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Abstract: Desert ephemeral plants play an important role in desert ecosystem. Soil water availability is consid-
ered as the major restrictive factor limiting the growth of ephemeral plants. Moreover, arbuscular mycorrhizal fungi 
(AM fungi) are widely reported to improve the growth of desert ephemerals. The present study aimed to test the 
hypothesis of that AM fungi could alleviate drought stress of desert ephemeral Plantago minuta, and AM fungal 
functions reduced with the improvement of soil water content. A pot experiment was carried out with three levels of 
soil water contents (4.5%, 9.0%, and 15.8% (w/w)), and three AM inoculation treatments (Glomus mosseae, Glo-
mus etunicatum and non-inoculation). The results indicate that mycorrhizal colonization rate decreased with the 
increase of soil water availability. Inoculation improved plant growth and N, P and K acquisition in both shoots and 
roots regardless water treatments. When comparing the two fungi, plants inoculated with G. mosseae performed 
better than those inoculated with G. etunicatum in terms of plant growth and nutrient acquisition. These results 
showed that ameliorative soil water did not suppress arbuscular mycorrhizal fungal functions in improving growth 
and nutrient acquisition of desert ephemeral Plantago minuta. 
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Desert ephemeral plants are specially adapted to harsh 
desert environments. Generally, they remain dormant 
until a rare rainfall event occurs where they emerge 
with the appearance of short, wiry grasses and delicate 
flowers. These plants grow and flower quickly before 
the desert soil dries up again. Desert ephemeral plants 
usually have a very short epigeous phase ranged from 
40 to 90 days with a mean of 76 days (Mao and Zhang, 
1994; Zhang and Chen, 2002; Ramawat, 2010).  

In China, desert ephemeral plants are mainly dis-
tributed in North Xinjiang with the easternmost limit at 
the eastern edge of the Junggar Basin (Mao and Zhang,  

1994). In Junggar Basin, ephemerals emerge in March 
and disappear between May and June. In early spring, 
ephemeral plants are dominant in the plant commu-
nity and form a synusia, with the fresh weight of 
ephemerals accounting for over 60% of the total 
community yield (Zhang and Chen, 2002). Ephemer-
als play a key role in dune stabilization and can re-
duce the intensity of wind erosion (Wang et al., 2003) 
and desert ecosystem stability (Qian et al., 2007; 
Wang et al., 2009). 

Desert soil is typically deficient in soil water 
availability and nutrients. For example, the mean  
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annual precipitation ranges from 100 to 200 mm with 
a high surface evaporation of 1,000–1,700 mm (Wang 
et al., 2003). Soil water contents in soil layer of 0–30 
cm are 2%–5% and the available P is less than 2 
mg/kg soil (Wang et al., 2004; Shi et al., 2013). 
Ephemeral plants can survive and complete their life 
cycles in such harsh conditions. Therefore, to explore 
the adapted strategies of ephemeral plants under desert 
conditions has trigged the interest of the scientific 
community (Lan and Zhang, 2008; Yuan and Tang, 
2010). 

Arbuscular mycorrhizal fungi (AM fungi; Phylum 
Glomeromycota) are significant members of the soil 
microbial community, which form symbiotic relation-
ships with the majority of higher plants (Smith and 
Read, 2008). AM fungi are important components of 
virtually all terrestrial ecosystems and are especially 
critical in improving plant nutrient and water uptake 
under semi-arid conditions (van der Heijden et al., 
2006; Allen, 2011). AM fungi can improve plant re-
sistance to soil water deficit (Lambers et al., 2008; 
Smith and Read, 2008; Apple, 2010; Ruiz-Lozano and 
Aroca, 2010). The underlying mechanisms are most 
likely to be a combination of nutritional and 
non-nutritional host-plant benefits. Non-nutritional 
mechanisms may include: (1) hormonal effects (partic-
ularly abscisic acid) due to mycorrhizal colonization; (2) 
direct water uptake by improved soil–hyphal contacts 
(especially important during soil drying) leading to 
more effective scavenging for water in micropores; and 
(3) increased photosynthesis through sink stimulation 
(Kaschuk et al., 2009; Smith et al., 2010). There is also 
evidence of plant interconnectivity facilitated by AM 
fungi connecting plant roots via a common mycorrhizal 
network, where inter-plant resources are transferred 
through the network along a source-sink gradient (Kiers 
et al., 2011). Augé (2004) investigated mycorrhizal 
network ability to alter moisture retention properties of 
soils through an increase in soil aggregation, such that 
non-mycorrhizal plants growing in a mycorrhizal soil 
benefit through enhanced plant water availability.  

In Junggar Basin, the majority of desert ephemerals 
form mutualisms with AM fungi (Shi et al., 2006, 
2007; Zhang et al., 2011, 2012a, b), and mycorrhizal 
colonization increased plant growth, nutrition uptake, 
productivity and community restoration (Chen et al., 
2008; Sun et al., 2008; Zhang et al., 2011, 2012a). 

