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Also in the past, between the sixteenth and the eight-
eenth centuries, experts in the insurance world, borrow-
ing from probability calculus and demographic statistics, 
developed tools to compute the fair premium of annu-
ity insurance and related values. For the evaluation of the 
probability of survival, a sophisticated statistical analysis 
was required and consequently, even in the early twenti-
eth century, the field of actuarial science (the theoretical 
counterpart of the flourishing industry of insurance) was 
much more advanced than that of banking, in the use of 
sophisticated mathematical tools. Even though some “stock 
exchanges” were already operating according to modern 
canons as early as the eighteenth century [the Paris stock 
exchange was born in 1724 and the legendary New York 
Stock Exchange (NYSE), in 1798], there was still a lack of 
studies about the evolution of stock prices and, more gener-
ally, the functioning of stock markets.

In this setting, in the early twentieth century, two excep-
tionally important PhD theses were defended. In Paris, in 
1900, Jean Louis Bachelier (1870–1946) defended a thesis 
entitled Théorie de la spéculation (The theory of specula-
tion) [3], while the thesis by Filip Lundberg (1876–1965), 
entitled Approximerad framstallning af sannolikhetsfunk-
tionen—Återförsäkring af kollektivrisker (Approximations 
of the probability function—reinsurance of collective risk), 
was defended in Uppsala in 1903 [11]. Both involved the 
use of advanced mathematics: stochastic processes, then a 
genuinely revolutionary tool. A stochastic process is a fam-
ily Xt of random variables indexed by the time parameter t. 
Thus, it is a tool useful to describe the time evolution of a 
random phenomenon. The simplest model of a continuous-
time stochastic process is the standard Wiener process, a 
one-dimensional arithmetic Brownian motion, triggered by 
the initial condition W(0) = 0 and characterised by incre-
ments W(t + h) − W(t), independent for each pair of disjoint 
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Until the beginning or even the middle of the 1900s, math-
ematical finance (or financial mathematics) remained con-
fined to a support role to business accounting, especially 
in debt and credit reports. It was used for computing, 
quickly and without controversy, interests and discounts on 
basic operations: exchange of a loaned sum today against 
the return at a certain future time of the same amount 
plus interests (accumulation operation) or, conversely, 
early repayment of a debt, reduced by an appropriate rate 
(discounting).
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intervals, with a normal distribution having mean 0 and 
variance h (or standard deviation h1/2). It follows that the 
generic variable W(t) of the process is distributed as a nor-
mal with mean 0 and variance t. The notation dW indicates 
the random differential of the standard Wiener process, an 
evolution of the notion of real differential (of functions of 
real variables). It is the normal random variable with mean 
0 and variance dt.

In his description of the evolution model of the cumu-
lative gain process Gt that can be obtained over time after 
investing in an equity asset, Bachelier used the differential 
equation dG = sdW, in which an asset-specific constant s 
appears, the so-called volatility of the asset. Given the ini-
tial condition G(0) = 0, the solution of this equation is the 
process G(t) of normal variables with mean 0 and variance 
s2t. This means that a stock investment is a financial trans-
action that in a time interval of length t generates a gain 
normally distributed with expected value zero and variance 
proportional (depending on the square of the volatility) to 
the time. Despite the keenness of his insight, Bachelier’s 
contribution was not taken into account as it deserved. His 
thesis, forgotten for decades, was rediscovered and brought 
to the attention of the world of finance only in the 1950s by 
Paul Samuelson (1915–2009).

For his part, Lundberg applied stochastic processes to 
the study of the solvency of an insurance firm, identify-
ing the level of initial capital resources required to ensure 
that the probability of a firm being ruined falls within 
acceptable limits. Lundberg assumed that the firm’s 
capital resources evolve over time according to a ran-
dom model described by the equation X(t) = x0 + ct − St, 
where x0 is the initial allocation, c is the constant instan-
taneous rate of an inflow of net premiums whose total 
value in the time period (0, t) is ct, and St is the cumu-
lative value up to time t of the disbursements derived 
from paying claims. Denoting by γ the constant loading 
coefficient of the fair premium for each insured risk, we 
have ct = (1 + γ) E(St), or c = (1 + γ) E(S1). The key point 
of Lundberg’s approach is that the arrival of claims is 
described by a compound Poisson process St =

