduous (NDVI, 0.2) with the average LAI less than 0.2. Rainfall distribution during 
the summer was highly uneven at Skukuza (Fig. 2b) in both years and this accordingly affected 
canopy cover and ultimately ET. The long mid-summer dry spells between December and March 
to early April of the next year resulted in substantial declines in the soil water content (Fig. 2b), 
causing marked decreases in measured ET (Fig. 2c). The dry spells were so severe that the 
vegetation condition declined as evidenced by the reduced mid-summer NDVI (Fig. 2a) and the 
NDVI increased again when the rains resumed. Field capacity for soils at 50 mm depth at Skukuza, 
estimated from the volumetric soil water content of the probes 24 h after a heavy rain event, was 
around 0.12 cm3/cm3 while the lowest soil water content measured in the two years was around 
0.05 cm3/cm3.  

Vegetation cover at the broad leaf deciduous site at Malopeni was sparse compared to Skukuza 
(Fig. 3a) culminating in lower ET rates. In addition, the trees shed their leaves in winter which 
further lowered the ET rates. At Malopeni the NDVI was about 0.3 in winter peaking at around 0.7 
in mid-summer. The corresponding LAI varied from 0.3 to a maximum of about 1.6 for the winter 
and summer seasons, respectively. Rainfall from March 2009 to February 2010 was 368 mm at 
Malopeni (Fig. 3b). The mid-summer dry spells were not very clear at Malopeni because the data 
were not available for the period December 2009 to February 2010 due to the equipment failure. 
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The field capacity of the soils at Malopeni (0.18 cm3/cm3) was higher than that at Skukuza while 
the lowest measured soil water content during the dry season was around 0.02 cm3/cm3. The daily 
maximum ET was 3.60 mm at Malopeni in 2010 (Fig. 3c), which was lower than the 5.00 mm 
recorded at Skukuza in the same year. 

Rain falls during the winter months at Elandsberg (May–September) because the study site has 
a Mediterranean climate. At the other two study sites (i.e., Skukuza and Malopeni), rain falls during 
the summer months (Oct–March). The lowest NDVI was about 0.35 in summer and peaked at 0.60 
in early spring (September 2013) (Fig. 4a). The MODIS derived LAI ranged from 0.5 in autumn 
(April 2013) to a maximum of 1.1 recorded in spring. This agreed with the data measured using the 
leaf area meter (LAI-2000, Li-COR, Inc., Nebraska, USA) at the site (Dzikiti et al., 2014). Annual 
rainfall at Elandsberg was 700 mm, higher than those at the other two sites (Fig. 4b). Because of 
the predominantly sandy soils at this site, field capacity was less than 0.10 cm3/cm3 while the lowest 
measured soil water content was around 0.03 cm3/cm3. Maximum daily ET (around 4.5 mm; Fig. 
4c) was between those measured at Skukuza and Malopeni. 

 

Fig. 2  Variations in NDVI (a), soil water content and rainfall (b), and measured daily evapotranspiration (ET) 
(c) at the deciduous needle leaf forest site at Skukuza from 1 January 2010 to 31 December 2011 

Annual reference evapotranspiration (ET0) exceeded rainfall at all sites (Table 3). ET0 was 
calculated using the modified PM equation as the ET from a short grass surface that is healthy, 
actively growing, uniformly covering the ground and not short of water according to Allen et al. 
(1998). Skukuza experienced drought over the two years of the study, receiving an average rainfall 
of 323 mm compared to the long term average of around 547 mm. The wet and dry episodes during 
periods of active plant transpiration presented an ideal opportunity to test the models. The ET0 
(1090.0 mm) was more than three times higher than the rainfall at Skukuza while the measured 
average annual ET for 2010–2011 was approximately 610.0 mm. Elandsberg annual ET0 was 
1012.0 mm and the measured ET was about 586.0 mm. The ET0 at Skukuza was higher than at 
Elandsberg as a result of the relatively warm and dry winters at Skukuza compared to Elandsberg 
which received rainfall in winter. It was not possible to derive the total ET for Malopeni due to the  
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Fig. 3  Changes of NDVI (a), soil water content and rainfall (b) and measured ET (c) at the deciduous broad leaf 
site at Malopeni from 28 February 2009 to 14 March 2010  

