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Abstract: Net primary production (NPP) is an indicator of rangeland ecosystem function. This research 
assessed the potential of the Carnegie Ames Stanford Approach (CASA) model for estimating NPP and its 
spatial and temporal changes in semi-arid rangelands of Semirom County, Iran. Using CASA model, we 
estimated the NPP values based on monthly climate data and the normalized difference vegetation index 
(NDVI) obtained from the MODIS sensor. Regression analysis was then applied to compare the estimated 
production data with observed production data. The spatial and temporal changes in NPP and light 
utilization efficiency (LUE) were investigated in different rangeland vegetation types. The standardized 
precipitation index (SPI) was also calculated at different time scales and the correlation of SPI with NPP 
changes was determined. The results indicated that the estimated NPP values varied from 0.00 to 74.48 g 
C/(m2•a). The observed and estimated NPP values had different correlations, depending on rangeland 
conditions and vegetation types. The highest and lowest correlations were respectively observed in 
Astragalus spp.-Agropyron spp. rangeland (R2=0.75) with good condition and Gundelia spp.-Cousinia spp. 
rangeland (R2=0.36) with poor and very poor conditions. The maximum and minimum LUE values were 
found in Astragalus spp.-Agropyron spp. rangeland (0.117 g C/MJ) with good condition and annual grasses-
annual forbs rangeland (0.010 g C/MJ), respectively. According to the correlations between SPI and NPP 
changes, the effects of drought periods on NPP depended on vegetation types and rangeland conditions. 
Annual plants had the highest drought sensitivity while shrubs exhibited the lowest drought sensitivity. The 
positive effects of wet periods on NPP were less evident in degraded areas where the destructive effects of 
drought were more prominent. Therefore, determining vegetation types and rangeland conditions is 
essential in NPP estimation. The findings of this study confirmed the potential of the CASA for estimating 
rangeland production. Therefore, the model output maps can be used to evaluate, monitor and optimize 
rangeland management in semi-arid rangelands of Iran where MODIS NPP products are not available. 
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1  Introduction 

Solar radiation is used in photosynthesis to convert carbon dioxide and water into carbon 
compounds including glucose and cellulose (Lammers et al., 2017). Solar radiation is thus 
effectively stored in rangeland plants as the first trophic level of the food chain (Sainte-Marie et al., 
2012). Net primary production (NPP) is defined as the amount of energy produced by plants minus 
the energy consumed through respiration (Lu et al., 2015). It reflects the rate of carbon assimilation 
(Roxburgh et al., 2005) and contributes to maintaining carbon balance in an ecosystem. NPP is 
determined by factors such as solar energy, temperature (Dintwe and Okin, 2018) and precipitation 
(Zhang et al., 2017) and is positively affected by living organisms like microbial biomass (Schimel 
et al., 1994). 

Since direct field measurements are time-consuming and costly, models based on carbon cycle 
and plant structures (e.g., Biogeochemical Cycles Model (BIOME-BGC) (Kimball et al., 1997) and 
Dynamic Global Phytogeography Model (DOLY) (Donmez et al., 2011)), or remote sensing models 
based on satellite imagery (e.g., Global Production Efficiency Model (GLO-PEM) (Goetz et al., 
1999), Carnegie Ames Stanford Approach (CASA) (Biondini et al., 1998; Liang et al., 2015; Bao 
et al., 2016; Jay et al., 2016), Simple Diagnostic Biosphere Model (SDBM) (Kaminski et al., 2002), 
Simple Biosphere Model (SIB) (Lokupitiya et al., 2009), and Terrestrial Uptake and Release of 
Carbon (TURC) model (Xia et al., 2013)), are generally used to estimate the spatial and temporal 
changes in NPP.  

Among the various remote sensing models (Ruimy et al., 1994; Sun et al., 2013), the CASA is a 
process-based model that uses remotely sensed data and climate data to estimate regional and global 
NPP based on light utilization efficiency (LUE), by simulating the exchange of carbon dioxide 
between the atmosphere and biosphere (Gao et al., 2013). Assessments of the CASA at regional 
and global scales have shown that the model can not only estimate NPP, but also examine the effects 
of land degradation at different stages on phenology (Dieguez and Paruelo, 2017; Rafique et al., 
2017). LUE is defined as the photosynthetic efficiency of plants at converting solar radiation into 
organic matter (Zhang et al., 2015) and is affected by energy distribution. It is the main component 
of the CASA and determines the accuracy of the estimated NPP (Dong et al., 2015). The optimal 
LUE of plants is determined by their physiological and phenological conditions. Therefore, stresses 
in temperature and changes in soil moisture can decrease photosynthetic efficiency (Nemry et al., 
1999). According to available evidence, LUE is maximized under optimal environmental 
conditions and may be influenced by factors including temperature, humidity, pests and diseases, 
soil nutrients, and genetic and morphological characteristics of plants like leaf area index (LAI). 
Hence, different plant types have different LUE values (Fischer et al., 2014), which are individually 
determined by the difference between the observed and estimated NPP (Yu et al., 2005).  

