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Abstract: Conversion of  forest land to farmland in the Hyrcanian forest of  northern Iran increases the 
nutrient input, especially the phosphorus (P) nutrient, thus impacting the water quality. Modeling the 
effect of  forest loss on surface water quality provides valuable information for forest management. This 
study predicts the future impacts of  forest loss between 2010 and 2040 on P loading in the Tajan River 
watershed at the sub-watershed level. To understand drivers of  the land cover, we used Land Change 
Modeler (LCM) combining with the Soil Water Assessment Tool (SWAT) model to simulate the impacts of  
land use change on P loading. We characterized priority management areas for locating comprehensive and 
cost-effective management practices at the sub-watershed level. Results show that agricultural expansion 
has led to an intense deforestation. During the future period 2010–2040, forest area is expected to 
decrease by 34,739 hm2. And the areas of  pasture and agriculture are expected to increase by 7668 and 
27,071 hm2, respectively. In most sub-watersheds, P pollution will be intensified with the increase in 
deforestation by the year 2040. And the P concentration is expected to increase from 0.08 to 2.30 mg/L in 
all of  sub-watersheds by the year 2040. It should be noted that the phosphorous concentration exceeds 
the American Public Health Association′s water quality standard of  0.2 mg/L for P in drinking water in 
both current and future scenarios in the Tajan River watershed. Only 30% of  sub-watersheds will comply 
with the water quality standards by the year 2040. The finding of  the present study highlights the 
importance of  conserving forest area to maintain a stable water quality. 
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1  Introduction 
In recent decades, forest land was converted to farmland for feeding the increasing population of 
the world. Changing land use in watersheds affects both hydrologic process and water quality. It 
is recognized that developed regions have more runoff and nutrients than that of undeveloped 
areas, affecting downstream aquatic environment (Environmental Protection Agency, 1978). With 
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the expansion of agriculture land and increased demand for water resources, assessment through 
modeling the pattern and impacts of future development is critical for the protection of water 
quality (Sanyal et al., 2014). Currently, increasing land use change is one of the most significant 
problems facing Iran. This is a result of rapid land use transformations that is occurring in the 
absence of regional planning and ineffective environmental regulations (Kelarestaghi et al., 2006; 
Kavian et al., 2014).      
  Hyrcanian forests have a long history of occurrence (arising in the Jurassic Period) and are 
among the most valuable forests in the world. A comparison of land-use condition between 1988 
and 2004 in the northern forests of Iran showed that 12,152 hm2 of forests were lost during this 
period. The deforestation rate was estimated to be at 8101 hm2/a. Also, Marakhorlou and 
Akhavan (2006) reported that Hyrcanian forest cover in the provinces of Mazandaran, Golestan 
and Guilan was lost by 69%, 49%, and 21%, respectively. Emadodin (2008) reported that the 
percentage of Iranian land use change increased in the past 50 years and is expected to accelerate 
in future. On the other hand, destruction of grasslands for farming and excess grazing by animals 
is a major problem in Iran and the world (Khaledian et al., 2012). Phosphorus (P) is one of 
non-point source pollutants that impair surface water quality. Deforestation removes nutrients 
from the system, enhances soil erosion, and reduces nutrients in percolates. Soluble P is available 
to plants in inorganic form called the orthophosphate. Orthophosphates are transferred through the 
diffusion process in water bodies and in surface flows. They are easily adsorbed onto clay 
particles or get attached to organic matter, and thus are limited to the top soil layers (Rajib et al., 
2016). Thus, P is mostly transferred in the surface runoff. Excess P in streams can lower dissolved 
oxygen, increase toxic algal blooms and fish kills, and result in loss in stream biodiversity (Zeiger 
et al., 2016).  
  Landscape patterns affect both ecological and socio-economic factors in different ways. 
Agriculture in the Mazandaran Province is a major source of nutrients. Paddy cultivation near the 
river adds nutrients to the river. Agriculture in this watershed is expanded due to fertile lands and 
the abundance of water supplies. It is estimated that 170×103 tons of P fertilizers are used per year 
in agricultural lands of the Mazandaran Province. About 4000 kg/hm2 of fresh manure is applied 
annually to orchards in the region according to the information center of Ministry of 
Jahade-Agriculture (MOJA). In addition, grazing is predominant in the watershed with 
approximately 1.5×105 sheep and 3.0×104 cows that contribute to P losses to the streams, 
especially from May to September (Rajaei et al., 2017). Residential land is another major source 
of P into the river. The watershed is densely populated with roughly 5×105 residents (2011), with 
approximately 2×105 people living in rural areas (400 villages) and rest in cities (4 cities). In 
many parts of the watershed, untreated sewage from towns and villages near the river is directly 
discharged into the Tajan River. Meanwhile, waste water from Sari City is also directly 
discharged into the river. For these reasons, the nutrient load into the Tajan River is high due to 
runoff in late fall and winter seasons.  
  There is a need for improved understanding of the process of land use change for sustainable 
land management and protecting forest ecosystems. It is also important to develop water quality 
information for integrated management of water resources. During the past two decades, many 
land use/cover change (LUCC) models were developed to evaluate land management. These 
models are many types that include static or dynamic, spatial or non-spatial, inductive or 
deductive, agent-based or pattern-based models (Gaucherel and Houet, 2009). LUCC models in 
general have three sub-models for changing land demand, transition potential, and allocation of 
change (Eastman et al., 2005). Generation of transition potentials can be modeled using a logistic 
regression (LR) as used in the CLUE-S (Conversion of Land Use and Its Effects at Small 
Regional Extent) model (Verburg et al., 1999) and Land Change Modeler (LCM; Eastman, 2006). 
Other methods use empirically derived probabilities as used in the GEOMOD model (Pontius et 
al., 2001); weights of evidence as used in DINAMICA (Soares-Filhoetal., 2002), and Multi-Layer 
Perceptron (MLP) as used in the LCM (Eastman, 2006). Two procedures, MLP and LR, are 
viable techniques, with MLP being more robust than LR (Eastman et al., 2005). Also, MLP can 
model non-linear relationships between explanatory variables (Eastman, 2009). The 
CA-MARKOV, DINAMICA, and LCM use a Markov transition matrix to calculate the 
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probability of change for each transition. These Markovian projections assume that the rates of 
change during the calibration period will remain the same during the simulation period. This 
could be an erroneous assumption in many cases which is different from the calibration period. 
Also, the CLUE model can be calibrated with one available LUCC map. In LCM models, the 
transition probability maps are derived from the relationships between areas that changed in the 
past and explanatory variables. These transition probability maps from LCM can provide better 
estimates of future LUCC. The programs also offer more flexibility to fit user needs than 
CA_MARKOV and DINAMICA models. LCM and CLUE also present a rigid structure in LUCC 
modeling, and can be advantageous for them (Mas et al., 2014). This study uses a dynamic, 
spatially explicit model based on an inductive, pattern-based approach. In this approach, LUCC is 
modeled using the past spatial distribution of land cover to assess the potential for change as a 
function of a set of explanatory variables (Mas et al., 2014). 
  A large number of water quality studies explore the impacts of changes in land use on runoff 
and non-point source pollution (Ning et al., 2006; Kibena et al., 2014; Ayanlade and Howard, 
2017). Many studies in future land use do not incorporate hydrologic or water quality modeling 
(Kim, 2010; Mas et al., 2014; Teixeira et al., 2014; Yang et al., 2014; Zheng et al., 2015). Some 
studies identify critical source areas and land use management at a basin scale using SWAT (Liu 
et al., 2013, 2016; Lamba et al., 2016; Zeiger and Hubbart, 2016). Other studies consider 
modeling the effects of future land use change on water quality (Marshall and Randhir, 2008; 
Wilson and Weng, 2011; Zhang et al., 2013; Mehdi et al., 2015; Rajib et al., 2016; Nguyen et al., 
2017). This present paper aims at integrating LCM with the SWAT model to simulate the impact 
of land use change, especially to assess potential loss of Hyrcanian forest to future agriculture and 
its impacts on water quality at the sub-watershed level, with the aim of determining critical source 
areas. This study also evaluates the extent and contribution of the Tajan River watershed to P 
pollution in discharge entering the Caspian Sea. Also, results of this research will be useful in 
evaluating the vulnerability of sub-watersheds in future period. 