However, the major factor limiting ephemeral plant 
growth in the desert ecosystem is water availability 
(Wang et al., 2004; Sun et al., 2009). Through a 
glasshouse experiment, the present study aimed to 
investigate the effects of soil water availability and 
AM fungi on the growth of ephemeral plants under 
different soil water conditions. 

1  Materials and methods  

1.1  Plant and fungal species 

Two AM fungal species, Glomus mosseae BEG167 
(G.m) and Glomus etunicatum BEG168 (G.e) were 
previously propagated in pot culture on maize (Zea 
mays) and clover (Trifolium pretense) plants grown in 
sand for 12 weeks. Inocula from the pot culture com-
prised a mixture of spores, mycelium, sand and maize 
and clover root fragments and contained approxi-
mately 1,000 spores per 100 g.  

Seeds of P. minuta were collected from the 
Gurbantunggut Desert in the Junggar Basin in May 
and June of 2004. The seeds were stored in 4°C until 
use. Before sowing, seeds were surface sterilized with 
10% (v/v) hydrogen peroxide for 10 min, washed with 
sterile water and germinated in the dark on moistened 
filter paper at 28°C for 3 days. Germinated seeds in 
uniform size were selected for planting. 

Soil used in this experiment was collected from the 
Gurbantunggut Desert with the following properties: 
pH (water:soil ratio 5:1) 8.54, organic matter 1.43 g/kg, 
total salt 0.73 g/kg, available N 6.92 mg/kg, Olsen P 
1.78 mg/kg, available K 73.00 mg/kg and electrical 
conduct 0.178 ms/cm. The soil was sieved (1-mm), 
steam-sterilized (121°C for 30 min) and air-dried prior 
to potting.  

1.2  Experimental design 

The glasshouse experiment used a randomized block 
design consisting of three soil water regimes and three 
inoculation treatments. Soil water contents were 4.5%, 
9.0% and 15.75%, equivalent to 20%, 40% and 70% 
of field capacity, respectively. Plants were inoculated 
with Glomus mosseae BEG167, Glomus etunicatum 
BEG168, or treated with non-inoculation, respectively. 
There were six replicate pots per treatment. 

Fifty grams of fungal inoculum was mixed with 
550 g of soil in each pot. Sterilized inoculum was used 
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as non-inoculant control. Ten pre-germinated seeds of 
P. minuta were transplanted into each pot covered by 
another 50 g of non-inoculant sand. Seedlings were 
thinned to five per pot after emergence. 

Plants were grown in a sunlit greenhouse with 
day/night temperature of 25–30°C/18–22°C. The soil 
water content was maintained by water to weight at 
08:00 and 18:00 daily. Hoagland’s nutrient solution 
with 1/2P was added every two weeks. Plants were 
harvested 8 weeks after sowing. 

1.3  Harvest and sample analysis 

Whole plant was harvested after 8 weeks sowed. Then, 
shoots and roots were separated. The roots were care-
fully washed free of soil. Sub-samples of roots were 
collected for determination of mycorrhizal coloniza-
tion rate using the acid fuchsine staining-grid intersect 
method (Kormanik and McGraw, 1982). Both shoots 
and roots were dried at 70°C to determine dry weights. 
The tissue N concentration was determined by the 
Kjeldahl method; P concentration was measured with 
spectrophotometry by the molybdenum blue method 
after digested with concentrated H2SO4 and 30% H2O2; 
and K concentrations was determined by flame pho-
tometry (Lu, 2000). 

1.4  Mycorrhizal dependency 

Mycorrhizal dependency at the given soil water con-
tent was calculated as: 
Mycorrhizal dependency (%)=(biomass of inoculated 
AM fungi–biomass of CK)/biomass of CK×100%. 

1.5  Statistical analysis 

The differences in percentage of root length colonized, 
shoot and root biomass, and N, P and K concentrations 
of shoots and roots were subjected to one-way analysis 
of variance by least significant difference (LSD) at the 
5% level for significantly differences between the means 
in all treatments using the SPSS software package ver-
sion 16.0 (SPSS, Chicago IL). The effects of soil water 
content and AM fungi, and their interaction were sub-
jected to two-way analysis of variance by the Univariate 
Analysis of Variance of General Linear Model. 