Rangeland condition is defined as the current state of a particular vegetation community in 
comparison to some perceived potential (Stoddart et al., 1975), which plays an important role in 
determining NPP of different vegetation types in a rangeland. For instance, NPP may be decreased 
by livestock grazing and decreased with reduced leaf area (Yu et al., 2018). Plant-available soil 
moisture can be greatly reduced by soil degradation and erosion (Biondini et al., 1998). A number 
of investigations have suggested that drought, increased temperature, topography and livestock 
grazing greatly affect changes in NPP of rangeland ecosystem (Chen et al., 2012; Jiang et al., 2015; 
Sha et al., 2017). In many rangelands of semi-arid regions, precipitation is considered as a major 
determinant of plant production at different time scales. Due to changes in drought and precipitation 
patterns, large fluctuations in NPP can be observed in these areas (Jafari and Bakhshandehmehr, 
2013). Studies on NPP are consequently important for natural resource management in rangelands. 
Population growth and land use changes lead to the degradation of rangelands, which in turn causes 
erosion, flooding and desertification, and ultimately decreases NPP levels at regional and global 
scales (Chen et al., 2017; Ardö et al., 2018). Currently, the four-factor approach is one of the most 
widely used methods for rangeland assessment and monitoring (Hadian et al., 2019), which 
categorizes the rangeland condition into four levels: good, fair, poor and very poor. 

Due to topographic conditions and the presence of Alborz and Zagros mountain ranges, Iran has 
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a diverse climate at the national scale, i.e., from hyper-arid to wet (Kehl, 2009). There are a wide 
range of vegetation types and rangeland conditions in the country. As a result, the NPP values 
change not only with time, but also with geographical and anthropogenic variations. These changes 
are more pronounced in semi-arid areas of Semirom County, Iran. In fact, because of topography 
and land use conditions, different vegetation types in semi-arid rangelands of Zagros have different 
NPP values. Drought periods also affect plant production (Khatibi et al., 2017), but these effects 
vary depending on plant species. Moreover, temperature fluctuations, caused by elevation levels in 
the area, directly affect the phenology and production of potential plants (Dannenberg et al., 2015). 

In Iran, the most widely used technique for measuring the rangeland production is probably the 
double sampling technique (Bonham, 2013). However, despite its wide application, this ground-
based technique can only provide detailed data at relatively fine scales and fails to adequately cover 
a large area that is necessary for rangeland measurement and monitoring. In addition, the current 
available satellite products of rangeland production such as MOD17A3H are labeled with "no data" 
or have zero values in most of the arid and semi-arid lands of Iran. To our knowledge, no studies 
have assessed the capability of remote sensing and modeling techniques for production mapping in 
the rangelands of Iran. Therefore, it is essential to examine the potential of models based on 
remotely sensed data in mapping and monitoring the production of rangelands. The specific aims 
of this research were: (1) to evaluate the capability of the CASA for NPP mapping across a range 
of different vegetation types in the semi-arid rangelands of Semiron County, Iran; (2) to analyze 
the spatial and temporal changes of NPP at a seasonal scale within a single year (2016); and (3) to 
monitor NPP changes at an annual scale from 2002 to 2016. In addition, since the levels and 
changes of NPP are affected by drought and wet periods, the trend of NPP changes in relation to 
precipitation was also investigated using the standardized precipitation index (SPI). 

2  Materials and methods 

2.1  Study area 

The study area is located in the rangelands of Semirom County (30°42′–31°51′N, 51°03′–51°17′E), 
Isfahan Province, Iran. This area has a semi-arid climate with mean annual precipitation of 420 mm. 
Most of annual precipitation occurs in winter while less in summer. The available temperature 
records from 2002 to 2017 indicate the annual average temperature of 13.6°C (IRIMO, 2016). 
Altitude in the area is relatively high, ranging from 1707 to 4393 m a.s.l., with the peaks in the 
Zagros Mountains. Due to large altitudinal range and human activity influences, there are a large 
number of vegetation types and a range of conditions in the rangelands (Hadian et al., 2013). In 
recent years, grazing and other activities, such as the construction of the Hana Dam and land use 
changes, have degraded the existing rangelands, especially those around the agricultural lands in 
Semirom County. It has been reported that the amount of NPP in the study area ranges from 10.00 
to 46.00 g C/(m2

•a), depending on the vegetation type and rangeland condition (Feizi, 2018).  

2.2  Field measurements 

We used the following equation to calculate the sampling area by taking into account the resolution 
(250 m×250 m) of the Moderate Resolution Imaging Spectroradiometer (MODIS).  

),21( LPA +×=                               (1) 

where A is the sampling area (m); P is the pixel resolution (m) of the MODIS bands used for NDVI 
calculation (250 m×250 m); and L is the acceptable error (pixel) (McCoy, 2005). The MODIS 
sensor obtains data at different spatial resolutions including 250 (bands 1–2), 500 (bands 3–7), and 
1000 m (bands 8–36) with wavelengths from 0.41 to 14.40 μm. 

The conditions of rangelands in Semirom County were evaluated using a four-factor method and 
related forms (Khaleghi and Aeinebeygi, 2016). In this method, rangeland condition was calculated 
as the sum of the scores of soil factor (0–20), vegetation cover (0–10), vegetation composition (0–
10), and plant vigor and vitality (0–10). Scores of <20, 21–30, 31–37, 38–45 and >45 indicate very 
poor, poor, fair, good and excellent conditions, respectively (Friedel, 1991). Accordingly, the 
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conditions of rangelands in Semirom County were categorized as very poor, poor, fair, and good. 
During the field investigation, we identified a total of 12 vegetation types. The Astragalus spp.-

Bromus spp. (As-Br.F and As-Br.P) and Astragalus spp.-Daphne spp. (As-Da.F and As-Da.P) had 
two conditions including poor and fair in different parts of the study area. Thus, NPP was measured 
in 14 vegetation types (Table 1). A total of 30 sampling sites were designed for each vegetation 
type. Vegetation cover (in percentage) in an area of 500 m×500 m was determined using 8 plots (10 
m×10 m for each) (Khajeddin, 1995) and the total production of all plant species was weighed in a 
2 m×1 m quadrat (Fig. 1) (Yeganeh et al., 2014). 