∑N(t)

h=1
Yh, 

where N(t) is the random number of claims in the inter-
val (0,t) and is supposed to follow a Poisson process of 
parameter λ, constant over time [so that the average num-
ber of accidents in each interval (0,t) is λt], while the 
random variables Yh, the size of the reimbursement deriv-
ing from the generic claim, are equally distributed, with 
mean μ and variance ν2, independent of each other and 
of N(t). Thus, the process X(t) is one whose trajectories 
show alternating intervals of linear growth segments, 
with slope c, and downwards jumps, which are random 
in both time and amount. The time τ of ruin of the firm 
is the instant in which, due to one of these jumps, for the 
first time, X(τ) < 0; formally, τ = inft {X(t) < 0}. Lundberg 

was able to prove that in this scenario the asymptotic ruin 
probability, that is, the probability of the event τ < +∞, is 
approximately equal to exp(–(x0 (2 m/σ2)), a function of 
the parameters m = γE(S1) (expected value of the gain per 
time unit) and σ2 = λ (μ2 + ν2) (variance of this gain) of 
the firm’s risk portfolio.

Lundberg’s way of posing the problem was very suc-
cessful and became known in actuarial circles as “collec-
tive risk theory”, inspiring for a long time the control strat-
egies about the solvency of insurance companies in order 
to protect the community of insured people. It placed its 
emphasis on the role of free capital in counteracting the 
failure of the firm, but it did not draw consistent conclu-
sions about the dividend policy (completely neglected in 
the model) and the company’s value. A reconciliation of 
the collective risk theory with a consistent company-ori-
ented viewpoint had to wait until 1957 and the 15th Inter-
national Congress of Actuaries in New York, where Bruno 
de Finetti (1906–1985) gave a talk in which he set out an 
optimal dividend strategy aimed at maximising the compa-
ny’s value, defined as the average present value of the divi-
dends themselves [8].

Reworking the insights of Bachelier and Lundberg and 
exploiting the powerful results reached in the meantime 
by probability theory, in particular thanks to Paul Lévy 
(1886–1971) and Kiyosi Itô (1915–2008), stochastic pro-
cesses have played, since 1970, a dominant role in quantita-
tive finance.

A variant of the arithmetic Brownian motion, the geo-
metric Brownian motion described by the differential 
equation dA/A = mdt + sdW, was used by Samuelson in 
1965 and a few years later, in 1973, both by Fischer Black 
(1938–1995) and Myron Scholes (b. 1941) [4], and Rob-
ert C. Merton (b. 1944) [14] to describe the behaviour over 
time of the instantaneous rate of return dA/A of an asset, 
typically a share. In addition to the random component 
sdW, the second member includes a sure term mdt whose 
coefficient m is called the drift parameter of the process. 
It is easy to deduce that dA/A has normal distribution with 
mean mdt and variance s2dt. Taking into account the initial 
condition A(0) = A0, it can be proved that the solution of the 
differential equation is the process At = A0 exp(μt + sWt), 
where μ = m − (s2/2). Since the natural logarithm of (At/A0), 
that is μt + sWt, is a normal variable with mean μt and vari-
ance s2t, the process is said to be log-normal. In the sim-
plest model, the parameters m and s are constant in each 
time/state combination (t, At), while in other cases they 
may be deterministic or random variables.

Brownian motions with drift were also proposed to 
explain the random movements of the instantaneous spot 
interest rate. Oldřich Vašíček (b. 1942) was the pioneer in 
these applications; slightly different variants were proposed 
a few years later, in 1985, by Cox, Ingersoll and Ross (with 
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what is now known as the CIR model) [7] and by Hull and 
White in 1993 [10].

A common feature of all these variants of Brownian 
motion is the fact that the trajectories of the process are 
always continuous. An influential supporter of the oppor-
tunity to introduce mixed diffusion/jump processes when 
studying the evolution of random variables in financial 
applications was again Merton, in a celebrated 1976 arti-
cle [16]. In his model we have At = A0 exp(Lt), with Lt a 
jump-diffusion process in which the parameters of the dif-
fusion component are m and s2 and the component of the 
jumps is described by a compound Poisson process with 
random arrivals of parameter λ and jumps independent of 
each other and of Nt, and equally distributed with common 
distribution Yh (normal with mean ν and variance σ2), or 
Lt = mt + sWt +

∑N(t)

h=1
Yh. The first two moments of the 

distribution of L1 are E(L1) = m + λ ν and V(L1) = s2 + λ 
(ν2 + σ2). It is hardly necessary to point out how brilliant 
(three quarters of a century in advance!) the insights of 
Bachelier and Lundberg proved to be.

