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Abstract: Agricultural drought is a type of natural disaster that seriously impacts food security. Because the rela-
tionships among short-term rainfall, soil moisture, and crop growth are complex, accurate identification of a drought 
situation is difficult. In this study, using a conceptual model based on the relationship between water deficit and crop 
yield reduction, we evaluated the drought process in a typical rainfed agricultural region, Hailar county in Inner 
Mongolia autonomous region, China. To quantify drought, we used the precipitation-based Standardized Precipita-
tion Index (SPI), the soil moisture-based Crop Moisture Index (CMI), as well as the Normalized Difference Vegeta-
tion Index (NDVI). Correlation analysis was conducted to examine the relationships between dekad-scale drought 
indices during the growing season (May–September) and final yield, according to data collection from 2000 to 2010. 
The results show that crop yield has positive relationships with CMI from mid-June to mid-July and with the NDVI 
anomaly throughout July, but no correlation with SPI. Further analysis of the relationship between the two drought 
indices shows that the NDVI anomaly responds to CMI with a lag of 1 dekad, particularly in July. To examine the 
feasibility of employing these indices for monitoring the drought process at a dekad time scale, a detailed drought 
assessment was carried out for selected drought years. The results confirm that the soil moisture-based vegetation 
indices in the late vegetative to early reproductive growth stages can be used to detect agricultural drought in the 
study area. Therefore, the framework of the conceptual model developed for drought monitoring can be employed 
to support drought mitigation in the rainfed agricultural region of Northern China. 
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Agricultural drought is the most frequent natural dis-
aster and causes the heaviest crop damage in Inner 
Mongolia autonomous region of China (Shen, 2008), 
especially in regions where precipitation fluctuates 
greatly due to the influence of the East Asian monsoon, 
such as semi-arid zones. Accurate quantification of 
drought is difficult because its definition varies among 
climatic zones and it is context-dependent (Quiring, 
2009). Following the definition of drought by the 
UNCCD (1994), in this study we consider agricultural 
drought to be a “naturally occurring phenomenon that 
exists when precipitation has been significantly below 

normal recorded levels, causing serious hydrological 
imbalances that adversely affect land resource produc-
tion systems”. For managing drought conditions, it is 
necessary to evaluate the status of the entire water 
cycle by looking at all available indicators to identify 
multiple aspects of the drought situation. Some as-
sessment studies have focused on the essential char-
acteristics of drought (Donald, 1994): intensity, dura-
tion, and spatial coverage. For example, Svoboda 
(2000) used drought monitoring categories to convert 
multiple indices into a common standardized form and 
then incorporated them into an objective single index 
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to evaluate drought intensity. Other assessments have 
evaluated the impact of drought based on these basic 
characteristics, including a study that assessed a map 
of drought conditions at a 2-week time scale using the 
Vegetation Drought Response Index (Brown et al., 
2008) and studies based on multiple-year drought con-
ditions (e.g. drought risk assessment by Heinrich et al., 
1980 and Zhang et al., 2004; drought vulnerability 
assessment by Zarafshani et al., 2012). The onset of an 
agricultural drought may lag that of a meteorological 
drought, depending on the prior moisture status of the 
surface soil layers (Heim, 2002). Agricultural drought 
is a slow-onset “creeping phenomenon” (Tannehill, 
1947), and there appears to be an inherent temporal 
relationship between shortage of rainfall and crop 
yield damage. In addition, according to the UNCCD 
(1994) definition, agricultural drought occurs when 
vegetation suffers from a water deficit. Therefore, for 
accurately identifying the features of agricultural 
drought in a specific region, it is necessary to examine 
the underlying drought process. 

Numerous drought indices have been developed to 
simplify the identification of agricultural drought, and 
these indices can be divided into three groups. The 
first group is precipitation-based indices, such as pre-
cipitation anomaly and the Standardized Precipitation 
Index (SPI) (McKee et al., 1993, 1995). SPI is based 
on the assumption that precipitation over a period is a 
random variable distributed according to a gamma 
probability density function. The SPI is a typical me-
teorological drought index that considers only pre-
cipitation. It has been accepted by the World Mete-
orological Organization (WMO) as the reference in-
dex to characterize droughts. The second group is soil 
moisture-based indices, such as the Palmer Drought 
Severity Index (PDSI) (Palmer, 1965) and Crop 
Moisture Index (CMI) (Palmer, 1968). CMI is based 
on a subset of the calculations needed for PDSI, and it 
is designed to monitor short-term moisture conditions 
and crop stress across major crop-producing regions. 
Because CMI responds rapidly to changing conditions, 
it has advantages over PDSI in agricultural drought 
studies. The third group is vegetation-based indices, 
including the Ratio Vegetation Index (Jordan, 1969), 