Table 1  Vegetation and rangeland characteristics of the study area 

Vegetation type Acronym Rangeland condition Life form 

Annual grasses-annual forbs An.gr-An.fo Poor Annual 

Artemisia aucheri Ar.au Poor Bush 

Astragalus spp.-Acantholimon spp. As-Ac Poor Bush 

Astragalus spp.-Agropyron spp. As-Ag Good Bush-grass 

Astragalus spp.-Bromus spp. As-Br.F Fair Bush-grass 

Astragalus spp.-Bromus spp. As-Br.P Poor Bush-grass 

Astragalus spp.-Cousinia spp. As-Co Fair Bush 

Astragalus spp.-Daphne spp. As-Da.F Fair Bush-shrub 

Astragalus spp.-Daphne spp. As-Da.P Poor Bush-shrub 

Astragalus spp.-Psathyrostachys spp. As-Ps Fair Bush 

Daphne spp.-Astragalus spp. Da-As Poor Shrub-bush 

Gundelia spp.-Cousinia spp. Gu-Co Very poor Bush 

Euphorbia spp.-Hertia spp. Eu-He Poor Bush 

Sophora spp.-Launaea spp. So-La Very poor Bush 

 
Fig. 1  Field measuring method 

2.3  Climate and satellite data 

Meteorological data including monthly temperature, precipitation and solar radiation during 2002–
2016 were obtained from the regional meteorological offices of all weather stations in the study 
area. We used the Angstrom-Prescott equation to calculate the amount of solar radiation based on 
the total solar radiation recorded at the synoptic weather stations (Alamdari et al., 2013). The SPI 
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was calculated with the SPIEXE program at 1-, 2-, 3-, 6-, 9- and 12-month intervals (ending in May 
of each year) during 2002–2016 for determining the effect of drought on vegetation growth (Lloyd-
Hughes and Saunders, 2002; Ji and Peters, 2003). The NPP values at 30 sampling sites for each 
vegetation type and rangeland condition were separately averaged to compare with the annual SPI 
at 1-, 2-, 3-, 6-, 9- and 12-month intervals during the study period (Fig. 2). 

 

Fig. 2  Annual standardized precipitation index (SPI) values at different time scales (1-, 2-, 3-, 6-, 9- and 12-month, 
corresponding to SPI1, SPI2, SPI3, SPI6, SPI9 and SPI12, respectively) during 2002–2016 

Satellite data were extracted from NASA's Earth Observing System (EOS) and NASA's Land 
Processes Distributed Active Archive Center (LP DAAC) (https://earthexplorer.usgs.gov). The 
MODIS 16-day NDVI products were used to calculate the required parameters of the CASA. The 
seasonal variations of NPP from 21 March to 13 September in 2016 (Table 2) as well as the annual 
NPP values during 2002–2016 were estimated using the average of two MODIS 16-day NDVI 
products by the same method described by Yu et al. (2009) and Yuan et al. (2016). 

Table 2  Acquisition dates from MODIS NDVI products in 2016 

Resolution  
(km)  

End date  
(dd/mm/yyyy)  

Start date  
(dd/mm/yyyy) 

Satellite  Image 

0.25 05/04/2016 21/03/2016  TERRA MOD13Q1-NDVI 

0.25  21/04/2016  06/04/2016  TERRA MOD13Q1-NDVI 

0.25  07/05/2016 22/04/2016  TERRA MOD13Q1-NDVI 

0.25  23/05/2016  08/05/2016  TERRA  MOD13Q1-NDVI 

0.25  08/06/2016 24/05/2016  TERRA  MOD13Q1-NDVI 

0.25  24/06/2016 09/06/2016  TERRA MOD13Q1-NDVI 

0.25  10/07/2016 25/06/2016 TERRA MOD13Q1-NDVI 

0.25  26/07/2016 11/07/2016 TERRA MOD13Q1-NDVI 

0.25  11/08/2016  27/07/2016 TERRA MOD13Q1-NDVI 

0.25  27/08/2016 12/08/2016 TERRA MOD13Q1-NDVI 

0.25  12/09/2016 28/08/2016 TERRA MOD13Q1-NDVI 

0.25  28/09/2016 13/09/2016 TERRA MOD13Q1-NDVI  

2.4  Estimation of NPP using the CASA model 

Climate factors (including precipitation, temperature and solar radiation), NDVI images, absorbed  
photosynthetically active radiation (APAR; MJ/m2) at 400–700 nm, and land use/land cover maps 
(Feizi, 2018) were used to simulate NPP by the CASA model (Hua et al., 2014). Since NPP values 
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were different among vegetation types, the NPP was separately calculated for each vegetation type. 
The relationships between the observed and estimated NPP in the sampling sites were then 
evaluated using regression analysis and the coefficient of determination. Equations 2–16 were used  
in the CASA model and Figure 3 described the modelling process for estimating NPP.  

NPP( , )=APAR( , ) ( , )x t x t x tε× ,                            (2) 

APAR( , )=FPAR( , ) SOL( , ) 0.5x t x t x t× × ,                         (3) 

where NPP is the net primary production (g C/(m2
•a)); APAR is the absorbed photosynthetically 

active radiation (MJ/m2); ε is the light utilization efficiency (g C/MJ); FPAR is the fraction of APAR 
(MJ/m2); and SOL indicates the total solar radiation (MJ/m2). 