Towards the middle of the twentieth century, another big 
name in quantitative finance emerged: Harry Markowitz (b. 
1927) with his portfolio theory (see [12, 13]).

To introduce Markowitz’s portfolio theory, consider 
an individual or a representative of an institution who has 
to invest an amount W of wealth in certain n risky assets 
whose random return rates in a given time span are Ri, 
i = 1, …, n. Denoting by Wi the part of the wealth invested 
in the asset i and by xi = Wi/W its fraction, we call port-
folio the vector x = (x1, x2, …, xi, …, xn) of the fractions. 
The return of the portfolio over the given time span is 
equal to R(x) =

∑n

i=1
xiRi, the combination of the returns 

of the single assets weighted by their respective fractions. 
We have the constraint 

∑n

i=1
xi = 1, but, where necessary, 

other restrictions can be imposed, and in particular x ≥ 0, 
the non-negativity of fractions, which reflects the prohibi-
tion (in force in some institutional settings) on taking short 
positions in any asset.

In his work in the 1950s, Markowitz addressed the prob-
lem of how to choose the portfolio, solving it by proposing 
to apply the mean–variance approach. In his opinion, any 
rational investor aims at achieving two objectives: maxim-
ising gain and minimising risk. The objectives are, how-
ever, conflicting: the maximisation of the expected gain 
would mean the concentration of investments in one or 
very few assets (those with the highest expected gain), 
which would be accompanied by a (too) high value of risk. 
Mediating between the two requirements, the practice of 
the day empirically suggested dividing the portfolio into 
more or less equal parts in a number (from a dozen to 20) 
of assets with the highest expected return. It was thought 
that this, besides ensuring a sufficiently high expected 
return, would reduce, or virtually eliminate, risk, due to the 

diversification. Markowitz was not content with this sim-
plistic approach and decided to investigate further the con-
ditions of effectiveness of diversification. In a random set-
ting, he identified as a measure of the gain the expected 
return of the portfolio E

�

R
�

x
−

��

=
∑n

i=1
xiE

�

Ri

�

 and as a 

measure of the risk its variance, by making explicit the 
components V(R(x)) = Σi Σj xi xj σij, where σij = ρij σi σj 
denotes the covariance between Ri and Rj, the product of 
the coefficient of linear correlation between the yields of 
the two assets by their standard deviations (note that for 
j = i, the covariance reduces to the variance of the Ris).

The next step was consistent with Pareto’s concept of 
multicriteria decisions. It was necessary to find an algo-
rithm that would generate the set of Pareto-efficient port-
folios: formally, the admissible values of x for which 
no admissible values of y exist with E(y) ≥ E(x) and 
V(y) ≤ V(x), with at least one strict inequality. Taking 
advantage of the recent results of constrained optimisa-
tion theory (due to Dantzig, Kuhn and Tucker), Markowitz 
found that the set of efficient portfolios could be found by 
solving for x the equation min V = xTCx with the constraints 
xT m ≥ E, xT1 = 1, where C denotes the matrix of the covari-
ances of the returns and m is the vector of the respective 
expected values.

Markowitz described the geometrical properties of the 
solution both in the space (a simplex) of portfolios and in 
the variance-mean plane (V, E), where such a set turns out 
to be the northwest (efficient) border of admissible port-
folios. This geometric representation became the starting 
point of reflections on the functioning of capital markets 
(more or less, the stock markets) developed in the following 
years by James Tobin (1918–2002) and William F. Sharpe 
(b. 1934)—who were awarded with the Nobel Prize for 
Economy in 1981 and 1990 respectively—which led to the 
so-called Capital Asset Pricing Model (CAPM).

Tobin had the idea of adding to the menu of random 
yield assets a further non-risky asset with rate of return 
rf over the time considered (a pure discount of fixed face 
value, payable without any risk of insolvency at the end 
of the time period considered by the model). In this new 
scenario, every efficient portfolio could be obtained as a 
combination of that asset and a single completely random 
portfolio M. Such a portfolio, called the market portfolio, 
was characterised by the property of maximising, in the set 
of all eligible, completely random portfolios A, the ratio 
(EA − rf)/σA. Ultimately, then, all efficient portfolios were 
combinations of the market portfolio and the risk-free asset 
(in proportions dependent on the propensity to risk-return 
trade off of the individual investor).