2  Materials and methods 
2.1  Study area 
The Tajan River watershed located in northern Iran has an area of 4×103 km2 
(35°56′28″–36°47′58″N, 53°00′01″–54°10′25″E; Fig. 1). The climate is characterized by a cold 
and longer winter but a mild and short summer. Annual mean temperature is 16°C with a 
minimum of 2.4°C in December and a maximum of 30.8°C in August. Annual rainfall is less than 
700 mm in the watershed.   
  The watershed consists of forest mountains and includes different land uses like forest, pasture, 
and agricultural areas of the coastal plain to the Caspian Sea, which is the biggest land-locked 
water body in the world. Agricultural activities, especially paddy cultivation in the riparian zone 
of the rivers, play a significant role in the contamination of surface water through fertilizers in 
runoff. This watershed is selected for the study for its excellent water flow, distinct point sources 
along the river, and a wide variety of land uses within its boundaries. Also, a combination of 
heavy fertilizer usage and existing monitoring data on nutrients will be useful in modeling the 
watershed. 
2.2  Landsat image processing and derivation of future land use map 
Remote sensed images for 1984, 2001 and 2010 obtained from Landsat 5 and Landsat 7, respectively, 
are corrected using geometric (using the ground control points and topographic maps) and 
atmospheric (using the dark-object subtraction) methods. A hybrid classification method was used 
for preparing the land use map. This included supervised classification (maximum likelihood 
method) and unsupervised classification (K-Means method) for extraction of land cover classes. 
Also for visual interpretation and for extraction of features such as roads and residential areas, we 
used Google Earth (Rafiee et al., 2009; Abd El- Kawy et al., 2011; Rozenstein and Karnieli, 
2011). 
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Fig. 1   Tajan River watershed and its sub-watersheds basing on Universal Transverse Mercartor (UTM) Grid 
System. It should be noted that No. 2 sub-watershed was deleted during the process of calibration.    