In the equations below, FPARmin and FPARmax values are 0.001 and 0.950, respectively (Potter 
et al., 1999). We obtained the amount of FPAR according to the following equations and the 
obtained α was 0.447 (the mean value of FPAR1 and FPAR2) (Yu et al., 2009): 

1 2FPAR( , )=FPAR (1 )FPARx t α+ + ,                          (4) 
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where D is a coefficient extracted from NDVI; ε is the light utilization efficiency (g C/(MJ)) and 
εmax represents the radiation power at maximum APAR (g C/MJ); Tε1 is the temperature (°C) at 
which the plant can perform photosynthetic activities; Tε2 is the temperature (°C) at which the plant 
can efficiently use the light; Wε is the water stress coefficient (Ks), which determines the moisture 
level affecting the efficient use of radiation and depends on the plant's ability to maintain soil 
moisture (mm); Topt is the monthly temperature (°C) when the NDVI reaches its highest value in a 
certain area in one year; E, Ep, and E0 represent the regional, potential, and local potential 
evapotranspiration (mm), respectively; R is the net solar radiation (W/m2); I is the annual heat index 
(Rohli and Vega, 2013); and Tai is the monthly temperature, when the air temperature ranges from 
0.0°C to 26.5°C. After calculating the above-mentioned parameters, the NPP maps of the study 
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area were produced and then the slope of NPP (g C/(m2
•a)) changes during 2004–2007 (the wet 

period) and 2013–2016 (the drought period) was determined using the following equation (Zhou et 
al., 2015): 

( )
( ) ( )2 2

NPP NPP
Slope

n n

ii i

n n

i i

n i i

n i i

× × − ×
=

× −

 
 

,                       (17) 

where n is the interval studied and i shows the year number (i.e., 1 for the first year, 2 for the second 
year, and so on). 

 

Fig. 3  Net primary production (NPP) modeling based on Carnegie Ames Stanford Approach (CASA) model. 
NDVI, normalized difference vegetation index; APAR, absorbed photosynthetically active radiation; FPAR, 
fraction of APAR; SPI, standardized precipitation index; Tε1, the temperature at which the plant can perform 
photosynthetic activities; Tε2, the temperature at which the plant can efficiently use the light; Wε, the water stress 
coefficient; εmax, radiation power at maximum APAR; ε, light utilization efficiency. 

2.5  Light utilization efficiency(LUE) calculation  

In this study, we determined LUE based on thermodynamic laws and the ratio of the NPP to the 
APAR (Eq. 18). The LUE value was considered as the slope of the line in the regression relationship 
between APAR (x) and observed NPP (y) (Pan et al., 2009). 

NPP
LUE=

APAR
.                              (18) 

3  Results 

3.1  Assessment of the CASA model and estimation of NPP 

The evaluation of the CASA model in different vegetation types revealed lower annual NPP values 
in rangelands with poor and very poor conditions than in those with good and fair conditions. 
Except for the rocky areas in the southern parts of the study area, the annual NPP values were lower 
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and the level of degradation was higher in areas with lower altitudes. Agricultural lands and areas 
around Semirom County exhibited low NPP values, possibly due to rangeland degradation. 

Data on harvested plants in each vegetation type (measured at 30 sampling sites) were used to 
evaluate the efficiency of the CASA in NPP estimation. Observed and estimated NPP values were 
significantly correlated (R2=0.95; Fig. 4a), indicating that the CASA model was capable of 
predicting almost all of the variations in NPP across the sampling sites. Despite a wide range of 
vegetation types and different dominant plant species in the region, correlations between observed 
and estimated NPP values for all rangeland conditions (very poor to good) were significant at the 
0.01 significance level (R2 values of 0.36–0.80). In general, the estimated NPP values in the region 
ranged between 0.00 and 74.48 g C/(m2

•a) in 2016 (Fig. 4b). 

 

Fig. 4  Correlation between observed and estimated NPP values (a) and the spatial distribution map of estimated 
NPP and field sampling sites (b) in 2016  

Observed NPP values of 37.00 and 34.00 g C/(m2
•a) were recorded in As-Br vegetation type with 

fair and poor conditions, respectively. The Astragalus spp.-Agropyron spp. (As-Ag) vegetation type 
showed the highest amount of NPP (46.00 g C/(m2

•a)) while the annual grasses-annual forbs (An.gr-
An.fo) type had the lowest NPP value (10.00 g C/(m2

•a)). The NPP was relatively high (40.00 g 
C/(m2

•a)) in Daphne spp.-Astragalus spp. (Da-As) type with poor condition. Furthermore, degraded 
vegetation types and very poor rangelands (e.g., Gundelia spp.-Cousinia spp. (Gu-Co) and Sophora 
spp.-Launaea spp. (So-La)) had lower NPP values (18.00 and 19.00 g C/(m2

•a), respectively) 
compared to other shrublands. Generally, NPP values were different based on the vegetation cover 
and vegetation type. Accordingly, different observed NPP values were obtained for Astragalus spp.-
Acantholimon spp. (As-Ac; 32.00 g C/(m2