Reflecting on this model, in 1964 Sharpe introduced 
the equation that characterises in this abstract bal-
ance all portfolios P that are mean–variance efficient, 
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EP = rf +
(

(EM − rf )
/

�M

)

�P [20]. It decomposes the 
expected return EP of each efficient portfolio in the sum 
of the certain return rf, the so-called price of time, and an 
additional return called overall price of risk. The latter, in 
turn, is the product of the unitary price of risk (EM – rf)/σM 
multiplied by the units of risk of an efficient portfolio 
measured by σP, that is, by its standard deviation.

This model suggested to Sharpe another equation, 
valid in general for both efficient portfolios and indi-
vidual assets or inefficient portfolios: EP = rf + (EM – rf) 
(σPM/σ2

M). It suggests that the expected return of any 
asset or portfolio is the sum of the price of time and an 
additional compensation for the risk associated with the 
unavoidable risk factor, represented by the market port-
folio return whose unitary price is (EM − rf). The measure 
of this risk is the so-called beta coefficient of the asset 
(or of the portfolio) βPM = σPM/σ2

M. This coefficient, geo-
metrically interpreted as the slope of the regression line 
of RP on RM, is a measure of the sensitivity of the return 
of the portfolio to changes in the market return. It can be 
proved that the beta coefficient of a portfolio is the com-
bination of the beta coefficients of its assets, weighted by 
the respective fractions; in particular, the market portfo-
lio has β = 1, while it is β = 0 for the risk-free title. Portfo-
lios with β > 1 are said to be aggressive, while those with 
β < 1 defensive. The first ones enhance the reward cor-
responding to market trends better than the expectations 
but reduce it in case of disappointing behaviours of the 
market; the opposite is true for defensive portfolios.

In the decades that followed, the explanatory power of 
this model generated a huge literature of attempts to theo-
retical generalisation on the one hand and empirical veri-
fication on the other. Of particular note are the proposals 
by Ross with the Arbitrage Pricing Theory (APT, 1976) 
[17], Merton with the Intertemporal Capital Asset Pricing 
Model (ICAPM, 1973) [15] and Breeden with the Capital 
Consumption Asset Pricing Model (CCAPM, 1979) [5].

Today, to verify the efficiency of their asset manage-
ment all financial intermediaries, such as open- and 
closed-end funds, pension funds, insurance companies, 
commercial banks and investment banks, rely on tech-
niques and methods borrowed directly or indirectly from 
the theories of Markowitz and Sharpe. They have had and 
continue to have a major influence on the functioning of 
capitalism in its current stage of development.

Another theory, developed in the last quarter of the 
twentieth century, has assumed an importance that is 
equal to or even greater than that of the portfolio theory: 
the option theory. It combined in the same year, 1973, the 
circulation of the Black–Scholes formula, which seemed 
to provide a basis for unequivocally and precisely com-
puting of the price of European call and put options of 

standard type, and the opening of the first modern stock 
exchange specialised in the field (the Chicago Board 
Options Exchange). Subsequently, the development of 
the theory has encouraged the spread of “exotic” options, 
often negotiated over the counter, that is, directly between 
the parties outside an exchange. The dissemination of this 
instrument through familiar banking channels, by giving 
friendly connotations to techniques that are very decep-
tive and difficult to understand even for experts, has cer-
tainly contributed to the polluting of the financial markets 
and has been a major cause of the severe economic crisis 
that, starting in 2007 in USA, has overrun the developed 
economies, creating an unprecedented crisis in the real 
economy.

In an option, there are two parties, one in long posi-
tion (holder) and the other in short position (writer). The 
option gives the holder the right but not the obligation to 
exercise it at a fixed date T (European options) or at any 
time t before the deadline (American options). The object 
of the exercising is a predetermined amount of an under-
lying asset (usually a financial asset, such as a share or a 
bond, or an actual commodity, such as oil, wheat or cot-
ton, or even an interest rate). The exercise allows the holder 
to buy (“call” option) or sell (“put” option) the underlying 
asset, not at the current price A but at a fixed price K, the 
exercise price. In the absence of fiscal and transaction fric-
tions, the value of the option at maturity is given by the net 
gain resulting from the holder adopting the optimal strat-
egy: max(AT–K; 0) for the call and max(0; K-AT) for the 
put. Note that, in the absence of friction, the option can-
not have a negative value: in the worst case, it is possible 
to just let it expire without exercising it, which does not 
involve any expense. In the absence of maintenance costs 
of the option, non-negativity also holds for any time before 
maturity. More generally, we have the so-called fundamen-
tal equation of option theory: AT + PT − CT − KT = 0, where 
the plus and minus signs denote, respectively, the values of 
a long and short position and the identity means that the 
relationship is valid whatever the value at T of the underly-
ing asset; of course, PT and CT are the values of options that 
have in common the maturity date T, the underlying asset A 
and the exercise price K = KT. In the identity, K can also be 
interpreted as the redemption value at the maturity date T 
of a zero-coupon bond. At time T, it is therefore equivalent 
(a) having a portfolio consisting of long positions in a zero-
coupon bond with maturity date T and redemption value 
K = KT and a call option on the underlying asset A, with 
maturity date T and exercise price K, or (b) having a port-
folio consisting of long positions in the underlying asset A 
and the “twin” put option (with the same specifications of 
underlying asset, maturity and exercise price) of the call.