  The method used in land change modeler is explained in detail by Oñate-Valdivieso and 
Bosque Sendra (2010). In developing land use scenario maps for 2040, we used a MLP neural 
network method built within the Markov chain modeling method in LCM. For transition potential 
analysis, we used land uses from different times to calculate spatial changes and to calibrate the 
model. In this study, the land use maps for 1984 and 2001, and 12 spatial variables were used in 
modeling the transition potential. All land use change drivers (variables) were tested for their 
predictive power using Cramer V coefficient, which represents the explanatory power of 
relationship between variables and land cover changes (Pistocchi et al., 2002). The Cramer V 
coefficient ranges between 0 and 1, with values closer to 1 indicating a high correlation and a 
higher explanatory power. Seven variables including elevation, slope, distance from residential 
areas, distance from agricultural lands, distance from village areas, distance from roads, and 
distance from river were removed from the model due to a low value of Cramer V coefficient. 
Finally, 5 drivers of land use change that had the highest Cramer V coefficient were used, which 
included NDVI (Normalized Difference Vegetation Index), the distance to river, distance to edge 
of the forest, distance to pasture, and empirical likelihood to change. After selecting variables for 
transition, we calculated transition potential for the future for three transitions using the MLP 
neural network. These transitions include forest to agriculture, forest to pasture, and pasture to 
agriculture. A two-stage approach was used in developing future land use maps. The first stage 
used the classified land use map for 1984 and 2001 in order to simulate a land use map for 2010. 
The 1984 and 2001 land use maps served as observed data for calibration of the LCM, while the 
2010 map was used to verify the simulated map. The accuracy rate and a skill measure are 
computed to assess the transition potential for use in the artificial neural network modeling. For 
validation, the map extracted from the 2010 image was considered as a reference, and confusion 
matrices were used to study the correspondence between the reference map and those obtained 
from neural networks. Therefore, forecast errors of the land use prediction by the model, as well 
as the omission and commission errors were effectively determined. The reliability of the 
classification is calculated from the confusion matrix as a ratio of correctly assigned pixels to that 
of total pixels (Chuvieco, 2002). 
2.3  Soil Water Assessment Tool (SWAT) model 
The SWAT is a hydrologic model that simulates the land management impacts on hydrologic 
processes in large and complex watersheds (Arnold et al., 2012). The model has several 
components: weather, surface runoff, return flow, percolation, evapotranspiration, transmission 
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losses, pond and reservoir storage, crop growth, irrigation, groundwater, reach routing, nutrients, 
pesticide loading, and water transfer. 
  The data required for the study were obtained from different sources. The spatial data included 
land-use maps derived from the Landsat ETM imagery (30-m spatial resolution), and Digital 
Elevation Model (DEM) from the Global NASA/NGA 90 m Shuttle Radar Topography Mission 
(SRTM) dataset. The soil map is obtained from the FAO (1995) online database, and the weather 
information (daily precipitation, maximum temperature, and minimum temperature) is obtained 
from the Meteorological Organization of Iran and Iran water resource management company for 
stations located in the study area (20 weather stations).  
  The watershed is divided into 27 sub-watersheds and 407 hydrologic response units. This 
division is based on the recommended maximum drainage area threshold of 4000 hm2 which was 
generated in the Arc SWAT tool using the DEM layer. Key inputs related to agricultural 
management consisted of planting, plowing, grazing and fertilizer, manure, and irrigation were 
used in the model as documented by Iranian Ministry of Jahade Agriculture (2007) data. 
Information on irrigation schedule, irrigation sources, and fertilizer application for each 
sub-watershed was manually entered into the model.  
2.4   Model calibration and validation  
The SWAT model was calibrated and validated using monitored stream flow and P loading data. 
Calibration is done in two stages. Initially, sensitive parameters that affect the river flow were 
calibrated using observations from monitored streamflow data. The monthly discharges were 
recorded by the Ministry of Energy at three stream gauges (Kordkhil, Solaimantange, and 
Rigcheshme). After the streamflow calibration, the model was calibrated for P levels. P loading 
data for the stations collected by the Ministry of Energy was used to calibrate at monthly time 
intervals between 2011 and 2014.  
  The SWAT Calibration and Uncertainty Procedures (SWAT-CUP) software was used for the 
auto calibration because of its capability to perform calibration, validation, sensitivity analysis, 
and uncertainty analysis (Abbaspour, 2015). Sequential Uncertainty Fitting algorithm (SUFI-2) is 
more efficient in achieving an accurate prediction than other algorithms of the SWAT-CUP 
program (Faramarzi et al., 2010; Azimi et al., 2013; Ma et al., 2014; Abbaspour, 2015). Thus, 
SUFI-2 was used for calibrating the stream flow. Two indices were used to quantify the strength 
of a calibration/uncertainty analysis, namely P-factor and the R-factor (Abbaspour et al., 2007). 
The P-factor represents the percentage of data with 95% prediction uncertainty (95PPU), which is 
calculated for the cumulative distribution of the variable through a Latin hypercube sampling. The 
P-factor is the degree of model uncertainties. The R-factor is the average thickness of the 95PPU 
band, divided by the standard deviation. The objective is to model the measured data (the P-factor 
approaching 1) with a least possible uncertainty band (R-factor approaching 0). Two standard 
objective functions, relative Nash-Sutcliffe coefficient of simulation efficiency and coefficient of 
determination were used to assess the model performance. 