•a)), Artemisia aucheri (Ar.au; 29.00 g C/(m2
•a)), As-Da.F 

(27.40 g C/(m2
•a)), Euphorbia spp.-Hertia spp. (Eu-He; 18.78 g C/(m2

•a)), Astragalus spp.-
Cousinia spp. (As-Co; 29.23 g C/(m2

•a)), and Astragalus spp.-Psathyrostachys spp. (As-Ps; 29.97 
g C/(m2

•a)). 
The correlation between observed and estimated NPP values depended on vegetation types and 

rangeland conditions (Fig. 5). As-Ag and Gu-Co types had the highest (0.75) and lowest (0.36) 
correlation coefficients, respectively. Under similar rangeland conditions, An.gr-An.fo type 
showed a higher correlation coefficient compared to perennial plants. As-Br and As-Da rangelands 
with fair condition showed higher correlations between observed and estimated NPP values than 
those with poor condition. In general, higher correlations between observed and estimated NPP 
values were observed in rangeland areas with good condition. However, serious rangeland 
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degradation and high spatial heterogeneity decreased the correlation between observed and 
estimated NPP values and the accuracy of the CASA model. In fact, remote (inaccessible) areas 
were healthier than grazed lands. Both the NPP and LUE of vegetation types used by livestock were 
low in rangelands near agricultural and residential areas as well as in rangelands with very poor 
condition. Due to the high level of spatial heterogeneity in these areas, lower correlations existed 
between observed and estimated NPP values (Fig. 5). 

LUE values, which are used to evaluate the photosynthesis potential of different vegetation types, 
depend on vegetation types and rangeland conditions (Fig. 5). As-Ag rangelands with good 
condition had the highest LUE (0.117 g C/MJ) and An.gr-An.fo rangelands with poor condition 
had the lowest LUE (0.010 g C/MJ). As-Br rangelands in fair condition had higher LUE values than 
those in poor condition. Generally, under poor rangeland condition, grass vegetation type showed 
higher LUE values than shrub vegetation. Moreover, Da-As (shrub form) had larger LUE values 
compared to bushlands (Fig. 5). 

 

Fig. 5  Correlation between observed and estimated NPP values and light utilization efficiency (LUE) values in 
different vegetation types. An.gr-An.fo, annual grasses-annual forbs; Da-As, Daphne spp.-Astragalus spp.; As-Da.F 
and As-Da.P, Astragalus spp.-Daphne spp. with fair and poor conditions, respectively; As-Br.F and As-Br.P, 
Astragalus spp.-Bromus spp. with fair and poor conditions respectively; As-Co, Astragalus spp.-Cousinia spp.; As-
Ac, Astragalus spp.-Acantholimon spp.; Ar.au, Artemisia aucheri; Eu-He, Euphorbia spp.-Hertia spp.; So-La, 
Sophora spp.-Launaea spp.; Gu-Co, Gundelia spp.-Cousinia spp.; As-Ag, Astragalus spp.-Agropyron spp.; As-Ps, 
Astragalus spp.-Psathyrostachys spp.. 

Based on the 16-day MODIS composites, plant growth in the study area began in late March due 
to regional changes in climate. The regional NPP values ranged from 0.00 to 10.49 g C/(m2

•a) in 
March and 0.00 to 0.09 g C/(m2

•a) in September (Fig. 6). The production showed an increasing 
trend during 21 March–24 May. The maximum increase in NPP was observed during 8–24 May, a 
significant reduction in NPP (0.00–0.82 g C/(m2

•a)) occurred during 24 May–9 June, and the 
parameter reached values of 0.00–0.09 g C/(m2

•a) on 13 September. 
Comparison of the 16-day NPP and digital elevation model (DEM) maps revealed that NPP 

values depended on temperature conditions at the beginning of the growing season. Moreover, 
plant growth initially started from areas with lower altitudes. NPP values varied depending on the 
condition of the area at different times of the year, i.e., the topography of the area greatly influenced 
the spatial distribution of NPP. In March and April, the NPP values in rangelands located in plains, 
i.e., from 0.00–10.49 g C/(m2

•a) on 21 March (Fig. 6a) to 0.00–12.87 g C/(m2
•a) on 22 April (Fig. 

6c), were higher than the values in rangelands located in highlands. With arise in temperature in 
May, the NPP increased at highlands and reached the values of 0.00–21.92 g C/(m2

•a) for the whole 
study area during late May (Fig. 6e). However, with the beginning of the dry season and the 
considerable increase in temperature, the NPP values sharply declined to 0.00–0.82 g C/(m2

•a) on 
9 June (Fig. 6f). Under such conditions, the highlands were more productive than the plains. In 
addition, the growth of different vegetation types decreased from highlands (lower temperature  
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Fig. 6  Spatial and temporal distributions of NPP values based on the 16-day MODIS composites in 2016 
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and higher humidity) to plains (higher temperature and lower humidity) and reached zero by late 
September. 

In terms of spatial distribution, the western and southern parts of the study area generally had 
higher NPP values. During the growing season, rain-fed and agricultural lands had higher NPP 
values compared to grazed rangelands. Meanwhile, the rocky parts of the southern region had very 
low NPP values. Moreover, due to rangeland degradation, reduced NPP values were observed at 
the vicinity of Semirom County. 

3.2  Relationship between NPP changes and SPI  

The correlation between SPI and NPP changes depended on the vegetation types and rangeland 
conditions (Table 3). For the As-Br and As-Da vegetation types which had either poor or fair 
condition, higher correlations between SPI and NPP changes were detected in rangelands with fair 
condition than in rangelands with poor condition. Among different vegetation types, NPP changes 
in the An.gr-An.fo type had the greatest correlation (R2=0.86) with 1-month SPI (SPI1). The 
correlation coefficients of NPP change with 2-, 3-, 6-, 9- and 12-month SPI were 0.83, 0.34, 0.24, 
0.14 and 0.14, respectively. It can be seen that these correlations sharply decreased in 6-, 9- and 
12-month periods. Rangelands in very poor condition (So-La and Gu-Co) had the lowest correlation 
with SPI and the effect of short-term precipitation was more profound in these areas. 