Normalized Difference Vegetation Index (NDVI) 
(Rouse et al., 1974), and Enhanced Vegetation Index 
(Huete et al., 2002). NDVI is calculated based on re-
mote-sensing measurements of visible (red) and 
near-infrared (NIR) radiation. It is a measure of the 
greenness or vigor of vegetation. Among the vegeta-
tion indices, NDVI is the one most often used; it is an 
operational, globally-based vegetation index, partly 
due to its ratio properties, which enable the NDVI to 
cancel out a large proportion of noise in re-
mote-sensing data caused by changing sun angles, 
topography, clouds or shadow, and atmospheric condi-
tions (Huete et al., 1999). Stressed vegetation or 
vegetation with small leaf area has positive but low 
values of NDVI (Kogan, 1994). Therefore, NDVI is 
often used in research on vegetation dynamics (Zhou 
et al., 2009; Duan et al., 2011) and drought spatial 
monitoring (Kogan and Sullivan, 1993; Kogan, 1994; 
Kogan, 1997). 

The relationship between moisture shortage and 
crop growth is the key link in the agricultural drought 
process. Previous studies have revealed that remotely 
sensed NDVI has a time-lag relationship with rainfall 
(Nicholson and Farrar, 1994; Wang et al., 2001; Ji and 
Peters, 2003). However, drought is a temporary fea-
ture in the context of climatic variability (WMO, 
1975). Therefore, the NDVI anomaly (NDVIA) is a 
more accurate index of drought than is the NDVI. In 
addition to rainfall, however, meteorological factors 
such as temperature and wind speed also influence the 
water shortage of crops. Thus, it is more reasonable to 
assume that the NDVIA and water deficit reflect agri-
cultural drought. Previous drought studies showed 
great variation in the relationship between moisture 
shortage and satellite-derived drought indices. For 
example, Bayarjargal et al. (2006) found no agreement 
between the spatial extent of satellite-derived drought 
indices and monthly PDSI. Quiring and Ganesh (2010) 
reported that monthly relative NDVI change index 
(vegetation condition index) is most strongly corre-
lated with prolonged moisture stress, including 
6-month SPI, 9-month SPI, and PDSI, and less sensi-
tive to short-term precipitation deficiencies than to 
long-term ones (Quiring and Ganesh, 2010). Can 
NDVI change and in situ drought indices at shorter 
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time scales provide detailed information indicating the 
vegetation response to water deficit? The temporal 
scale of dekad is often used in agricultural studies. In 
this study, we used short-term dekad vegetation varia-
tion to assess the ability of several indices to describe 
the agricultural drought process. 

The overall goal of this study is to construct a 
framework to assess the agricultural drought process 
based on a conceptual model that synthesizes mete-
orological information, remote-sensing dynamic 
monitoring, and observational data. We then examined 
the relationships among indices and the temporal in-
teraction of factors on a short time scale during the 
drought process. The specific objectives are to: (1) 
clarify trends of dekad-scale SPI, CMI, and NDVI 
during the crop growing period; (2) examine the rela-
tionships between drought indices and crop yield; (3) 
evaluate the temporal relationships among the drought 
indices, mainly focusing on water shortage accumula-
tion and time lag; and (4) assess agricultural drought 
over a long-term period. 

1  Conceptual model of the agricultural 
drought process 

The agricultural drought process refers to the water 
balance within the weather-soil-crop agricultural pro-
duction system. Crop growth can be divided into 
vegetative growth and reproductive growth stages. For 
a few crop types, yield is closely related to vegetative 
growth, such as crude fiber crops and leaf vegetables. 
For most crops, however, such as wheat, maize, and 
beans, the yield is closely related to reproductive 
growth. When drought occurs, leaves wither; thus, 
drought conditions affect these two categories of crops 
differently. For the former crop types, the yield will be 
closely correlated with vegetation damage. For the 
latter types, the damage of vegetation will influence 
yield via a reduction in the nutrition supply. 

The key link during the drought process can be 
simplified as a temporal sequence of precipitation, soil 
moisture, vegetative growth, and yield. In rainfed ag-
ricultural regions, precipitation is the main water 
source, and yield is the final outcome of the drought 
process. During the generation of water stress, there is 

a time lag in the effect of soil moisture on vegetation 
vigor (Fig. 1). Following this framework, we used 
dekad-scale SPI, CMI, NDVIA, and yield as input for 
an assessment of the agricultural drought process.  