3  Results 
3.1  Land cover change 
The overall Kappa metric for land cover maps of 1987, 2001, and 2010 was 81%, 83%, and 87%, 
respectively, which exceeds the minimum threshold needed for remotely sensed images 
(Congalton, 1991). The use of MLP neural network to measure the relationship between the 
transitions and their explanatory variables confirms that both the values of RMSE in training 
phase and the validation phase have a calculated error lower than 0.002, which is within an 
acceptable level. The accuracy rate and the skill measure of the transition potential using the MLP 
neural network were 82% and 0.81, respectively, which are acceptable. Calculating from the 
confusion matrix, the reliability of the MLP model results reached up to 82%, which is also 
within an acceptable range. 
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  Understanding the role of patterns, rates, and trends in land cover change in watersheds is 
essential for evaluating forest dynamics, sustainability conservation, and the management. 
Changes were observed in forest, pasture, and agricultural lands, which cover 98% of the 
watershed area, while other land cover types (barren lands, river, road, water body, and residential 
areas) accounted for only 2% of the total area. During the period 1984–2010, forest area 
decreased to 66,493 hm2. Pasture and agriculture increased to 33,904 and 31,292 hm2, 
respectively. The forest was a dominant land cover type (72% in 1984 and 55% in 2010, 
respectively) in the study area (Fig. 2). The total area of forest was 8.4 times higher than area 
under agriculture in 1984 and 3.1 times higher in 2010. In general, the gains in agriculture land 
came from forest and pasture land. As expected, the most significant change was from forest to 
other types of cover. Forest showed the largest decline in its area, with only about 76% of the area 
in 1984 still remaining in 2010. Pasture increased in 2010 by around 30% (105×103 hm2) 
compared to the 1984 area (73×103 hm2). The area occupied by agriculture was 19% (32×103 
hm2) in 1984, which increased to 26% (66×103 hm2) in 2010. 