Table 3  Correlation coefficients of net primary production (NPP) changes and standardized precipitation index 
(SPI) at different time scales 

Vegetation type SPI1 SPI2 SPI3 SPI6 SPI9 SPI12 

An.gr-An.fo 0.86∗∗ 0.83∗∗∗ 0.34∗ 0.24∗ 0.14 0.14 

Ar.au 0.70∗∗∗ 0.63∗∗∗ 0.58∗∗ 0.53∗∗ 0.23 0.23 

As-Ac 0.72∗∗∗ 0.65∗∗∗ 0.54∗∗ 0.50∗∗ 0.28∗ 0.28∗ 

As-Ag 0.83∗∗∗ 0.77∗∗∗ 0.56∗∗ 0.46∗∗ 0.14 0.14 

As-Br.F 0.81∗∗∗ 0.75∗∗∗ 0.67∗∗∗ 0.63∗∗∗ 0.42∗∗ 0.42∗∗ 

As-Br.P 0.79∗∗∗ 0.66∗∗ 0.57∗∗ 0.53∗∗ 0.19 0.19 

As-Co 0.72∗∗∗ 0.70∗∗ 0.55∗∗ 0.50∗∗ 0.31∗ 0.31∗ 

As-Da.F 0.64∗∗ 0.53∗∗ 0.50∗∗ 0.41∗∗ 0.30∗ 0.30∗ 

As-Da.P 0.58∗∗ 0.51∗∗ 0.46∗∗ 0.38∗ 0.24∗ 0.24∗ 

As-Ps 0.53∗∗ 0.65∗∗∗ 0.60∗∗ 0.55∗∗ 0.41∗∗ 0.41∗∗ 

Da-As  0.44∗∗ 0.45∗∗ 0.50∗∗ 0.53∗∗ 0.58∗∗ 0.58∗∗ 

Gu-Co 0.50∗∗ 0.39∗ 0.39∗ 0.31∗ 0.17 0.17 

Eu-He 0.57∗∗ 0.52∗∗ 0.58∗∗ 0.49 0.23 0.23 

So-La 0.55∗∗ 0.41∗∗ 0.36∗ 0.21 0.12 0.12 

Note: SPI1, 1-month SPI; SPI2, 2-month SPI; SPI3, 3-month SPI; SPI6, 6-month SPI; SPI9, 9-month SPI; SPI12, 12-month SPI. ∗, ∗∗ and 
∗∗∗ represent significance at P<0.05, P<0.01 and P<0.001 levels, respectively. 

Larger changes were observed in As-Ag rangelands with grass-shrub composition and good 
condition than in rangelands with similar composition (As-Br) and fair condition. The effect of 
drought on NPP changes was low in degraded areas with very poor condition (Gu-Co and So-La). 
Drought in the growing season differently affected various vegetation types and rangeland 
conditions, i.e., the degraded vegetation type was the most sensitive to precipitation changes during 
the growing season. Generally, under the same rangeland conditions, shrub-bush (Da-As) plants 
were less sensitive to precipitation changes than bushes. In poor rangelands, 3-month SPI (SPI3) 
caused greater NPP changes in bushes than in annual plants. The correlation of NPP changes with 
SPI was higher in As-Br type (bush-grass form) than in bush types. Due to the lack of precipitation 
in June, July, August and September, the correlations of NPP changes with 9- and 12-month SPI 
were completely identical. Moreover, in all vegetation types, the correlation between NPP changes 
and 1-month SPI was significant at 5% significance level. The correlations were significant at 1% 
level in bush-grass types (As-Br and As-Ag) and annual plants (An.gr-An.fo) with good and fair 
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conditions. 
3.3  NPP changes during the drought and wet periods 

We calculated NPP changes in the drought (2013–2016) and wet (2004–2007) periods based on the 
SPI (Fig. 7). During the 4-year wet period (2004–2007), the NPP showed an average increase of 
0.75 g C/(m2

•a) in the study area. The magnitude of changes depended on vegetation types and 
rangeland conditions. During this period, the NPP of An.gr-An.fo and the dominant shrub type (Da- 
As) showed the highest (2.01 g C/(m2

•a)) and lowest (0.52 g C/(m2
•a)) levels of increase, 

respectively. Furthermore, the changes of NPP were larger in bush-grass type than in bush type 
(Fig. 7). 

The total NPP in all studied vegetation types decreased by an average of 1.03 g C/(m2
•a) within 

the 4-year drought period (2013–2016). The highest reduction (1.73 g C/(m2
•a)) was observed in 

An.gr-An.fo while the lowest reduction (0.25 g C/(m2
•a)) in shrub-bush type (Da-As). NPP 

reductions were more pronounced in very poor rangelands than in poor and fair rangelands. 
Although the NPP of rangelands around residential areas did not show a significant increase during 
the wet period (2004–2007), it had a more profound reduction (3.00 g C/(m2

•a)) during the drought 
period (2013–2016). 