 
Fig. 4  Changes of NDVI (a), soil water content and rainfall (b) and ET (c) at the shrubby fynbos site at Elandsberg 
from 26 November 2012 to 17 October 2013 
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Table 3  Monthly mean daily maximum temperature (Tmax), monthly mean daily minimum temperature (Tmin), 
reference evapotranspiration (ET0) and rainfall (P) at Skukuza, Malopeni and Elandsberg derived for the periods indicated 
in Table 1 

Month 

Skukuza Malopeni Elandsberg 

Tmax Tmin ET0 P Tmax Tmin ET0 P Tmax Tmin ET0 P 

(°C) (°C) (mm/d) (mm) (°C) (°C) (mm/d) (mm) (°C) (°C) (mm/d) (mm) 

Jan 28 18 104 43 38 17 - 57 40 11 156 1 

Feb 29 19 110 21 38 16 - 9 40 12 117 9 

Mar 29 19 97 35 38 13 98 33 42 13 105 15 

Apr 25 15 78 36 36 10 76 4 37 8 60 62 

May 25 11 67 11 37 9 59 4 32 1 30 46 

Jun 23 4 60 0 35 6 49 5 26 2 26 186 

Jul 20 6 59 0 33 5 51 4 27 2 35 91 

Aug 22 7 75 1 36 7 69 1 29 3 46 135 

Sept 27 13 99 12 38 13 80 2 28 4 66 87 

Oct 32 15 108 25 39 15 103 7 37 13 107 55 

Nov 31 16 112 55 41 14 109 121 36 8 114 9 

Dec 30 17 122 84 39 16 - 121 39 13 150 4 

Total na na 1091 323 na na na 368 na na 1012 700 

Note: -, data not available; na, not applicable. 

missing data (Fig. 3c). The low correlation between the measured daily ET and the atmospheric 
evaporative demand, depicted by the ET0, suggests that climatic factors were not the only major 
drivers of ET at the summer rainfall sites (Figs. 5a and b). Soil water deficit was indeed an important 
driver of ET at Skukuza given the clear responses to dry spells and the same can be said for actual 
Malopeni (Figs. 2b and c). At Elandsberg however, there was a linear relationship between the ET 
and ET0 (Fig. 5c) with the ET to ET0 ratio of approximately 0.58. This suggested that climatic 
conditions were the main drivers of ET at the winter rainfall site.  

 
Fig. 5  Effects of the atmospheric evaporative demand, depicted by the reference evapotranspiration (ET0) on the 
actual evapotranspiration at Skukuza (a), Malopeni(b) and Elandberg (c) 



506 JOURNAL OF ARID LAND 2019 Vol. 11 No. 4  

 

The vegetation at Elandsberg likely had access to water from the saturated zone given that the 
water levels were quite shallow (<4 m) and this may have reduced the impact of the soil water 
deficit on ET.  

3.2  Model simulations and sensitivity tests 

Comparisons between the measured and MOD16 modelled daily net radiation for the Skukuza and 
Malopeni sites combined (Fig. 6a) showed substantial differences of up to 26%. Negative daily net 
radiation values were predicted on some overcast days. Predictions of the daily total ET from all 
the three sites by the original MOD16 (Mu et al., 2011) and PT-JPL models are shown in Figures 
6b and c, respectively. Both models clearly underestimated the daily ET especially at high values. 
For MOD16, this is consistent with the results from recent studies, e.g., Ramoelo et al. (2014) and 
Tang et al. (2015). The MOD16 root mean square error (RMSE) values were 1.17, 0.53 and 1.46 
mm/d for Skukuza, Malopeni and Elandsberg, respectively (Table 4). For the PT-JPL model, the 
RMSE values were 1.19, 0.76, and 1.26 mm/d for the above three sites, respectively.  

