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triangle”—formed by two diagonals originating in the same 
vertex of the pentagon and the opposite side—turns out to 
be crucial.

Another geometrical figure that appears more or less 
explicitly in most known constructions is the rectangle hav-
ing one side whose length is double that of the other (or 
the right triangle with one leg twice the length of the other, 
as in the “Carlyle circle” construction, or in the three-cir-
cle construction), in which a segment of the longer side is 
found to be in the golden section ratio to the length of the 
whole side. The starting figure is actually, as in Euclid, a 
square, but the essential element is basically that rectangle 
(or, more simply, the triangle with legs in a ratio 1:2).

In Proposition 11 of Book II of the Elements Euclid con-
structs with ruler and compasses the “golden rectangle”, 
starting from a square ABCD (Fig. 1), whose side will cor-
respond to the shorter leg of the triangle. Having found the 
midpoint E of the side AD, we take it as the centre of a 
circle with radius EC and draw an arc that will intersect the 
extension of side AD at G. Hence, AG is the longer side of 
the golden rectangle ABHG.

Note that, since AD (or HG) is in the golden ratio with 
AG, it would be easy to prove that DG is in the golden ratio 
with DC, so showing that the triangle ECD, whose leg DC 
is twice the other leg ED, is interesting too.

The procedure to find the golden ratio, as is well known, 
derives from the Ptolemaic construction involving the 
chords of a circle, as shown in Fig. 2.

Given a line segment AB, draw from B the perpendicu-
lar to AB itself and find on it the point O such that AB is 
twice BO. Draw the circle having centre in O and OB as 
radius, which is as a consequence tangent to AB at B. On 
the line AO call C and B the intersections with the circle. 
Let E on AB be such that AE = AC. The segments AE and 
AB are in the golden ratio, that is, AB : AE = AE : EB.
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While attempting a proof of the well-known theorem “The 
sides of a regular decagon and a regular hexagon inscribed 
in the same circle are the legs of a right triangle whose 
hypotenuse is the side of the pentagon inscribed in the 
same circle” (Proposition 10 of Book XIII of Euclid’s Ele-
ments), I stumbled upon another, novel method to construct 
the regular pentagon, which I believe could be of some 
interest for teachers.

There are several methods to construct the regular pen-
tagon, devised along the centuries by celebrated scholars, 
starting with Euclid himself and later Claudius Ptolemy. 
However, the geometrical contents of those constructions 
notwithstanding, I believe that the reasons and proofs of 
those methods are rarely shown and explained system-
atically to students, even in science-oriented secondary 
schools.

In particular, both Euclid (in the Elements) and Ptolemy 
(in the Almagest) construct the pentagon starting from the 
circle in which it will end up being inscribed. Later, pro-
cedures were developed to construct this regular polygon 
starting from a side. In any case, the existence of a “golden 

 *	 Giuseppe Sansò 
	 gps@pinosan.it

1	 Via San Martino 60, 57014 Collesalvetti, Livorno, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s40329-016-0145-1&domain=pdf


190	 Lett Mat Int (2017) 4:189–194

1 3

Indeed, consider the power of the point A with respect 
to a circle, we have AB2 = AC · AD = AC · (AC + AB), and 
hence AB · (AB − AC) = AC2.

If we were to draw a circle arc with centre O and radius 
OA until intercepting a point F on the extension of OB 
downwards, the line segment BF (just like AC or AE) 
would be in the golden ratio with AB. Here again, we 
started from the rectangle with the side AB twice the side 
BO (of which in Fig.  2 just one-half, AOB, appears). In 
conclusion, the triangle AOB is analogous to the triangle 
ECD of Fig. 1.

The construction brought about by the search for a 
“new” proof of Proposition 10 also derives from that ratio 
1:2 on a right angle, but its goal, unlike the method men-
tioned previously, is the search for the centre of a regular 
pentagon, given its side. Figure 3 shows that this is a very 
simple construction, suitable for teaching.

Given the segment AB—the side of the pentagon—
and its midpoint C, draw the line segment BD, orthogo-
nal to AB and of the same length. Connect C and D, and 

find on CD the point E at a distance from C equal to the 
length of CB. The point O, the intersection of the vertical 
line above C and the arc of a circle withe centre in A and 
radius AE, is the centre of the circle circumscribing the 
pentagon and having radius OA.