 
Fig. 1  Schematic diagram of the drought process during the 
crop growing period in a rainfed agricultural region 

2  Materials and methods 

2.1  Study area 

The study area, Hailar county (total area 1,440 km2; 
Fig. 2), lies in the transitional zone between low 
mountains and the hilly region along the western slope 
of the Greater Khingan Mountains and Hulunbuir high 
plain in Inner Mongolia autonomous region, China. 
The elevation ranges from 603 to 777 m asl. Flat ter-
rain is the county’s main geomorphic feature. Chest-
nut soil is the main soil type, and the soil texture is 
loamy sand and loam (USDA classification, FAO soil 
map). Hailar county is in the semi-arid region (aridity 
index=0.46) of China. As an agriculture-pasture tran-
sitional zone, this region is strongly influenced by the 
East Asian summer monsoon and frequently suffers 
from extreme climatic conditions, such as limited pre-
cipitation and low temperature. According to meas-
urements recorded at the Hailar weather station 
(49°13′N, 119°45′E) of the Chinese Meteorological 
Administration, average annual precipitation (1971– 
2010) is 348 mm. About two-thirds of the annual pre-
cipitation occurs from June to August, and rainfall 
increases significantly from late June to late August 
(i.e. the rainy season). In cold winters, the monthly 
mean temperature in January falls to –26°C. The 
whole county lies within the permafrost region, with 
4–5 months of continuous snow cover each year (Li 
and Mi, 1983; Jin et al., 2000); there is a short grow-
ing period (May to September). 

Grassland and farmland are the two main land use 
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Fig. 2  The location of Hailar county in China and the distribution of land-use types (from 1-km grid land-use map of China in 2000) 

types in Hailar country (Fig. 2). In 2009, 97% of the 
farmland was unirrigated. Large areas of homogene-
ous cultivated plots exist in the county; these are suit-
able for monitoring crop growth based on moder-
ate-resolution remote-sensing technology. In 1998, 
spring wheat (Triticum aestivum L.) was the main crop 
type, occupying 74% of the farmland. In 2010, the 
proportion of spring wheat fell to 36%, whereas those 
of barley (Hordeum vulgare L.) and potato (Solanum 
tuberosum L.) increased to 18% and 30%, respectively; 
oil rape accounted for 10%, vegetables accounted for 
5%, and soybeans, watermelon, and maize occupied 
the remaining 1%. Thus, grain crops play an important 
role in the agricultural production of Hailar county. 

2.2  Data collection 

Daily meteorological data from the Hailar weather 
station (1951–2010), including precipitation, tem-
perature, relative humidity, wind speed, and hours of 
sunshine, were downloaded from the China Meteoro-
logical Data Sharing Service System (http://cdc.cma. 
gov.cn/). 

MODIS daily 500-m products (MOD09GA h25v4) 
from May to September for the years 2000 to 2010 
(for a total of 1,641 products) were downloaded from 
the U.S. Geological Survey’s website (https://lpdaac. 
usgs.gov/). One product provides bands 1–7 in a daily 
gridded L2G product that includes 500-m reflectance 
values in the absence of atmospheric scattering or ab-
sorption. 

A land-use map of China in 2000 (1:1,000,000, 
1-km grid, WESTDC) was downloaded from the En-
vironmental and Ecological Science Data Center for 
West China, National Natural Science Foundation of 
China and Data-sharing Network of Earth System 
Science (http://westdc.westgis.ac.cn). The original 
dataset is a county-level land-cover dataset (vector 
format, scale: 1:100,000) from the Chinese Academy 
of Sciences. By the maximum area method, the data-
sets were combined and transferred to the final 1-km 
raster product (Liu et al., 2001). 

The water content available for farmland in Hailar 
county was calculated by an area-weighted method us-
ing the available water content records noted on a 
1:1,000,000 scale soil map of China provided by the 
Chinese Academy of Sciences (downloaded from FAO 
Harmonized World Soil Database v 1.2, http://www.ii- 
asa.ac.at/Research/LUC/External-World-soil-database/). 