 

Fig. 6  Relationships between the measured and MOD16 modelled daily net radiation (a), the measured and 
MOD16 modelled daily evapotranspiration (b), and the measured and PT-JPL modelled daily ET (c) using combined 
data for the Skukuza and Malopeni sites, respectively 

The proposed changes in the radiation balance sub-model are shown in Table 2, and there is an 
improved match between the measured and modelled net radiation in Figure 7 compared to the 
original relationship in Figure 4a. In addition, biome specific mean stomatal conductance per unit 
leaf area (CL) values were also derived based on the results of a sensitivity test which showed that 
this parameter had the largest influence on the modelled ET.  

Derivation of the CL values was achieved by inverting the PM equation and using the measured 
values of the latent heat flux, soil heat flux, net radiation, wind speed, VPD and LAI (Zhang et al., 
1997) collected over a period of one week during active transpiration periods and when the 
vegetation was not under water stress. This yielded CL values were 0.0051, 0.0042 and 0.0065 m/s 
for Skukuza, Malopeni and Elandsberg, respectively. An illustration of the day/night partitioning 
of ET by MOD16 over a 16-d period at Skukuza (1–16 January 2011) after implementing the 
suggested changes (Fig. 8). The measured night time ET was less than 10% of the measured daily 
total ET and this was reasonably well predicted by the model (Fig. 8). 
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Table 4  Performance of the original and revised versions of the MOD16 and Priestley-Taylor (PT-JPL) models 
using daily ET data from Skukuza, Malopeni and Elandsberg 

Model Site Slope Intercept R2 
RMSE 
(mm/d) 

MAE 
(mm/d) 

MOD16 

Skukuza 0.44 0.22 0.60 1.17 0.86 

Malopeni 0.50 0.17 0.47 0.53 0.31 

Elandsberg 0.30 0.25 0.52 1.46 1.23 

PT-JPL 

Skukuza 0.31 1.24 0.23 1.19 0.97 

Malopeni 0.43 1.17 0.23 0.78 0.64 

Elandsberg 0.43 0.42 0.39 1.26 0.97 

Revised 
MOD16 

Skukuza 0.86 0.15 0.76 0.55 0.48 

Malopeni 0.82 0.11 0.73 0.39 0.28 

Elandsberg 0.76 0.95 0.52 0.57 0.48 

Revised PT-JPL 

Skukuza 0.63 0.44 0.62 0.68 0.49 

Malopeni 1.36 –0.14 0.62 0.84 0.40 

Elandsberg 0.66 1.37 0.40 1.12 0.91 

Note: RMSE, root mean square error; MAE, mean absolute error of the simulations. Modelled data are the dependent variables while the 
measured data are the independent variables. 

 
Fig. 7  Simulation of the net radiation with the improved radiation budget (Eq. 4) 

 
Fig. 8  Day and night time partitioning of the ET during summer from 2 to 17 January 2011 at Skukuza simulated 
using the modified MOD16 model 
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Daily total ET over the study period at the three sites were also well predicted by the revised 
MOD16 (Fig. 9). In particular, mid-summer dry spells at Skukuza (Fig. 9a) and Malopeni (Fig. 9b) 
were also accurately captured and this did not happen when soil water deficit was not incorporated 
into the model. Implementing the revised PT-JPL yielded some improvements to the ET simulations 
(Fig. 10) but these were less significant than those realised with MOD16. As shown in Table 4, the 
RMSE values for the revised MOD16 ET were 0.55, 0.39 and 0.57 mm/d for Skukuza, Malopeni 
and Elandsberg, respectively, while the PT-JPL had RMSE values of 0.68, 0.84 and 1.12 mm/d, 
respectively. 

 

Fig. 9  Measured and modelled daily ET with the modified MOD16 model at Skukuza (a), Malopeni (b) and 
Elandsberg (c) 

 

Fig. 10  Measured and modelled daily ET with the modified PT-JPL model at Skukuza (a), Malopeni (b) and 
Elandsberg (c) 