The fundamental identity also remains valid at any time 
t < T, provided the four assets at stake generate neither 
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costs, nor profits in the interval between t and T (in par-
ticular, the share does not generate dividends, the bond 
does not pay coupons and the options are European). In 
this case, it always holds (that is, for any value At of the 
underlying asset) that AT + PT − CT − KT = 0, where Kt is 
the value at t of the bond having maturity date T (but also 
the discounted value of the exercise price). This identity is 
the basis of so-called put-call parity relations for European 
options Pt = Ct + Kt − At and Ct = At + Pt − Kt, expressed in 
this precise algebraic form by Stoll in 1969 [21], but well 
known in the financial world since the seventeenth century 
(Joseph de La Vega covered it in his 1688 Confusion of 
Confusions).

The parity relations are in turn the basis for the decom-
position into two parts, intrinsic value and time value, of 
the value of a European option. We have

The decomposition helps to understand the reasons why 
(as highlighted for the first time in a 1969 paper by Sam-
uelson and Merton [19]) it is never profitable to exercise 
early (before maturity) an American call option on a div-
idend-free underlying asset or with the equivalent protec-
tion clause of the dividends in favour of the writer. Indeed, 
prematurely exercising an American option means deciding 
to shorten its maturity from T to t. If it is a call option, this 
means to lose the time value. The reasoning is less straight-
forward in the case of the American put option because the 
time value does not have an unequivocal sign.

The arguments we have seen so far, based on rela-
tively weak economic assumptions, have made it possible 
to define a put-call parity relation whose use allows us to 
find the value of the call option when the value of the twin 
put option is known (and vice versa). However, we are still 
not able to find one of the two values, when the other is 
unknown. Achieving this goal, one of the great intellectual 
challenges in the history of finance, was made possible only 
in 1973 by the work (independently) of Black and Scholes 
[4], and Merton [14]. It is for this that Scholes and Merton 
were awarded the Nobel Prize for Economics in 1997.

To achieve the goal of pricing a European call option on 
a dividend-free underlying stock asset, Black, Scholes and 
Merton wisely used instruments and results already avail-
able: geometric Brownian motion with drift (suggested, 
as we have seen, by Samuelson in 1965 [18]) for the the 
process of the underlying asset, and the idea of using the 
possibilities offered by a complete market to replicate the 
value of the option at maturity whatever the path followed 
by the underlying asset in the time between the creation of 
the option and its maturity. In this regard, the standard was 
set by a 1953 paper [1] by Arrow (1921–2017), in which 
he proved that, to replicate any desired basket of payments 
at the time T, it was necessary and also sufficient to have a 

Pt =
(

KT − At

)

+
(

Ct − KTiv
)

; Ct =
(

At − KT

)

+
(

Pt + KTiv
)

.

number of elementary assets (the so-called “Arrow-Debreu 
assets” or “state contingent assets”) equal to the number 
of possible states of the world in T. Each elementary asset 
pays a monetary unit when the corresponding state of the 
world occurs; if that state does not occur, it pays noth-
ing. In the same paper, Arrow also neutralised the objec-
tion that the existence of a number of elementary assets 
corresponding to the enormous number of states of the 
world was an absolutely unfeasible academic utopia. To do 
this, he proved that the completion of the market could be 
obtained in an alternative way (even in the presence of a 
limited number of assets) making the negotiating instants 
more frequent. Bringing this strategy to the extreme, that 
is, passing to a continuous situation, Black and Scholes 
proved that only two assets, the risk-free asset and the ran-
dom underlying asset, continuously rebalanced, could rep-
licate the maturity value of a European call option. Thus 
they obtained, by solving a second-order partial differential 
equation, the well-known formula.