2  Results 

2.1  Plant growth 

Both fresh and dry weights of plants (both shoots and 
roots) inoculated with G.m were significantly higher than 
those of the controls in all water treatments (Fig. 1). The 
fresh and dry weights of G.m-inoculated plants were 1.2, 
1.4, and 1.5 times those of G.e treatment in 4.5%, 9.0% 
and 15.8% of soil water contents, respectively. When the 
effects of different AM fungi species were considered, 
biomass of G.m treatments was remarkably higher than 
these of G.e except for the dry weight of roots and whole 
plant in the treatment of 4.5% water. By comparing the 
same AM fungi treatments in different water conditions, 
there were not significant differences among them. The 
root to shoot ratio showed no significant difference be-
tween fungal species in the same water condition except 
for 4.5% water treatment (Fig. 2). 

 
Fig. 1  Fresh and dry weights of Plantago minuta with different water and inoculation treatments. Data were means±SE (n=6). CK, 
non-inoculation treatment; G.e, Glomus etunicatum; G.m, Glomus mosseae.  
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Fig. 2  The root to shoot ratio of dry weight of Plantago minuta 
with different water and inoculation treatments. Data were 
means±SE (n=6). CK, non-inoculation treatment; G.e, Glomus 
etunicatum; G.m, Glomus mosseae. 

AM fungi significantly increased plant biomass and 
the root/shoot ratio (Table 1). Soil water content in-
fluenced significantly dry biomass of roots and the 
ratio of root to shoot. Further, there was significant 
interaction between water and AM fungi on root/shoot 
mass ratio (Table 1). 

2.2  Mycorrhizal colonization rate 

In all water treatments, inoculated plants had higher 
colonization rates than the non-inoculation treatment 
(F=475.39, P<0.001), with those inoculated with G.e 
under 4.5% soil water content (the highest is 15.8%; 
Fig. 3). The colonization rate decreased significantly 

 

Table 1  The effect of water and arbuscular mycorrhizal fungi on biomass of Plantago minuta 

Factor 
Fresh biomass Dry biomass 

Root/shoot
Shoot Root Whole plant Shoot Root Whole plant 

Water ns ns ns ns ** ns ** 

AM fungi ** ** ** ** ** ** ** 

Water×AM fungi ns ns ns ns ns ns ** 

Note: ** indicates significance at P<0.01 level; ns, not significant. 

 

 
 

Fig. 3  Colonization rates of arbuscular mycorrrhizas in roots of 
Plantago minuta. Data were means±SE (n=6). CK, non-inoculation 
treatment; G.e, Glomus etunicatum; G.m, Glomus mosseae. 

with the increase of soil water content (F=116.98, 
P<0.001). AM fungi species, soil water content and 
their interactions affected significantly the mycorr-
hizal colonization rate of P. minuta (F=26.70, P<0.01; 
Fig. 3). 

2.3  Plant dependency on mycorrhiza 

In each soil water treatment, the based dependency 
of P. minuta to G.m was higher than that to G.e, 
respectively. The highest mycorrhizal dependency 
of shoots, roots and the whole plant in G.m was 
83.3% (under 4.5% water treatment), 57.1% (9.0% 
water treatment), and 64.29% (15.8% water treat-
ment), respectively. 

 

Table 2  The dependency of Plantago minuta to AM fungi in different soil water treatments 

Treatments Mycorrhizal dependency (%) 

Soil water content (%) AM fungi Shoot Root Whole plant 

4.5 CK 0.00 0.00 0.00 

 Glomus etunicatum 33.33 37.50 35.71 

 G. mosseae 83.33 50.00 64.29 

9.0 CK 0.00 0.00 0.00 

 Glomus etunicatum 14.29 14.29 14.29 

 G. mosseae 57.14 57.14 57.14 

15.8 CK 0.00 0.00 0.00 

 Glomus etunicatum 0.00 12.50 0.00 

 G. mosseae 50.00 25.00 46.67 



418 JOURNAL OF ARID LAND 2015 Vol. 7 No. 3  

2.4  The nutrient concentration of P. minuta 

The shoot P and root K of inoculated plants were sig-
nificantly higher than those of non-mycorrhizal con-
trols in each soil water condition (Fig. 4). Shoot N and 
K concentration followed the similar trend as root P 
concentration, i.e. significantly higher concentration in 
the G.m-inoculated plants than in the non-mycorrhizal 
controls, respectively. However, plants inoculated with 
G.e affected shoot N and K and root P concentrations 
compared to non-inoculated treatments. The root N 
concentrations of inoculated plants were higher than 
that in controls under 4.5% and 9.0% soil water con-
ditions. The changes of nutrient concentration either in 
shoots or in roots were not significant among varied 
soil water content regardless of the difference of AM 
fungi species. 

When the water and AM fungi were considered 
simultaneously, AM fungi increased markedly the N, 
P and K concentration of P. minuta in both shoots 
and roots (Table 3). However, soil water content 
influenced significantly P in shoots and N and K in 
roots. Further, the interaction of water and AM fungi 

affected remarkably the P concentrations in shoots and 
K concentrations in roots (Table 3). 