4  Discussion 

The MOD16 algorithm by Mu et al. (2011) was developed for global ET estimates. It is expected 
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that the uncertainties may be high in the model predictions at specific locations. Validation at local 
sites is therefore imperative for informed decision making, e.g., by water resources managers, 
irrigators and in climate change studies. Up to date, MOD16 has been validated using point data 
from flux towers at various locations in Asia (Kim et al., 2012), the USA (Velpuri et al., 2013) and 
Africa (Ramoelo et al., 2014). While accurate ET predictions have been observed at some sites, 
uncertainties as high as 50%–60% have also been reported elsewhere (Kim et al., 2012; Velpuri et 
al., 2013). Some studies noted the inconsistent performance by MOD16 between years using data 
from the same sites with accurate predictions in some years (Ramoelo et al., 2014). In this study, 
we evaluated the performance of MOD16 together with another widely used ET model, PT-JPL 
using data from dry ecosystems with different characteristics and with simulations done at the daily 
time step. In general, the uncertainties in ET predictions using remote sensing models are the 
highest under these two scenarios (Garcia et al., 2013; Velpuri et al., 2013). This study therefore 
provided an opportunity to identify possible sources of error and to suggest ways to improve the 
parameterization of the models in arid environments. 

The original MOD16 and PT-JPL models both underestimated the daily ET at all three sites in 
South Africa (Fig. 3). Similar performances were observed with the PT-JPL in arid environments 
(Garcia et al., 2013; Marshall et al., 2013) and these authors suggested various changes to the 
model. One reason for the failure of MOD16 to accurately predict the daily ET especially at the 
summer rainfall sites was the occurrence of prolonged mid-summer dry spells during active 
transpiration periods which caused significant soil water deficits. This in turn led to substantial ET 
reductions (Fig. 2c) due to stomatal closure under severe water stress. Because transpiration has 
the largest contribution to total ET during peak vegetation cover (Mu et al., 2011), significant errors 
are likely with the current MOD16 in which transpiration is constrained only by climatic factors. 
The fact that the vegetation at Elandsberg had other sources of water other than soil water led to 
smaller improvements in the simulated ET when soil water deficit was incorporated in the 
algorithms. Our data demonstrates that using representative values of the mean stomatal 
conductance per unit leaf area for each biome and implementing a soil water stress constraining 
function to the transpiration sub-model in MOD16 can significantly improve the performance of 
this model in seasonally arid environments. Sensitivity tests revealed that a 30% change in a key 
biophysical inputs such as the LAI caused up to 21% change in the ET estimated by MOD16. 
Hwang and Choi (2013) evaluated the previous MOD16 model (Mu et al., 2007) and observed that 
a 17%–20% change in net radiation yielded up to 20% change in ET. This observation also supports 
our findings wherein an improvement in the net radiation simulations significantly improved the 
ET estimates. 

To operationally implement the soil water stress function within the MOD16 framework, 
considerable works are still required particularly to identify an accurate remote sensing based soil 
water content product whose data is readily available. In a similar study at two Mediterranean 
ecosystems, Garcia et al. (2013) observed improved ET simulations with the PT-JPL model by 
incorporating a soil water stress function which was based on the calculation of the apparent 
thermal inertia of the soil (Verstraeten et al., 2006). The thermal inertia concept is based on the fact 
that increasing soil water content modifies the thermal conductivity of the soil and it also reduces 
the diurnal temperature fluctuation (Price, 1977). They used 15 min land surface temperature data 
derived from the Meteosat Second Generation and surface albedo from MODIS. In this study 
however, incorporating a soil water stress function based on the actual measured soil water content 
data (i.e., replacing fSM in Eq. 6 with f(SWC) in Table 2) did not significantly improve the 
performance of the PT-JPL model at all the three sites. Another source of error with MOD16 was 
the estimation of the night time ET. Simulated night time ET was up to 60% higher than the 
measured values and this was a result of over estimates in the relative surface wetness which was 
derived using the expression proposed by Fisher et al. (2008), i.e., relative humidity to the fourth 
power (RH4). Reducing the relative surface wetness by using RH10 improved the prediction of the 
night time ET. Marshall et al. (2013) made a similar observation with the PT-JPL model at various 
semi-arid sites across Africa. 
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5  Conclusions 