 

Fig. 7  Changes of NPP in relation to standardized precipitation index (SPI) during the wet (2004–2007) and 
drought (2013–2016) periods 

4  Discussion 

The results in this study showed that the CASA model was very reliable and had a great potential 
for studying the spatial and temporal dynamics of NPP in the semi-arid rangelands of Semirom 
County, Iran. Our research demonstrated a 95% correlation between observed and estimated NPP 
values over the whole study area. Since the CASA works based on the exact determination of LUE 
values (Yu et al., 2009) and the accurate estimation of LUE, thus, the high accuracy of the model 
can be attributed to the appropriate number of sampling sites, exact classification of rangeland 
conditions and vegetation types in the study area, and to the appropriateness of the sampling size 
in relation to the extent of the study. 

According to the correlations between observed and estimated NPP values, the NPP map did not 
have similar accuracy in all vegetation types. Despite the small LUE values, the observed NPP 
value in An.gr-An.fo type was highly correlated with the estimated NPP value (R2=0.69). 
Furthermore, under different rangeland conditions, the As-Da (R2=0.64 in fair rangelands and 
R2=0.49 in poor rangelands) and As-Br (R2=0.74 in fair rangelands and R2=0.58 in poor rangelands) 
had different correlations between observed and estimated NPP values (Fig. 5).  

In addition, a greater heterogeneity of plant and bare soil (patch and interpatch) was observed in 
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bushlands than in lands with annual herbs and shrub-grass. This affected the sampled data and 
decreased the homogeneity and plant vitality in degraded areas (Li et al., 2011). Therefore, the low 
correlation between observed and estimated NPP values in degraded vegetation types could have 
been caused by the reduced level of correlation between field and remotely sensed data in degraded 
areas and the sampling error due to the plant distribution pattern in shrublands compared to annual 
plant types. Previous research has also confirmed the role of plant distribution pattern and regional 
heterogeneity in sampling accuracy and the effects of plant characteristics in the correlation 
between field and remotely sensed data (Goldsmith, 1991). While the CASA uses the NDVI, the 
values of this index can vary or decrease due to the unique properties of each vegetation type, which 
is determined by the plant species, soil, and physiography of the area. Such a difference or reduction 
can be another reason for the decreased accuracy of the CASA model in NPP estimation and it 
seems to have greater effects in degraded areas with low vegetation canopies (Jafari et al., 2007). 

The level of correlations between observed and estimated NPP values at the sampling sites could 
be influenced by different sources of error. For example, the field production data were collected 
over several days, and the remotely sensed imagery captured landscape conditions at a particular 
point of time. Consequently, temporal variations in rangeland production resulting from continuous 
grazing and changes in weather conditions must be considered as contributors to the variability in 
the field data. In addition, the slight mismatch between the exact area sampled in the field and the 
pixels extracted from the imagery could also potentially reduce the strength of the relationships 
between the two datasets. Finally, the field data were measured by several field workers, which 
added another source of potential variation to the data. It has been previously shown that there may 
be up to 20% difference in the measurements of field data obtained by experienced field workers, 
using objective methods similar to the double sampling approach (Friedel and Shaw, 1987; Wilson 
et al., 1987). The amount of NPP varied from one vegetation type to another. The lowest (10.00 g 
C/(m2

•a)) and highest (46.00 g C/(m2
•a)) NPP values belonged to An.gr-An.fo and As-Ag types, 

respectively. The role of plant physiology (e.g., vegetation form and leaf area index) in water use 
efficiency and production could potentially be responsible for this finding. In addition, regional 
plant composition can affect water penetration (Caylor and Shugart, 2004). Although trees and 
shrubs have deeper roots than bushes, grasses and annual plants have the highest sensitivity to 
drought and low contents of soil nutrients. This sensitivity can considerably affect the production 
and efficiency of plants (Throop et al., 2012). The Da-As (shrub-bush lands) had higher NPP values 
than the species in bushlands, probably due to the latter's high ability to use deep soil moisture. 
Rangelands in very poor condition had lower NPP values, which may be due to their degraded soil 
structure, reduced soil organic and inorganic matter contents, and decreased soil moisture. The soil 
had more desirable properties (e.g., absorbable moisture and nutrients) in rangelands with better 
conditions such as As-Ag rangelands (Zika and Erb, 2009). Plant species, vegetation forms, soil 
types and conditions (Schlesinger and Andrews, 2000), plant distribution pattern (Stephenson, 
1990), and exploitation history (Zhang et al., 2007) are generally considered as factors affecting 
the efficiency and NPP of vegetation types. 

LUE assessments in different rangeland types showed that LUE depended on vegetation types 
and rangeland conditions. In this study, the highest and lowest values of LUE were found in As-Ag 
(0.117 g C/MJ) and An.gr-An.fo (0.010 g C/MJ), respectively (Fig. 5). Therefore, the interaction 
between climatic and physiological factors in plant species seems to be responsible for LUE 
changes. In semi-arid areas, shrubs and bushes have higher drought resistance due to their woody 
stems, deep roots and low evapotranspiration. Hence, these plants have higher photosynthetic 
efficiency and could produce greater annual biomass compared to annual plants (Whitehead and 
Gower, 2001). Since rangeland condition changes can alter photosynthetic efficiency in a 
vegetation type, rangeland degradation decreased both the LUE and NPP values in similar 
vegetation types (e.g., As-Da). 