Crop planting area and yield data from 2000 to 
2010 were collected from the Hailar Statistics Bureau. 
Although the meaning of crop yield varies across spe-
cies, the most important aspect is the food energy. 
Yield energy analysis can measure total agricultural 
output of the farmland as well as the environmental 
contribution to crop production. The coefficients of 
the food energy obtained from the main crops in 
Hailar were taken from Shu et al. (2008): 16.3×106 
J/kg for wheat and barley grain, 20.9×106 J/kg for 
soybean, 16.3×106 J/kg for maize, 4.0×106 J/kg for 
fresh potato, 26.3×106 J/kg for oil rape, 2.5×106 J/kg 
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for vegetables, and 1.1×106 J/kg for melon. Then, ac-
cording to the sowing areas and production data for 
these eight types of crops during 2000–2010, the yield 
energy per unit area was estimated. 

2.3  Calculations of drought indices 

2.3.1  SPI 
The SPI requires a long-term precipitation record to fit 
the gamma probability density function to the ob-
served data (Zhou et al., 2001). Using the dekad data 
from 1951 to 2010, we calculated the dekad SPI with 
the method of McKee et al. (1993, 1995) for monthly 
data. The first dekad of the month is from day 1 to 10, 
the second dekad is from day 11 to 20, and the third 
dekad is from day 21 to the end of the month. By us-
ing the Normalized Root Mean Square Error (NRMSE) 
to test function fitness, we found that the cumulative 
probability of dekad precipitation fits the gamma cu-
mulative distribution well (maximum NRMSE <11%). 
Therefore, dekad SPI can be used to reflect the 
amount of precipitation. To account for the antecedent 
rainfall of SPI in the effect on other factors, SPI was 
calculated with the simple averaging method using the 
following equation: 

 = 1
,

SPI
SPI = .

n

k
k s n

n s n
− +
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Where n is the total number of the dekads considered, 
and s is ascending time serial number of dekad SPI. 

2.3.2  CMI 

The CMI (Palmer, 1968) is based on a subset of the 
calculations required for the PDSI (Palmer, 1965). The 
CMI originated as a way to calculate the water bal-
ance using historic records of precipitation and tem-
perature. Palmer introduced the concept climatically 
appropriate for existing conditions (CAFEC), which 
quantifies evapotranspiration, recharge, runoff, water 
loss, and precipitation. For the calculation of 
evapotranspiration, CAFEC assumes that soil mois-
ture storage is handled by dividing the soil into two 
layers. For each dekad, when ETo<P, ET=ETo, where 
ET is actual evapotranspiration, ETo is potential 
evapotranspiration, and P is precipitation; if ETo>P, 
then ET is the sum of precipitation and water loss 
from the soil layers. The water losses from two layers 

are calculated as follows: 
 [ ]1=min , ( ) ,i i oi iLs Ss ET P− −  (2) 

 [ ]oi 1 1= ( ) / , .i i i i i iLu ET P Ls Su AWC Lu Su− −− − ≤  (3) 

Where Lsi and Lui are the water loss from the surface 
and underlying soil for dekad i, respectively; Ssi–1 and 
Sui–1 are the surface and underlying soil moisture for 
dekad i–1; and AWC is the available water content. 

Considering the short-term moisture supply and the 
moisture demand of the crop, CMI is the sum of 
evapotranspiration deficit and excessive moisture. The 
equations for these two aspects and CMI are as fol-
lows: 

 1
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Where Yi is an index of evapotranspiration deficit for 
dekad i; α is a water balance coefficient; Gi is an index 
of excessive moisture for dekad i; Hi is a “re-
turn-to-normal” factor; Mi is the average percent of 
field capacity; Ri is recharge; and ROi is runoff. 

The C++ package for computing CMI (scPDSI, 
version 2.0) was downloaded from http://greenleaf. 
unl.edu/downloads/scPDSI.zip. The original method 
for computing potential evapotranspiration (ETo) is 
based on the weekly Thornthwaite method (Thorn-
thwaite, 1948). For obtaining the dekad estimation of 
ETo, the Penman–Monteith FAO 56 model (Allen et 
al., 1998) was introduced to modify the program. The 
PMF-56 model is recommended as the sole method 
for determining ETo, and it has been widely accepted 
as superior to other methods in China (Cai et al., 
2007). Data of daily temperature, humidity, wind 
speed, and hours of sunshine were used to calculate 
daily ETo for estimating dekad ETo. Then, dekad CMI 
values were obtained based on dekad- scale data from 
1951 to 2010. 

2.3.3  NDVI anomaly 

In this study, we used MOD09GA bands 1 and 2, a 
band quality map, and a 1-km reflectance state map 
from each daily MODIS product (h25v4). Bands 1–2 
were first used for computing daily NDVI images ac-
cording to Rouse et al. (1974). In the band quality 
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map and resized 500-m reflectance state map, pixels 
with ideal quality and clear pixels were labeled and 
merged together. Then, the dekad synthesized NDVI 
as well as corresponding synthesis quality maps were 
produced based on daily images following the maxi-
mum-value composite procedure (Holben, 1986). Fi-
nally, with the help of the quality map, the noise was 
removed from the images. Due to a lack of images for 
NDVI from 15 June to 1 July 2001, there is no value 
for the third dekad of June 2001. 