This study evaluated two widely used remote sensing ET models using data from highly dynamic 
semi-arid environments characterized by rapid fluctuations in the soil water content during peak 
plant water use periods. It is clear from our assessment that significant improvements to the MOD16 
algorithm are possible in semi-arid ecosystems by (1) implementing accurate mean stomatal 
conductance per unit leaf area for each respective biome; (2) incorporating a soil water stress 
function in the transpiration sub-model to capture transpiration reductions due to soil water deficits; 
(3) improving the parameterization of the radiation balance sub-model; and (4) correctly estimating 
the relative surface wetness especially for night time ET simulations. However, the lack of reliable 
and readily available sources of remotely sensed soil water content data still remains a major 
challenge for the implementation of these changes. The lack of a credible soil water constraint in 
MOD16 likely contributes to the often observed good performance of the model in humid 
environments or in wet years when soil water deficit does not limit ET and poor simulations in dry 
ecosystems or during dry spells. Further researches are therefore required to identify accurate soil 
water content products that can be incorporated into the MOD16 framework. The apparent thermal 
inertia concept (Price, 1977; Verstraeten et al., 2006; Garcia et al., 2013) is a promising idea, but 
this still needs more validation. High temporal resolution soil moisture mapping using upcoming 
satellite products such as Sentinel as proposed by Paloscia et al. (2013) also provide opportunities 
for improving remote sensing ET models. While less input data intensive ET models like the PT-
JPL have yielded promising results elsewhere, improved parameterization is needed to increase 
their accuracy in arid and semi-arid ecosystems. 

Acknowledgements 

This work was supported by the South African Parliamentary Grant to the Council for Scientific and Industrial 
Research Project (ECHS014, EEEO024, ECHS058 and ECHS052). We thank Cape Nature and South African 
National Parks for allowing us to work in the Elandsberg, Skukuza and Malopeni sites. 

References 

Allen R G, Pereira L S, Raes D, et al. 1998. Crop evapotranspiration - Guidelines for computing crop water requirements - FAO 

Irrigation and drainage paper No.56. FAO. Rome, Italy. 

Brutsaert W. 1975. On a derivable formula for long-wave radiation from clear skies. Water Resources Research, 11(5): 742–744. 

Burba G G, Verma S B. 2005. Seasonal and interannual variability in evapotranspiration of native tallgrass prairie and 

cultivated wheat ecosystems. Agricultural and Forest Meteorology, 135(1–4): 190–201. 

Carrasco M, Ortega-Farias S. 2007. Evaluation of a model to simulate net radiation over a vineyard cv. Cabernet Sauvignon. 

Chilean Journal of Agricultural Research, 68: 156–165. 

Cleugh H A, Leuning R, Mu Q Z, et al. 2007. Regional evaporation estimates from flux tower and MODIS satellite data. Remote 

Sensing of Environment, 106(3): 285–304. 

Cleverly R W, Bistrow J W. 1979. Revised volcanic stratigraphy of the Lebombo monocline. South African Journal of Geology, 

82(2): 227–230. 

Dzikiti S, Jovanovic N Z, Bugan R, et al. 2014. Measurement and modelling of evapotranspiration in three fynbos vegetation 

types. Water SA, 40(2): 189–198. 

Dzikiti S, Gush M B, Le Maitre D C, et al. 2016. Quantifying potential water savings from clearing invasive alien Eucalyptus 

camaldulensis using in situ and high resolution remote sensing data in the Berg River Catchment, Western Cape, South Africa. 

Forest Ecology and Management Journal, 361: 69–80. 

Dzikiti S, Volschenk T, Midgley S J E, et al. 2018. Estimating the water requirements of high yielding and young apple orchards 

in the winter rainfall areas of South Africa using a dual source evapotranspiration model. Agricultural Water Management. 

208: 152–162. 

El Masri B, Rahman A F, Dragoni D. 2019. Evaluating a new algorithm for satellite-based evapotranspiration for North American 

ecosystems: Model development and validation. Agricultural and Forest Meteorology, 268: 234–248. 

Ershadi A, McCabe M F, Evans J P, et al. 2014. Multi-site evaluation of terrestrial evaporation models using FLUXNET data. 

Agricultural and Forest Meteorology, 187: 46–61. 