where N(x) = Prob(N(0,1) ≤ x) is the value at x of the cumu-
lative function of a standard normal distribution,

and

In the formula five parameters A, r, K, (T – t), s appear, 
but not the drift parameter m of the differential equation of 
the underlying asset. A and r are observable in the market, 
K, and T − t are specified by contract, while the volatility s 
of the underlying asset is the only non-observable param-
eter. In the Black–Scholes model, it is assumed to be con-
stant; its estimation has been the subject of great debate in 
view of practical applications. One can resort to the use of 
the historical volatility or the so-called implied volatility, 
which is obtained by solving the Black–Scholes formula 
for the unknown volatility, starting from a set of market 
prices for similar options. Of course, there are countless 
models with time-dependent (deterministic or random) 
volatility, which were proposed later. Even though none 
of them has even come near the prominent position of the 
Black–Scholes model, many operators follow the volatility 
arbitrage strategies inspired by these models.

Unfortunately, the use in the proof of complex tools 
of stochastic calculus, such as Itô’s lemma, did not help 
to facilitate an understanding of this approach, so the 
paper by Black and Scholes waited a long time before 
being given the green light by the referees. Cox, Ross and 
Rubinstein (b. 1944) remedied the situation in a masterly 
1979 article [6], where they proved that a multi-period 

C(t) = AN
(

d1
)

− K exp (−r(T − t))N
(

d2
)

,

d1 =
(

ln(A∕K) +
(

r + s2∕2
)

(T − t)
)/

s(T − t)1∕2.

d2 = d1 − s(T − t)1∕2 =
(

ln(A∕K) +
(

r − s2∕2
)

(T − t)
)/

s(T − t)1∕2.
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simple-alternative market with only two elementary 
activities that are available at each negotiating instant, 
when the intervals between successive instants approach 
zero, generates a log-normal distribution of the price 
of the underlying asset and a price formula of the call 
option, in the absence of arbitrage, that converges to the 
Black–Scholes formula.

In subsequent years, the impact of the Black–Scholes 
formula was strongly accentuated by another conse-
quence of Arrow’s logic: the extraordinary (and in 
retrospect, we might say deceptive) simplicity of the 
technology of price calculation as the present value of 
expected values in a risk-neutral world. If we consider 
in a complete market the set of current prices ps of ele-
mentary assets, and denote by B = 1/(1 + rf) the current 
price of a zero coupon bond certainly paying 1 at time 
T, the absence of arbitrage requires that B =

∑S

s=1
ps, 

or 1 = B
�

1 + rf
�

=
�

1 + rf
�
∑S

s=1
ps. If we now set 

�s = ps
(

1 + rf
)

, we obtain 
∑S

s=1
�s =

�

1 + rf
�
∑S

s=1
ps = 1. 

Thus, the numbers πs, which are non-negative and sum to 
1, have the property of a probability distribution. Their 
role can be understood if we consider the current price 
p(X) of a random asset X that at T pays xs conditionally 
upon the occurrence of the state s. To avoid arbitrage we 
must have: 

Thus, p(X) turns out to be the present value, at the 
risk-free interest rate, of the expected value, according 
to the probability distribution Π, of the variable X. If Π 
were the real-world probability, this would be the price 
of the random asset X only in a market of risk-neutral 
agents; if, on the other hand, the agents are risk-averse, 
the πs are not real probabilities, but are instead adjusted 
according to risk aversion related to the various states. 
For this reason, the probabilities πs are called risk-neutral 
probabilities. It was Jacques Drèze (b. 1929) who in 1970 
highlighted this aspect, which is fundamental for appli-
cations [9]. Subsequently, the probabilists formalised this 
approach coining the terminology of equivalent martin-
gale measures. Within a few years, the ability to estimate 
the prices of elementary assets with relative (and illu-
sory) ease made this pricing technique the new main-
stream of theoretical and applied finance. Options were 
also extended to the sector of government and corporate 
bonds and a world of applications of complex products 
emerged, whose logic eventually got out of hand, even 
for their creators. The financial engineering excesses that 
we now deplore are a perverse consequence of Arrow’s 
studies on the best allocation of risk (for which he was 

p(X) =

S
�

s=1

psxs =
�

1 + rf
�−1

S
�

s=1

�sxs =
�

1 + rf
�−1

E∏(X).

awarded the Nobel Prize for Economics in 1972). Arrow 
himself remarked in a 1965 paper [2] that this is how a 
divorce between productive activities (the real economy) 
and risk undertaking/allocation activities (which he 
understood as the core of finance) could occur. This work 
should therefore be considered as the true birth certificate 
of financial engineering.

Translated from the Italian by Daniele A. Gewurz.
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