During the growing season, plants can have different production rates depending on changes in 
temperature and humidity, i.e., plants start to germinate at the beginning of the growing season 
(when the base temperature is reached) and the growth rate increases with the increase of 
temperature and precipitation. The growing season in the study area began on 21 March. The NPP 
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peaked around 24 May and started to decrease on 9 June. Observations have shown that when the 
required moisture is accessible by the vegetation, plant production maximizes in optimal 
temperature. The growth rate decreases and stops as the temperature starts to rise (Clark et al., 
2003). Increased leaf area index in the middle of the growing season has been identified as another 
reason for improving the productivity of plants (Roupsard et al., 2009). The CASA considers 
optimum conditions and soil moisture content, and calculates NPP values based on changes in 
temperature (Potter, 2012a). According to the results of the present study, this model can be used 
to calculate seasonal NPP values in different vegetation types at regional levels. This finding is in 
line with seasonal weather changes and the findings of previous study (Potter et al., 2012b). Thus, 
the estimation of NPP (for various applications) is possible based on daily growth rates and climatic 
parameters at various phases of plant phenology (Cuadra et al., 2012). 

Annual evaluations highlighted the major effects of precipitation on NPP. Although drought 
conditions (2013–2016) reduced NPP levels in all vegetation types throughout the study area, the 
NPP increased during the wet period (2004–2007) (Fig. 7). The results indicated a strong 
correlation between SPI and NPP changes in all vegetation types (Table 3). Studies in semi-arid 
regions have reported that precipitation affects the NPP of plants through its effects on soil moisture 
(Chen et al., 2013). This might be caused by the effects of drought on leaf area index, as a 
determinant of changes in NPP. In fact, long-term and repeated periods of drought could reduce the 
carbohydrate storage of plants and impair their physiological balance. Consequently, the plants will 
be unable to increase production even in wet periods (Holechek et al., 1989). Additionally, due to 
the fragility of the ecosystems in semi-arid areas compared to humid areas, drought periods have 
more destructive effects on plants. Such effects will be more intense in degraded areas (Lei et al., 
2015). Therefore, drought is considered as the most important climatic factor controlling plant 
production and carbon cycle in semi-arid regions (Peng et al., 2015). Large annual fluctuations in 
plant production are also observed in these areas (Wessels et al., 2007). 

An.gr-An.fo plants exhibit better responses to short-term and repeated precipitation due to their 
root structures. Shrub-bush plants (e.g., As-Da) have different root structures and woody stems 
which make the species less sensitive to long periods without precipitation, i.e., they have a higher 
drought-tolerance than grasses. Consequently, SPI had larger correlations with NPP in As-Ag and 
As-Br plants than in species of bushlands. NPP was less sensitive to climate in the shrub-bush type 
(Da-As) than in bush type. Previous studies have also reported similar findings (O'connor and Roux, 
1995; Xu et al., 2013). According to previous studies, due to destructed soil structure, decreased 
soil permeability and reduced vegetation canopy, the effect of precipitation on NPP decreases and 
the runoff increases in poor and very poor rangelands (Gao et al., 2013). 

High seasonal fluctuations in precipitation were observed in the study area. In fact, precipitation 
mainly occurred during the cold seasons and amounted to zero (in some parts) as the temperature 
rose at the beginning of the warm seasons. As a result, plant growth declined and phenological 
stages gradually stopped in the warm seasons. Moreover, since the plants could not grow with 
temperature fall during the cold seasons (until late March), their growth period was limited to the 
interval between 21 March and the first week of June (Fig. 6). These factors decreased NPP in 
semi-arid regions (Fridley et al., 2016). Low temperatures and delayed plant phenological stages at 
highlands reduced NPP values in the early growing season (Fig. 6). Therefore, exploitation of these 
areas in the early growing season disturbs plant physiology balance and leads to soil erosion (Wang 
et al., 2017). 

The CASA model uses monthly precipitation data to measure soil moisture. However, shrubs 
and bushes can use deep soil moisture for a long time due to their root structure. The model was, 
hence, more accurate in estimating NPP in the annual plant types. Although soil moisture is the 
most important determinant of NPP in semi-arid areas, it only ranges between 0 and 1 in the CASA 
model. Consequently, parameters in the CASA model need to be revised for semi-arid areas.  

5  Conclusions 

The CASA model applied in this research could estimate NPP in semi-arid rangelands of Iran with 
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a high accuracy at the regional scale. The results suggested that vegetation types (vegetation forms 
and plant species), rangeland conditions and regional topography affected the LUE values and thus 
the accuracy of the CASA model. The correlations between NPP changes and SPI indicated that 
within a particular region, NPP values differed depending on plant species, vegetation forms and 
rangeland conditions. Annual plants and shrubs respectively showed the highest and lowest 
sensitivity to drought variations. Moreover, the effects of seasonal distribution pattern of 
precipitation on NPP varied in different plant species. The effects of drought and wet periods on 
NPP were determined by rangeland conditions and the local characteristics of the region, i.e., 
degraded areas and areas near villages were mostly damaged by drought and were less likely to be 
restored during the wet periods. Furthermore, NPP values were decreased in the study area where 
the growing season was limited to a few months due to the low temperatures in the cold seasons 
and the lack of precipitation in the warm seasons.  

The results of this study confirmed the applicability of the CASA model for the estimation of 
NPP in rangeland vegetation types at different spatial and temporal scales. CASA modeling can 
facilitate the assessment of rangeland readiness based on NPP values and the determination of 
rangeland capacity for various utilizations such as grazing and wildlife use. In addition, rangeland 
degradation processes in various vegetation types can be studied by NPP evaluations. Therefore, 
this study recommends the application of the CASA model for the evaluation and monitoring of 
wide rangelands in Iran (covering over 52% of the country). The model outputs provide up-to-date 
and valuable information on plant production that can be used for reporting rangeland conditions.  
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