 Sebinasi DZIKITI et al.: Comparison of two remote sensing models for estimating evapotranspiration… 511 

 

 

Fisher J B, Tu K P, Baldocchi D D. 2008. Global estimates of the land-atmosphere water flux based on monthly AVHRR and 

ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sensing of Environment, 112(3): 901–919. 

Garcia M, Sandholt I, Ceccato P, et al. 2013. Actual evapotranspiration in drylands derived from in-situ and satellite data: 

Assessing biophysical constraints. Remote Sensing of Environment, 131: 103–118. 

Garcia M, Fernández N, Villagarcía L, et al. 2014. Accuracy of the temperature-vegetation dryness index using MODIS under 

water-limited vs. energy-limited evapotranspiration conditions. Remote Sensing of Environment, 149: 100–117. 

Green S, McNaughton K, Wünsche J N, et al. 2003. Modelling light interception and transpiration of apple tree canopies. 

Agronomy Journal, 95(6): 1380–1387. 

Hwang K Choi M. 2013. Seasonal trends of satellite-based evapotranspiration algorithms over a complex ecosystem in East Asia. 

Remote Sensing of Environment, 137: 244–263. 

Impens I, Lemeur R. 1969. Extinction of net radiation in different crop canopies. Theoretical and Applied Climatology, 17: 403–

412.  

Kim H W, Hwang K, Mu Q, et al. 2012. Validation of MODIS 16 global terrestrial evapotranspiration products in various climates 

and land cover types in Asia. KSCE Journal of Civil Engineering, 16(2): 229–238. 

Low A B, Rebelo A G. 1996. Vegetation of South Africa, Lesotho and Swaziland. Pretoria: Department of Environmental Affairs 

and Tourism of South Africa. 

Makarau A, Jury M R. 1997. Seasonal cycles of convective spells over Southern African during austral summer. International 

Journal of Climatology, 17(2): 1317–1333. 

Marshall M, Tu K, Funk C, et al. 2013. Improving operational land surface model canopy evapotranspiration in Africa using a 

direct remote sensing approach. Hydrology and Earth System Sciences, 17: 1079–1091. 

Monteith J L, Unsworth M H. 1990. Principles of Environmental Physics. Oxford: Butterworth Heinemann Press, 1–291. 

Mu Q M, Heinsch F A, Zhao M S, et al. 2007. Development of a global evapotranspiration algorithm based on MODIS and global 

meteorology data. Remote Sensing of Environment, 111(4): 519–536. 

Mu Q M, Zhao M S, Running S W. 2011. Improvement to a MODIS global terrestrial evapotranspiration algorithm. Remote 

Sensing of Environment, 115(8): 1781–1800.  

Mu Q M, Zhao M S, Running S W. 2013. MOD16 1-km2 terrestrial evapotranspiration (ET) product for the Nile Basin algorithm 

theoretical basis document. In: Numerical Terradynamic Simulation Group College of Forestry and Conservation University 

of Montana. Missoula, USA. 

Mucina J L, Rutherford M C, Leslie W P, et al. 2006. The Vegetation of South Africa, Lesotho and Swaziland. Pretoria: South 

African National Biodiversity Institute, 1–807. 

Műnch Z, Conrad J E, Gibson L A, et al. 2013. Satellite earth observation as a tool to conceptual hydrological fluxes in the 

Sandveld, South Africa. Hydrology Journal, 21(5): 1053–1070.   

Nishida K, Nemani R R, Glassy J M, et al. 2003. Development of an evapotranspiration index from Aqua/MODIS for monitoring 

surface moisture status. IEEE Transactions on Geoscience and remote sensing, 41(2): 493–501. 

Paloscia S, Pettinato S, Santi E, et al. 2013. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. 

Remote Sensing of Environment, 134: 234–248. 

Polhamus A, Fisher J B, Tu K P. 2013. What controls the error structure in evapotranspiration models? Agricultural and Forest 

Meteorology, 169: 12–24. 

Price J C. 1977. Thermal inertia mapping: A new view of the earth. Journal of Geophysical Research, 82(18): 2582–2590.  