This construction was found, unintentionally, while 
trying to prove Proposition 10 of Euclid’s Book XIII, 
that is, the existence of a right triangle (which I shall 
call “Euclidean right triangle”) whose legs’ lengths are 
those of a regular hexagon and a regular decagon, both 
inscribed in circles with equal radii (and equal to the 
length of the side of the hexagon), while the hypotenuse 
is the side of a regular pentagon, again inscribed in the 
same circle.

The Euclidean right triangle can be easily obtained with 
the procedure shown in Fig. 4.

Draw a half-circle having centre in O, the midpoint of 
AB, and AB itself as a diameter. From B draw a line per-
pendicular to AB and from A draw a line forming a 45° 
angle with AB. Call C the intersection point of the two seg-
ments, join it with the centre O, so obtaining the median 
of the triangle ACB with respect to AB. Denote by D the 
intersection of the half-circle and the segment OC. Join-
ing D with the endpoints A and B of the starting segment, 
we get a right triangle ADB whose shorter leg DB is in the 
golden ratio with the longer leg AD. To prove this relation, 
let us add a few elements to the construction in Fig. 4, in 
which, for the time being, the legs of the right triangle have 
been removed (Figs. 5, 6).

Fig. 1   Construction of the golden rectangle

Fig. 2   Construction of the golden ratio

Fig. 3   Construction of the centre of a pentagon of given side
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It is obvious that MD is twice OM, XYDM is a square and 
the rectangle XYZB is a “golden rectangle” in which YD and 
YZ are in the golden ratio.

Form this construction it can be easily deduced that

MD:MB = MB:(MD −MB).

This means that MB is in the golden ratio with MD.
Hence, the triangle MDB has its legs in the golden 

ratio. Since ADB is similar to it, DB is in the golden ratio 
with AD too.

Fig. 4   Construction of the Euclidean right triangle

Fig. 5   Proof of the Euclidean right triangle (1)

Fig. 6   Proof of the Euclidean right triangle (2)

Fig. 7   The Euclidean right triangle and Ptolemy’s chords (1)
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For the sake of historical elegance, it is useful to cor-
relate this with the studies on Ptolemy’s chords. Thus, the 
construction in Figs. 7 and 8 holds too.

Project the point D on the base of the triangle ABD, 
obtaining DS, the altitude with respect to AB, and find P, 
the symmetrical point of B with respect to S. If Q is the 
midpoint of AP, find on its vertical the point R on AD.

Draw the circle having centre R and radius RP.
The right triangle ATP is congruent to the triangle SDB, 

since they have each a leg with the same length (indeed, 
DS = VP = AP, by construction) and congruent angles 
(BAD = SDB since they are both complements of DBS).

Moreover, RPQ = BAD, RPQ = SDB = PDS, 
RPQ + DPR = PDS + 90°; from this it follows that 
DPR = 90°.

DP is tangent at P to the circle with centre in R, so it is 
the mean proportional of DA and DT,

but, since DP = AT, we also get

thus, DB = DP is in the golden ratio with DA.
If we consider the leg AD as the side of a hexagon and 

the radius of the circle that circumscribes it, then DB is 
the side of a decagon inscribed in the same circle. Indeed, 
the side of the decagon forms, with two adjacent radii, a 
golden triangle having vertex angle, at the centre of the 
circle, of 36° and congruent base angles of 72°. The side 

DA:DP = DP:DT

DA:DP = DP:(DA − DP);

of the decagon is in the golden ratio with the radius and 
thus with the side of the inscribed hexagon of the same 
circle.

It remains for us to prove that the hypotenuse AB is 
congruent with the side of a pentagon inscribed in the 
same circle of the other two polygons. To this end, let us 
draw a circular arc with centre in B and radius BD. It will 
intersect the segment ON in the point L and the side BC 
in the point E (Fig. 9).

Presently, our goal is to prove that the angle LBO is 
18° wide. But studying the illustration it may be inter-
esting to notice that this angular width, once proven, is 
characteristic of the golden rectangle, as seen in Fig. 10.

Fig. 8   The Euclidean right triangle and Ptolemy’s chords (2)

Fig. 9   Checking the pentagon

Fig. 10   Construction of the golden rectangle
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We have added to the usual Euclidean construction 
(Elements, Book II, Proposition 11) the arc DL, centred 
in B, and the segment LB.