The farmland map of Hailar county was extracted 
from the land-use map of China. The farmland NDVI 
series were built using the MODIS dataset and a 
farmland mask. Because the area of Hailar county is 
small, the spatial differences of drought across the 
county were not considered here. Considering the 
farmland of the county as a whole, the NDVIA was 
calculated with the following equation: 

 , ave, 
,

ave, 

NDVI NDVI
NDVIA = 100.

NDVI
i j j

i j
j

−
×  (7) 

Where i is year, j is dekad, and NDVIave,j is the aver-
age value for the same dekad j during 2000–2010. 
Because the county was considered to be one harvest 
region, the average value was computed using all the 
records in the same dekad. 

2.4  Statistical analysis 

Using SPSS ver. 13.0 software (SPSS Inc., Chicago, 
IL, USA), we calculated R2 and its significance level 
to identify the main period during which crop yield is 
sensitive to drought indices and the temporal rela-
tionships among the various indices during the 
drought process. 

3  Results 

3.1  Seasonal trends of drought indices 

The average NDVI began to increase in early May and 
exceeded 0.3 in late May, when the average dekad 
temperature was higher than 0°C; at this point, crop 
growth accelerated until the curve reached a peak in 
mid-July (Fig. 3a). After that, the NDVI decreased 
sharply until late September, when the average dekad 
temperature decreased again to 0°C. With regard to 
local crop phenology, the sowing stage for spring 
wheat and barley in Hailer county is late April and 
harvest occurs in late August. The growing period of 
oil rape is from early May to late August, and that for 
potato is from early May to mid-September. Due to 
the short growing period in Hailar county, when the 
temperature peaks in July, most of the crops are just 
reaching the flowering stage. From 2000 to 2010, the  

 
Fig. 3  The average dekad NDVI (a) and SPI and CMI (b) from 2000 to 2010 during the crop growing period. Panel (a) also shows the 
median temperature and average precipitation during 1951–2010 and crop phenology. Phenology information (sowing, harvest, and 
reproductive growth (RG) period) was obtained from Zhang et al. (1987), Wang and Zhao (2006), and interviews with staff of the Hailar 
Agricultural and Animal Husbandry Bureau. 1, 2, and 3 refer to the three dekads within each month. 
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low values of SPI were in late May, late June, and 
from late July to early August (Fig. 3b). The shortage 
of rainfall frequently reduced the ability of the CMI 
value to return to normal, such that the CMI value 
tended to decrease during the growing period. These 
low-value periods in late June and late July span the 
elongation–heading and milky periods of spring wheat 
and barley, thus posing a high risk of yield reduction. 

3.2  Relationships of drought indices with crop yield 

The key period for dekad-scale CMI was from the 
second dekad in June to the second dekad in July (Ta-
ble 1). The key period for NDVIA was from the first 
to the third dekad in July. There was clear seasonality 
in the relationship between crop yield and these indi-
ces. In addition, there were time lags between the sen-
sitive period identified by CMI and those based on 
NDVIA. Our analyses revealed no clear sensitive 
dekad for SPI during June–July. However, with regard 
to cumulative average SPI values, there was a signifi-
cant correlation with energy yield in May–June, 
May–July, May–August, and May–September, as was 
the case for CMI (Table 2). Thus, a longer period of 
precipitation accumulation has a greater effect on the 
energy yield than does a short period. For the SPI, the 
R2 values were highest for May–June and then de-
creased. For the multi-dekad average of CMI and 
NDVIA, the R2 values were highest for May–July and 
then decreased. 

3.3  Temporal relationships between drought in-
dices 

The R2 between CMI and average SPI was higher than 
that between average SPI and NDVIA. The strongest 
correlation for CMI was with the average SPI of four 
dekads (Fig. 4a). The strongest correlation for the 
NDVIA was with the average SPI of six dekads (Fig. 
4b). Thus, a precipitation shortage within a particular 
dekad does not directly influence the CMI and vegeta-
tion; rather, this occurs through a cumulative process. 
When considering the correlation between CMI and 
the performance of the NDVIA from May to Septem-
ber over the 2000–2010 study period, the strongest 
correlation existed with a 1-dekad time lag (Fig. 5a). 
By considering the relationship between these indices 
for each month separately, the maximum R2 ranged 
from 0.319 (September) to 0.619 (July). The highest 
correlations between these indices occurred in July 
and showed a 1-dekad time lag (Fig. 5b). 