3  Discussion and conclusion 

This study examined the combined effects of soil wa-
ter content and AM fungi colonization on a desert 
spring ephemeral plant. Our results showed that AM 
fungi played vital roles in growth and nutrition ab-
sorption under varying soil water conditions, which 
indicated that the effects of AM fungi to P. minuta did 
not depend on soil water content given in this experi-
ment. However, Wang et al. (2004) reported that the 
coverage of desert ephemeral plants presented a posi-
tive correlation with soil water content at a range from 
0.45% to 4.92% based on a filed investigation in the 
Gurbantunggut Desert. The possible reason is AM 
fungi can help host plants to uptake enough water for 
their growth even under drought condition because 
AM fungi can increase the absorption area of hosts (Li 
et al., 1991). Additionally, the colonization rate de-
creased with the increase of soil water content in our 
study. 

 

Fig. 4  Concentrations of N, P and K of Plantago minuta of different treatments by water and arbuscular mycorrhizal fungi. Data were 
means±SE (n=6). CK, non-inoculation treatment; G.e, Glomus etunicatum; G.m, Glomus mosseae. 

Table 3  The effect of water and arbuscular mycorrhizal fungi on nutrient concentration of Plantago minuta 

Factor 
Shoot Root 

N P K N P K 

Water ns ** ns * ns ** 

AM fungi ** ** ** ** ** ** 

Water×AM fungi ns ** ns ns ns ** 

Note: * and ** indicate significances at P<0.05 and P<0.01 levels, respectively; ns, not significant. 
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Many studies have showed that AM fungi coloniza-
tion rate decreased under the water stress comparing to 
the normal water conditions (Khalvati et al., 2010; 
Ruiz-Lozano and Aroca, 2010; Jayne and Quigley, 
2014). However, our results indicated that the mycor-
rhizal colonization of ephemeral plant P. minuta de-
clined with the increase of the soil water content (Fig. 
3). The lowest soil water content (4.5%) in the present 
study was close to the natural field water condition (Shi 
et al., 2013). The habitats of ephemerals are extremely 
adverse with low nutrient content of the substrate 
(quicksand) and low water content (2%–5%) in the top 
30 cm of the sandy soil layer due to the lack of rainfall 
(annual precipitation of 100–120 mm) (Ji et al., 1995). 
In soil water deficit conditions, P. minuta may need to 
depend on AM fungi for accessing water directly 
through the hyphal network helping the host plant to sur-
vive in the adverse desert environment. In addition, the 
colonization rate of P. minuta was similar to that under 
natural field conditions (55%±8%) reported previously 
(Shi et al., 2006). With the increase of soil water content, 
the function provided by the AM fungi pathway in ac-
cessing soil water to alleviate plant water stress was not 
thus required. Further, the results of mycorrhizal de-
pendency supported this conclusion (Table 2).  

It is widely reported AM fungi can enhance the host 
plant growth and development whilst improving nu-
trient status of the host plant. Researchers show AM 
fungi can assist desert ephemeral plants by increasing 
the growth, development and nutrient status of the 
host plants (Chen et al., 2008; Sun et al., 2008; Zhang 
et al., 2011). Our results also showed that AM fungi 
can increase plant growth and nutrient concentrations 
(particularly P status). Biomass and nutrient concen-
trations of inoculated plants were not necessarily 
significantly higher than those of controls (Figs. 1 
and 4), as the case in a report of Treseder (2013). In 
addition, plant growth was improved by AM fungi 
colonization with variation among AM fungi and 
among different water treatments. AM fungi signifi-
cantly increased biomass and the concentrations of N, P 
and K in both shoots and roots, indicating their im-
portant nutritional role regardless of water conditions 
imposed in this study. This finding is consistent with 
a meta-analysis of Jayne and Quigley (2014). That is 
to say, the effect of AM fungi on plants of the high 
watered treatments was not different from that of the 

low water treatment. When inoculated with AM fungi, 
the low-water treated plants grew as well as those under 
high-water conditions.  

When the effects of water were considered, we 
found that higher soil water content did not suppress 
root dried biomass and the root/shoot ratio, but im-
proved P concentration in shoots and N and K con-
centrations in roots. Further, plants depended on more 
roots for foraging water in drought condition than in 
well watered condition. Except for shoot P and root N 
and K, the influence of AM fungal inoculation had no 
significantly effect on other nutrient elements. Sun et 
al. (2009) showed that different host plants had vari-
ous effects in N, P and K acquisition under different 
water treatments. 

In conclusion, although the AM fungi dependency 
of P. minuta decreased with the increase of soil water 
content, the functions of AM fungi to P. minuta are 
not suppressed by improving soil available water. 
We inferred that the AM fungi is a vital factor for 
ephemeral plants to adapt to adverse soil wa-
ter-deficit desert environment that is formed during 
the evolution process based on an equal term of trade 
agreement. 
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