Going back to Fig. 9, enlarging the part we are interested 
in (Fig. 11), we notice the following relations:

Application of:

Pythagorean Theorem to MDB (keeping in mind that MD = 2OM):

MB2 = DB2 −MD2

(a) MB2 = LB2 − 4OM2

Golden relation to MDB

(XYZB is a golden rectangle)

(b) MB2 = 2OM(2OM −MB)

Pythagorean Theorem to OLM

(c) LM2 = LO2 + OM2

Pythagorean Theorem to OLB

(d) LO2 = LB2 − (OM +MB)2

Consequences

from (d) LO2 = LB2 − OM2 −MB2 − 2OM ⋅MB

from (c) LM2 = LB2 − OM2 −MB2 − 2OM ⋅MB + OM2

LM2 = LB2 −MB2 − 2OM ⋅MB

from (b) LM2 = LB2 − 2OM(2OM −MB) − 2OM ⋅MB

LM2 = LB2 − 4OM2 + 2OM ⋅MB − 2OM ⋅MB

(e) LM2 = LB2 − 4OM2

Conclusion: LM = MB

(comparing (a) with (e)).

Having constructed the triangle XLM with X symmetric 
to M with respect to ON, it is isosceles and with the side 
LM (congruent with MB) in the golden ratio with the base 
XM. Thus, it is a “golden triangle” with base angles MXL 
and LMX of 36° and vertex angle XLM of 108°.

But, if LMX = 36°, then MLB and LBM (having ascer-
tained that the triangle LMB is isosceles) are 18° wide.

In particular, LBO = 18°, as required.
Determining this angle was essential to complete the 

proof but also enriches our knowledge of the golden rectan-
gle, as we have seen.

By studying Fig.  12, obtained by adding some further 
elements (we have prolonged the vertical line above the 
centre O of the half-circle and found the point F, the inter-
section of this line and the arc having centre E and radius 
BD; basically, the leg BD of our “Euclidean triangle” has 
been copied to E and then to F), it is easy to recognise 
that FEBL is a parallelogram having angle in E equal to 
90° + 18° = 108°.

The triangle FEB is isosceles and its base angles (FBE 
and EFB) are of 36°. Thus, FE = EB = BD is in the golden 
ratio with FB (not drawn). But, since BD is in the golden 
ratio with the longer leg AD (not drawn), it follows that 
AD = FB.

We may conclude by pointing out that a circle arc with 
centre in A and radius AD would intersect the vertical 
above O in the point F, describing the isosceles triangle 
AFB, whose base angles are equal to 54° (in the vertex 
B we have 90° – 36° = 54°) and vertex angle equal to 72°. 

Fig. 11   Enlarged detail of Fig. 9

Fig. 12   Final part of the proof
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Hence it is a one-fifth “wedge” of the regular pentagon 
(Fig. 13).

Thus, AB, the hypotenuse of the right triangle ADB, is 
the side of the regular pentagon inscribed in the circle in 
which are also inscribed the regular hexagon and decagon 
whose sides are the legs of the same triangle. The side of 
the hexagon is the radius of the circle too.

Appendix: Complete (and new) construction 
of the regular pentagon, given its side AB

Given the side AB, from the endpoint B draw the line BD, 
perpendicular to it (Fig. 14). Having found the point D such 
that BD has the same length as AB, join C, the midpoint of 
the side AB, to D. With centre in C and radius CB, draw an 
arc of circle that intersects CD in the point E.

The distance AE is the radius of the circumscribed circle 
of the regular pentagon having side AB. Thus, the arc cen-
tred in A with radius AE intersects the line perpendicular 
to AB and passing through C in the point O, centre of this 
circle (the point O may be found, in a more direct way, by 
intersecting the last-mentioned arc with another one, with 
the same radius and centre in B). Having drawn the circle, 
the vertices of the regular pentagon are determined, one by 
the line CO (vertex G), and the other two by the circle arc 
centred, respectively in A and B and radius AB (vertices F 
and H).

Translated from the Italian by Daniele A. Gewurz.
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Fig. 13   Conclusion of the proof

Fig. 14   Construction of the regular pentagon
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