 
Fig. 2   Land cover maps of the study area in Tajan River watershed for the years 1984 (a), 2001 (b), 2010 (c) 
and predicted land use map of 2040 (d) 

  Land cover changes did not occur at equal rates during the period 1984–2010, as the rates of 
change declined over the last ten years. The area of forests fell by 19% in 2001, and 5.2% in 
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2010. Agricultural area increased by 100% in 2001 and 13% in 2010. Pasture cover increased by 
28% in 2001 and 4% in 2010.  
  The forest area is expected to decrease by 34,739 hm2 in 2040 compared to that of the year 
2010. Pasture and agriculture are expected to increase by 7668, and 27,071 hm2, respectively. 
Gains and losses in three land cover types are evident between 2010 and 2040 (Fig. 3). Forests 
will still be the dominant land cover type (46% in 2040) in the study area. The total area of forest 
can be 1.8 times higher than the agricultural area in 2040. Forest is expected to have a largest 
decline in its area, about 84% of its extent remaining in 2040 compared to that of 2010. The 
agricultural area can be increased by about 51% compared to 2010. The area occupied in 2040 for 
agriculture will be 93,799 hm2, compared to 66,728 hm2 in 2010. 

 
 
Fig. 3  Gain, loss and net change for each land cover type between 1984 and 2001, 2001 and 2010, and 2010 and 
2040 in the Tajan River watershed 

3.2  Calibration and validation of SWAT model 
Parameters were changed to calibrate the model for observed streamflow and P loading. A 
sensitivity analysis is used to select parameters for calibration. Table 1 illustrates the result of 
calibration and validation, which is acceptable and can be used for evaluating alternative 
scenarios. 

Table 1  Model evaluation statistics for calibration and validation of phosphorus loading 

Index 
Solaimantange station Rigcheshme station Kordkhil station 

Calibration 
(2006–2010) 

Validation 
(2011–2014) 

Calibration 
(2001–2010) 

Validation 
(2011–2014) 

Calibration 
(2005–2010) 

Validation 
(2011–2014) 

R2 0.72 0.79 0.71 0.62 0.66 0.78 

NSE 0.60 0.61 0.69 0.59 0.56 0.58 
Note: R2, coefficient of determination; NSE, relative Nash–Sutcliffe coefficient of simulation efficiency. 

3.3  Impact of land use change on P loading 
Figure 4 shows the effects of increased land use on P loading at the outlet of each sub-watershed 
in the Tajan River watershed. In most sub-watersheds, change in P loading increased with the 
development occurring by the year 2040. The P concentration ranged from 0.08 to 5.10 mg/L 
among the sub-watersheds in 2040, which was 0.09 to 5.00 mg/L in 2010. In general, the mean 
annual P loading increased by 17% in 2040 compared to 2010. 

4  Discussion 
4.1  Land use change in the future 
Results show that the current trend in land use changes could lead to more forest degradation. 
Forests in Iran, like many other developing countries, are facing over-exploitation and land use 
conversion to satisfy the needs of rapid population growth and the intense economic pressures. 
Forest area in Iran is only 0.2 hm2 per capita, which is significantly lower than the global average 
level of 0.8 hm2 per capita (Mashayekhi et al., 2010). In northern parts of Iran, the area under 
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Fig. 4   Phosphorus concentration at the sub-watersheds of Tajan River in 2010 (a) and 2040 (b) 