3.4  Drought assessment 

During 2000–2010, crop yield was heavily reduced in 
2001, 2003, 2004 and 2007. For each of these drought 
years, as assessed by SPI, CMI, and NDVIA, there 
was a time lag between CMI and NDVIA (Fig. 6). The 
year 2003 had the most serious yield reduction, with 
the yields of spring wheat, oil rape, and potato all be-
ing lowest during the 11 years. The CMI value in the 
first dekad of May was less than –2, indicating that 

Table 1  The coefficient of determination (R2) between dekad-scale indices and crop energy yield anomaly in Hailar county during 
2000–2010 

May June July August September 
Index 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

SPI 0.006 0.039 0.058 0.038 0.217 0.327 0.136 0.019 0.014 0.455* 0.051 0.023 0.008 0.022 0.007

CMI 0.002 0.003 0.035 0.139  0.814**  0.630** 0.526*  0.638** 0.160 0.012 0.027 0.081  0.602** 0.002 0.003

NDVIA 0.204 0.240 0.000 0.097 0.087 0.249  0.723**  0.665**  0.647** 0.176 0.042 0.157 0.244 0.072 0.029

Note: * and ** represent statistical significance at the 0.05 level and the 0.01 level, respectively. n=11. For NDVIA, n=10 in the 3rd dekad of June. 

Table 2  The coefficient of determination (R2) between multi-dekad average values of indices and crop energy yield anomaly in Hailar 
county during 2000–2010 

Index May May–June May–July May–August May–September 

SPI 0.023 0.587** 0.388* 0.588** 0.538* 

CMI 0.006 0.523* 0.638* 0.623* 0.602** 

NDVIA 0.073 0.136 0.403* 0.356 0.205 

Note: * and ** represent statistical significance at the 0.05 level and the 0.01 level, respectively. n=11. 
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Fig. 4  The coefficient of determination (R2) between multi-dekad SPI and CMI (a; n=165) and SPI and NDVIA (b; n=164) during May to 
September from 2000 to 2010 in Hailar county. The x-axes denote the number of dekads for SPI, with, for example, 2 indicating 2 dekads 
(1 antecedent dekad). * and ** represent statistical significance at the 0.05 level and the 0.01 level, respectively. 

 
Fig. 5  The coefficient of determination (R2) between CMI and NDVIA over the entire growing period (a; n=164) and in individual months 
of May–September (b; n=33) from 2000 to 2010 in Hailar county. The x-axes denote the time lag between the indices. In panel (b), n=32 
for June. * and ** represent statistical significance at the 0.05 level and the 0.01 level, respectively. 

there was a lack of soil moisture before the growing 
season. After sowing, from early May to early July, 
the SPI values were continuously less than 0. This 
long-term precipitation shortage caused a gradual de-
crease in CMI until mid-July, when the soil moisture 
began to recover. Although the SPI value seemed to 
return to normal in early June, this short-term precipi-
tation neither changed the decreasing trend in CMI nor 
mitigated the drought conditions. The shortage of wa-
ter ultimately caused a continuous decrease in the 
NDVIA. Because there was a 1-dekad time lag be-
tween CMI and NDVIA, the vegetation recovery be-
gan in late July. SPI was close to or higher than 0 from 
mid-July to early August, so the CMI value increased 
and returned to normal. The recovery of soil moisture 
also prompted the recovery of NDVI. The vegetation 
condition returned to normal in mid-August. However, 
this recovery period occurred too late in the growing 

season. Therefore, the yield was heavily reduced due 
to this spring and summer drought. 

In contrast, the period of serious drought in 2007 
was in summer and autumn. The precipitation in mid 
and late May provided good moisture conditions dur-
ing the crop seeding period. The NDVIA showed that 
the growth condition was even better than normal. 
However, there was a series of dekads after mid-June 
when precipitation was lower than normal, particu-
larly the dekad in late July, with only 0.4-mm precipi-
tation. CMI showed that water stress rose to the most 
serious point in late July. Due to this water stress, 
NDVIA decreased sharply and fell to the lowest point 
in mid-August. Although the precipitation in August 
returned to normal, the NDVIA did not recover to 
normal levels until mid-September. By that point the 
crops had already passed through the flowering stage, 
and the yield suffered great damage. 
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Fig. 6  Drought process from 2000 to 2010 in Hailar county. Values in parentheses behind the years represent total crop yield energy. 
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In 2001, although precipitation conditions im-
proved in early May, the continuing low precipitation 
from mid-May to late June decreased the CMI. 
NDVIA started to decrease due to water stress in early 
June. In July, the precipitation returned to normal, and 
CMI slowly returned to normal in late July. NDVIA 
recovered to 0 in early August. Precipitation began a 
continuous decline in late August, and NDVIA rapidly 
declined in mid-September due to water shortage. 