Priestley C H B, Taylor R J. 1972. On the assessment of surface heat flux and evaporation using large scale parameters. Monthly 

Weather Review, 100(2): 81–92. 

Ramoelo A, Majozi N, Mathieu R, et al. 2014. Validation of global evapotranspiration product (MOD16) using flux tower data 

in the African Savannah, South Africa. Remote Sensing, 6(8): 7406–7423. 

Reinders F B. 2013. Irrigation methods for efficient water application: 40 years of South African research excellence. Water SA, 

37(5): 765–770. 

Ruhoff A L, Paz A R, Aragao L E O C, et al. 2013. Assessment of the MODIS global evapotranspiration algorithm using eddy 

covariance measurements and hydrological modelling in the Rio Grande basin. Hydrological Sciences Journal, 58(8): 1658–

1676.  

Savage M J, Everson C S, Odhiambo G O, et al. 2004. Theory and practice of evapotranspiration measurement, with special focus 

on surface layer scintillometer (SLS) as an operational tool for the estimation of spatially-averaged evaporation. In: Water 

Research Commission Report No 1335/1/04, Implementation of Bichromatic Scintillation as an Operational Tool for the 

Estimation of Spatially Averaged Evaporation. Pretoria, South Africa. 

Scholes R J, Gureja N, Giannecchinni M, et al. 2001. The environment and vegetation of the flux measurement site near Skukuza, 



512 JOURNAL OF ARID LAND 2019 Vol. 11 No. 4  

 

Kruger National Park. Koedoe, 44(1): 73–83. 

Schulze R E, Maharaj M, Warburton M L, et al. 2008. South African atlas of climatology and agrohydrology. In: Water Research 

Commission Report No 1489/1/08. Pretoria, South Africa. 

Talsma C J, Good S P, Jimenez C, et al. 2018. Partitioning of evapotranspiration in remote sensing based models. Agricultural 

and Forest Meteorology, 260–261: 131–143.  

Tang R, Shao K, Li Z, et al. 2015. Multiscale Validation of the 8-day MOD16 Evapotranspiration Product Using Flux Data 

Collected in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(4): 1478–1486. 

Velpuri N M, Senay G B, Singh R K, et al. 2013. A comprehensive evaluation of two MODIS evapotranspiration products over 

the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sensing of Environment, 

139: 35–49. 

Verstraeten W W, Veroustraete F, van der Sand C J, et al. 2006. Soil moisture retrieval using thermal inertia, determined with 

visible and thermal spaceborne data, validated for European forests. Remote Sensing of Environment, 101(3): 299–314.  

Waters R, Allen R, Tasumi M, et al. 2002. Surface energy balance algorithms for land: Advanced training and users manual. The 

Idaho Department of Water Resources. Idaho, USA. 

Wever L A, Flanagan L B, Carlson P J. 2002. Seasonal and interannual variation in evapotranspiration, energy balance and surface 

conductance in a northern temperate grassland. Agricultural and Forest Meteorology, 112(1): 31–49. 

Yao Y J, Liang S L, Cheng J, et al. 2013. MODI-driven estimation of terrestrial latent heat flux in China based on a modified 

Priestley-Taylor algorithm. Agricultural and Forest Meteorology, 171–172: 187–202. 

Yao Y J, Liang S L, Li X L, et al. 2015. A satellite-based hybrid algorithm to determine the Priestley-Taylor parameter for global 

terrestrial latent heat flux estimation across multiple biomes. Remote Sensing of Environment, 165: 216–233 

Zhang D, Zhang Q, Werner A D, et al. 2016. Assessment of the reliability of popular satellite products in characterizing the water 

balance of the Yangtze River Basin, China. Hydrology Research 47 (S1): 8–23.  

Zhang H P, Simmonds L P, Morison J I L, et al. 1997. Estimation of transpiration by single trees: comparison of sap flow 

measurements with a combination equation. Agricultural and Forest Meteorology, 87(2–3): 155–169. 

Zhang Y Q, Chiew F H S, Zhang L, et al. 2008. Estimating catchment evaporation and runoff using MODIS leaf area index and 

the Penman-Monteith equation. Water Resources Research, 44(10): W10420. 