forest land has decreased by 3.2%, and that of arable land increased by about 36.9% during the 
period 1967–2002 (Kelarestaghi and Jafarian Jeloudar, 2011). The general trend in the Tajan 
River watershed has been a continuous reduction in natural vegetation (forest and pasture cover). 
This land often loses its fertility after one or more cultivations and becomes unsuited for 
agriculture and is returned to pasture (Talebi et al., 2009). It is noteworthy that deforestation is 
still ongoing in many regions and in the absence of appropriate conservation programs for 
restoration and rehabilitation, meanwhile, the forest will be reduced to less than half the current 
area over the next 70 years (Talebi et al., 2009). Assessment of spatial change provides critical 
information for land use, conservation, and restoration planning in landscapes. Results show that 
most deforestation is concentrated in a branch of the Tajan River and located in central and east 
of the watershed. Existing forest and pasture lands with adjacent farming has a higher potential 
for agriculture development. This change has a high overall agreement based on Cramer V 
coefficient for some variables: distance from the river, distance from edge forest, and distance 
from pasture. These variables are useful as criteria in landscape planning. Also, increasing 
demands for forest resources for food, shelter, fuel wood, and construction materials are major 
factors responsible for forest loss.   
4.2  Impact of future land use on phosphorus contamination   
As shown in Figure 4, concentration of P in each sub-watershed varied in amounts and 
fluctuations in both 2010 and 2040. The result shows that more significant pollution levels occur 
in 2010, but there is no similar trend in future scenarios, which is consistent with previous studies 
(D′Almeida et al., 2007; Li et al., 2007; Nobert and Jeremiah, 2012). It could be attributed to the 
difference in percentages of land use changes among sub-watersheds. Thus, the impacts of natural 
cover and agriculture are also different among the sub-watersheds. Sub-watersheds Nos. 5, 6, 18, 
10, 11, 13, 25, 27, 26, 21, 24, and 20 were identified as the areas of low pollution in 2010, while 
these areas are expected to have a relatively high pollution by the year 2040. This result can be 
explained by the expansion of agriculture land and declination of forest land in these 
sub-watersheds. 
  In sub-watersheds Nos. 6, 25, 13 and 11, area of forest land conversion to agriculture may be 
increased by 11%, 14%, 17% and 11% by the year 2040, respectively (Fig. 5), and can result in 
more P discharge into the river (Huang et al., 2015). Also, in irrigated and rainfed crops with use 
of P fertilizers, P attached to soil particles will be easily transferred along with sediment into the 
stream. Additionally, change in natural vegetation can cause a shift in organic forms of P in two 
ways: in the first case, increased erosion of surface soil and transportation of P-rich particles; and 
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in the second case, increased mineralization through soil tillage. A wider canopy of forest cover 
and an extensive root system can promote infiltration, increase soil moisture content, promote 
groundwater recharge, and thereby contribute to a slow release of water and reduced pollution (de 
Groot et al., 2010).  

 
Fig. 5  Change in forest area in the sub-watersheds of Tajan River in 2010 and 2040 