In 2004, the precipitation continually decreased be-
ginning in mid-June, and the NDVIA began to decline 
in late June. Because the precipitation in early July 
was higher than normal, CMI recovered quickly. 
NDVIA recovered to nearly –10% in mid-July. After 
that, CMI started to decrease in mid-July, and NDVIA 
deceased in late July. The precipitation in early August 
caused a sharp increase in CMI, and subsequently 
NDVIA increased in mid-August. CMI decreased in 
early September, and NDVIA decreased in mid-  
September. Following several dry spells, there was an 
85.5-mm precipitation event on 3 August 2004. The 
growth period was nearly at the milky ripe stage for 
wheat and barley, and the stems were fragile. It is pos-
sible that the heavy rainfall also caused early falling of 
the wheat ear, thus lowering the yield.  

4  Discussion 

4.1  Recent trends of climate and agricultural 
drought 

The frequency of extreme drought in northeastern 
China has obviously been increasing since the 1980s, 
which is closely related to decreased precipitation and 
increased temperature (Ma and Fu, 2006). Since 2000, 
this dry and warm trend has been significant in Hailar 
county (Fig. 3b). In addition, the decrease in precipita-
tion influenced the moisture balance and increased 
water stress on crops. Because the water deficit occurs 
during the key reproductive growth period (flowering 
time) of crops, the energy yield has suffered greatly 
from the water deficit. These findings suggest that in 
semi-arid regions such as Hailar county, the drying 
and warming climate trends that have occurred during 
the growing season over the past decade mean that 
meteorological drought has easily transformed into 
agricultural drought. 

4.2  Critical growth stages related to crop yield 
reduction 

The majority of the crops in Hailar county are grains, 
such as spring wheat and barley, the yield of which is 
closely related to reproductive growth. Our results 
show that vegetation vigor as measured by NDVI 
best reflects yield energy in July (Table 1). Deng et 
al. (2011) studied spring wheat in northern Hailar 
county and Chen Barag Banner (adjacent to Hailar 
county) by comparing the actual yield and NDVI in a 
30-m image taken on 29 July 2009 by the Chinese 
HJJZ satellite; they found an extremely significant 
correlation between this index and yield. Likewise, a 
study conducted in the Canadian prairies showed that 
MODIS-NDVI from the third dekad of June through 
the third dekad of July could well predict the yields 
of barley, canola, field peas, and spring wheat in the 
sub-humid zone (Mkhabela et al., 2011). The Cana-
dian prairies and Hailar county share a similar crop 
planting structure and growing season (May–Au-
gust). 

Research on crop physiology has shown that for 
cereal crops, the uppermost leaves (i.e. the flag leaves) 
are an important source of carbohydrate production. 
The flag leaves, which emerge during the tillering 
stage, make up approximately 75% of the effective 
leaf area that contributes to grain filling (Miller, 1999). 
The characteristics of flag leaves reflect photosyn-
thetic activities and are considered to be some of the 
greatest components in determining grain yield poten-
tial (Hirota et al., 1990). In Hailar county, the 
grain-filling stage for spring wheat is in mid-July. 
Thus, it is possible that vegetation indices in July re-
flect the growth condition of flag leaves and thereby 
effectively monitor yield damage. 

The key water stress period identified by dekad- 
scale CMI can be validated by research on crop water 
requirements. According to experiments on spring 
wheat in Northern China and actual measurements of 
evapotranspiration and the soil water balance equation, 
water consumption of spring wheat reached a peak 
during the jointing to milky period, which accounted 
for 47.5% of the total water consumption (Li et al., 
2003). The jointing to milky period for spring wheat 
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in Hailar county is from late June to late July. Perhaps 
the unbalanced state between the water supply and 
water consumption by spring wheat during this period 
is what allowed CMI in mid- to late June to provide 
the best forecast of yield. The key period identified by 
CMI is a little earlier than that identified by NDVIA 
(Table 1). The significant time lag between CMI and 
NDVIA in July (Fig. 5) suggests that the influence of 
dekad-level water stress on the ability of flag leaves to 
produce carbohydrates around the grain-filling period 
(mid-July) is a substantial agricultural drought process 
that decreases yield of spring wheat in Hailar county. 