  Vegetation acts as a sponge, soaking up and storing water when it is abundant and releasing it 
slowly during the dry periods. This system of water regulation reduces the impact of floods and 
droughts on downstream communities and can improve water quality. Xiao et al. (2015) found 
that water retention improved by 2.07% as a result of vegetation restoration in China. Markewitz 
et al. (2004) reported that clearing and burning of tropical forest has altered the Amazonian region 
through increasing in pastures and secondary forests. Although forests regrow after agricultural 
abandonment, analysis of nutrient stocks and flows show that the rates of regrowth and long-term 
biomass accumulation may be constrained by nutrient availability, particularly mineralization of 
N and P from recalcitrant soil stocks. Also, sub-watershed No. 24 is expected to have a larger 
increase than other sub-watersheds by the year 2040. This might be due to a severe loss (20%) of 
forest to agriculture compared to other sub-watersheds. Somura et al. (2012) found that in 
sub-watersheds with dominant agricultural lands and pastures, the concentrations of total P and 
orthophosphate are four and two times higher, respectively than a sub-watershed of the dominant 
forest. A comparison of P concentration in each sub-watershed show that the pollution levels in 
sub-watersheds Nos. 3, 8, 12, 19, and 23, can have a lower P concentration in 2040 than in 2010. 
It might be due to an increase in runoff in these sub-watersheds, which is estimated to increase 
2–3 times and likely to dissolve the P loading. There is no significant difference between 2010 
and 2040 in sub-watersheds Nos. 1, 4, 7, 14, 15, 16, 17, 20, and 22 that are undergoing expansion 
in agriculture. Also, sub-watershed Nos. 18 had 58% and 56% changes in agriculture in 2010 and 
2040, respectively, and thus has a relatively low P concentration. This can be due to agriculture 
production in suitable slope.  
  Although positive relationship exists between the land use/land cover (LULC) and their impact 
on basin nutrients (Kibena et al., 2014; Giri and Qiu, 2016; Sing and Saraswat, 2016), the amount 
of nutrient can be affected by other factors such as the characteristics of sub-watersheds. The 
shape and slope of sub-watersheds may also play a vital role in nutrient loads (Waters and 
Webster-Brown, 2016). These factors may partially explain why LULC changes in different 
sub-catchments vary in impacts on water quality. Therefore, these factors are simultaneously 
influencing nutrient load of these sub-watersheds. Shen et al. (2015) observed that watershed 
topography, such as slope, and basin size are important factors in determining contribution to 
water quality. Also, different spatial distributions of pollutants could be attributed to the 
differences in sediment production in each sub-watershed. The amounts of sediment produced by 
each sub-watershed is a major factor in P transportation as P would be attached to the sediment 
and transferred through soil erosion (Zhou and Gao, 2011). The major form of P from rangeland 
is in solution form. One of the characteristics of the Tajan Watershed is sheep grazing. Sheep are 
grazed in the watershed in the warm months from May to September. Sheep and cows are grazed 
on pastures (approximately 150×103 sheep and 30×103 cows, respectively) contributing to P 
loading to streams through manure runoff. The high density of livestock on rangeland with sparse 
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vegetation cover increases erosion. Therefore, exposed ground surface can transfer more P into 
streams. 
4.3   Identification of critical area for spatial distribution  
The water quality in the Tajan River and its tributaries is expected to exceed the APHA criteria of 
0.2 mg/L for P (APHA, 2002) in future scenarios. As shown in Figure 4, the water quality 
standard for P is exceeded at present, and also will continue to exceed in future. So, managing P 
is a challenge during both current and future periods in the Tajan River basin. According to the 
water quality standards, only sub-watersheds Nos. 9, 12, 14, 15, 16, 17, 19, 22, and 27 will have 
reached the water quality standards by the year 2040. Spatially, the water quality impairments are 
more severe in the north than in the southern region of the watershed.  
  We classified the 26 sub-watersheds into six groups based on their water quality impairment. 
Approximately, the water quality will reached 4.5% of P by 2040, and only 9.0% of 
sub-watersheds meet water quality standard. Specifically, 2 of sub-watersheds, 12 of 
sub-watersheds , 8 of sub-watersheds,  1 of sub-watersheds  and 2 of sub-watersheds were 
identified as the 1st, 2nd, 3rd, 4th, 5th level for P, respectively (Fig. 4), which respectively accounts 
for 4.8%, 56.8%, 31.8%, 3.2%, and 1.2% of the entire watershed area for 2040 while that of 2010 
including 1 of sub-watersheds, 16 of sub-watersheds, 4 of sub-watersheds, 2 of sub-watersheds, 
and 1 of sub-watersheds were identified as the 1st, 2nd, 3rd, 4th, 5th level for P, respectively, which 
respectively accounts for 8.5%, 67.9%, 11.0%, 8.3%, and 2.4% of the entire watershed area. 
  If P exceeds above the standard of water quality, it can cause changes in the types of plants and 
animals, plant growth, temperature, and oxygen level in the water. P levels in water may also be 
influenced by other natural factors or human activities. In recent decades, the use of detergents 
and excessive uses of chemical fertilizers, industrial waste and septic system overflow, place a 
catchment at risk of excessive P. This study can be useful in managing P to reduce eutrophication 
risk. This study could be used to design a monitoring network by optimizing the number and 
locations of stations. We propose a water quality station in sub-watersheds Nos. 24 and 7, 
especially in sub-watershed No. 24, which located in upland the Shahid Rajaei dam. Meanwhile, 
spatial distribution of P concentration can be useful to watershed managers in planning and 
implementing management practices. It is better to focus management strategies in areas with 
high pollution than managing the entire region (Shang et al., 2012; Zhao et al., 2013). The results 
show that some areas with high load are concentrated in the upstream. Simulated management 
strategies can provide a partial solution for achieving a reduction in future. Management practices 
like buffer strips, cover crops, crop rotations, creating cover soil especially in cold season, 
farming on steep slopes are proposed to reduce P concentration (Mehdi et al., 2015). The impact 
of future climate change should also be considered for targeting watershed areas. 

5  Conclusions 
In this study, we elucidated the impact of forest loss on P loading in the Tajan River watershed. 
Results show that P concentration in Tajan River watershed would increase by 17% by the year 
2040. We design a new framework to identify watershed priority areas by quantifying the 
pollution concentration for management. Almost 91.5% and 95.2% of the watershed area exceed 
the water quality standard for drinking in 2010 and 2040, respectively. There is a need to revise 
management strategies of the Tajan River watershed to avoid water quality issues. Expansion of 
farmlands in the absence of land use management practices can cause serious environmental 
problems. Land use optimization is one important management tool, which can protect water 
quality in the watershed. We propose combining the SWAT model and multi-criteria evaluation 
for the identification of suitable sites for agriculture expansion in the future. 
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