4.3  Time lags between water deficit and NDVI 

SPI was originally calculated at a monthly scale 
(McKee et al., 1993). Because 1-month SPI reflects 
relatively short-term conditions, its application relates 
closely with short-term soil moisture and crop stress, 
especially during the growing season. In this study, the 
cumulative period from SPI to CMI was about 4 
dekads (Fig. 4a). Our findings show that the dekad- 
scale CMI can bridge the gap between short-term 
vegetation change and water deficit as depicted by an 
in situ meteorological dataset. In May, June, and Sep-
tember, the time lag between CMI and NDVI was 
longer than that in July and August, during the grow-
ing period (Fig. 5). The measurement of soil moisture 
at Ewenki, Ergun, and Zhalantun experiment stations 
(near Hailar county) showed that in spring, after snow 
melt, there is a period of significant soil moisture loss 
from early April to early June due to strong wind 
(Wang and Zhao, 2006). CMI may perform poorly in 
depicting the soil moisture balance influenced by 
snow melt and strong wind in spring. 

The average time lag between CMI and NDVI was 
1 dekad during the growing period, and our findings 
suggest that CMI could be used to track the change 
of a dekad-scale crop NDVI in similar rainfed agri-
cultural regions. In a previous study, Zipporah (2011) 
investigated the temporal aspects of drought in Af-
rica based on NDVI and Owe’s AMSR-E soil mois-
ture dataset, using correlation analysis and a distrib-
uted lag model (Dominic et al., 2002). The results 
show that a 10-day lag between NDVI and soil mois-
ture was the dominant pattern in grassland, cropland, 

cropland, and shrubland. Gu et al. (2008) evaluated 
the temporal relationship between NDVI and soil 
moisture data at 10 homogeneous grassland sites; at 
7 of the sites there was a 1- to 2-week time lag in the 
NDVI response to soil moisture variation in the 5- 
and 25-cm soil layers. Thus, our finding that the re-
sponse time of crop vegetation to soil moisture is 1 
dekad is comparable with the results of previous 
studies. 

4.4  Feasibility of using SPI, CMI, and NDVI for 
monitoring agricultural drought 

Our detailed assessment of the agricultural droughts in 
2001, 2003, 2004 and 2007 shows that SPI, CMI, and 
NDVI can depict the processes underlying a serious 
drought at a dekad time scale during the growing sea-
son. Based on these three indices, it is possible to 
judge the likelihood of drought development and to 
assess the possible yield damage. Dekad-scale SPI can 
be regarded as the earliest indicator of drought impact 
on crops. The relationship between CMI and NDVIA 
displays a significant time lag. In this study, the dekad 
synthesized NDVI values were produced using the 
maximum-value composite method (Holben, 1986) to 
reduce noise. Therefore, although dekad-scale NDVI 
is not a direct measure of crop growth, the results of 
this study suggest that NDVI provides sufficient in-
formation to reflect the response of crops to drought at 
the dekad time scale. 

5  Conclusion 

Our findings indicate that the agricultural drought as-
sessment model is suitable for regions where crop 
yield is closely related to the reproductive growth 
stage. In our assessment based on the proposed model, 
we were able to track the drought process in Hailar 
county: we found that meteorological drought during 
2000–2010 was easily transformed into agricultural 
drought. In this region where grain crops, including 
spring wheat and barley, are the main crop types, soil 
moisture-based vegetation indices during the late 
vegetative to early reproductive growth stages (CMI 
in June and NDVIA in July, respectively) could be 
used to detect agricultural drought. The most frequent 
average time lag between CMI and NDVI was 1 
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dekad, especially in July. The results of this 11-year 
assessment at the dekad time scale in Hailar county fit 
the conceptual model of the agricultural drought 
process well. Our findings suggest that when synthe-
sizing multiple indices to identify drought features at a 
short time scale, the underlying drought process needs 
to be considered. Future research of the drought proc-
ess should consider the calibration of fixed parameters 
for CMI using cases of drought lasting for longer time 
periods, the effects of snow melt and strong wind on 
soil moisture in spring, the role of human activity, and 
the influence of other disasters on yield, such as insect 
attack. In regions with a drying and warming climate 
trend, such as Hailar county, longer-term or more sus-
tainable measures, such as adjusting the cultivation 
calendar or crop planting structure, may be necessary 
to prevent damage from agricultural drought in the 
future. 
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