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started by Galileo and Newton and developed by the great 
mathematicians of the eighteenth century. A central role in 
this approach was played by differential equations, both 
ordinary and partial. Thus, it is not surprising that the study 
of “regular” functions (differentiable, or at least differen-
tiable except for some isolated points) was favoured.

Of course, it is easy enough to see that “clouds are not 
spheres, mountains are not cones” [11, p. 1], but on the other 
hand it is not that easy to bring oneself to abandon good old 
geometry and the analysis of differentiable functions.

There were exceptions studied by Weierstrass, Peano, 
Hausdorff and Julia in mathematics and by Perrin and Richard-
son in physics, which were long considered to be pathologies. 
These studies remained somewhat on the fringe: mathemati-
cians saw them as a kind of elegant constructions of monsters, 
while physicists as pathologies not representative of the phe-
nomena (erroneously) considered to be really important.

The man who recognised the widespread presence and 
importance of such behaviour in natural sciences, and who 
created the term “fractal” itself is Benoît Mandelbrot. Starting 
in the 1960s, inspired by the work of the precursors already 
mentioned, Mandelbrot developed a new form of geometry, 
introducing the neologism “fractal”. Fractal geometry has 
become popular and well-known among the general public 
due to its graphical and aesthetic aspects which, interesting 
as they are, are not especially significant from a scientific 
viewpoint. We are going to briefly survey the development 
of the theory of fractals and its applications to physics.

2 � The dimension of an object

We say that a regular curve has dimension one, since one 
variable (a curvilinear coordinate) is sufficient to determine 
one point on it; analogously, the surface of a sphere has 
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geometry in science and technology.

Keywords  Fractals · Fractal geometry ·  
Fractal dimension · Fractal · Self-similarity ·  
Brownian motion · Turbulence

1 � Introduction

Philosophy is written in this grand book—I mean the uni-
verse—which stands continually open to our gaze, but it 
cannot be understood unless one first learns to compre-
hend the language and interpret the characters in which 
it is written. It is written in the language of mathematics, 
and its characters are triangles, circles, and other geo-
metrical figures, without which it is humanly impossible 
to understand a single word of it; without these, one is 
wandering around in a dark labyrinth. [10, pp. 237–238]

This passage by Galilei can be seen as the manifesto of a 
programme to describe physical reality mathematically, 
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where B is an integer and A < B; this function is extremely 
irregular and its graph, shown in Fig.  1, has an infinite 
length; it has a fractal dimension DF = 2 − ln A/ln B, with 
values between 1 and 2.

3.1.2 � Von Koch

Another example of an irregular mathematical object is the 
Koch curve, due to Helge von Koch, whose construction 
is shown in Fig. 2: take a line segment of unit length and 
divide it in three equal parts. The central part is removed 
and substituted by two segment of its same length. Repeat 
this procedure on the four elements so obtained, then on the 
sixteen of the next generation, and so on for infinitely many 
times. After n iterations we get 4n segments of length 3−n; 
thus, the length increases as (4/3)n, and this corresponds to a 
fractal dimension ln 4/ln 3 ≃ 1.2618.

dimension two since a point on it is given by two coordi-
nates (latitude and longitude).

However, we might proceed in a different way. Let us 
consider a regular curve and ask ourselves how to measure 
its length. We can approximate the curve with a broken line 
consisting of segments of length ℓ and then let ℓ become 
smaller and smaller. Denoting by N(ℓ) the number of seg-
ments, if ℓ is small enough then the length L is about N(ℓ)ℓ; 
thus, N(ℓ) is proportional to 1/ℓ. In the case of a surface, we 
may “tile” it with N(ℓ) small squares of side ℓ; the area A is 
approximated by N(ℓ)ℓ2, and hence N(ℓ) is proportional to 
1/ℓ2. Analogously, to fill a three-dimensional object, a num-
ber of small cubes of side ℓ that is proportional to 1/ℓ3 will 
be required.

From this remark comes the idea of generalising the 
notion of dimension: an object is said to have fractal dimen-
sion DF if the number of small (hyper)cubes having side ℓ 
required to cover the object behaves like

� (1)

Of course, for a regular object, the fractal dimension is sim-
ply the usual dimension. Are there objects for which DF is 
not an integer?

The answer is yes. An object is said to be a fractal if DF 
is not integer. Typically, a fractal has a self-similar struc-
ture: the part is similar to the whole, and looking at a figure 
with a given resolution is not possible to say what scale we 
are looking at. The truly important point is that this kind of 
behaviour is not a by-product of pathological mathematical 
models. On the contrary, this kind of “roughness” is very 
common, and can be found in the attractors of the dissipa-
tive chaotic dynamical systems and in many natural phe-
nomena, such as turbulence and the large-scale structures 
of galaxies.

3 � A little history

Here follows a brief historical survey—far from exhaus-
tive—of the studies that anticipated Mandelbrot’s work.

3.1 � Mathematicians

3.1.1 � Weierstrass

In his work on the theory of functions and Fourier series, 
Weierstrass studied functions that were continuous but not 
differentiable. An example is

� (2)

N DF
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Fig. 2  Scheme for the construction of Koch curve

 

Fig. 1  Weierstrass function; the enlarged inset shows the self-similar 
structure
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Hausdorff, in his studies in measure theory, generalised 
the notion of dimension: if the measure is singular with 
respect to Lebesgue measure, that is, if (4) does not hold, 
then

where DH is called the Hausdorff dimension. As we shall see 
later on, DH can depend on x.

3.2 � Brownian motion

In 1827, Robert Brown, a botanist, discovered the phenom-
enon now called Brownian motion: a colloidal particle (that 
is, an object with a size on the order of one micron, and 
hence macroscopically small but microscopically large), 
immersed in a liquid, has a very irregular, zigzagging 
motion. At the turn of the twentieth century, thanks to the 
work of Albert Einstein and Marian Smoluchowski, the phe-
nomenon was interpreted in terms of statistical mechanics. 
If we observe one of its spatial components long enough, 
we find

where 〈〉 denotes the average, for instance on many par-
ticles, and

d y
x y

DH
| |

( ) ~ ,
− <∫


µ

[ ( ) ( )] ,x t x Dt− 0 22


D TR
aNA

=
6πη

3.1.3 � Peano

The most famous case of a “monster” curve is perhaps 
Peano’s: a continuous curve filling a square. The iterative 
scheme for its construction is shown in Fig. 3.

3.1.4 � Julia

Consider the following iterative rule (describing a discrete-
time dynamical system):

where z is a complex variable; it is easy to see that if z0 lies 
within the unit circle then zt → 0 when t → ∞, while if |z0| > 1 
then zt goes to infinity for t → ∞. Thus, the unit circle |z| < 1 
is the basin of attraction of 0.

Here is now an apparently harmless variant:

� (3)

We ask ourselves about the shape of the finite-value basin 
of attraction. Unlike what we might expect, we do not get a 
simple regular deformation of a circle, but an object whose 
boundary is all but smooth: see Fig. 4.

3.1.5 � Hausdorff

Consider a regular measure µ(x), that is, uniformly continu-
ous with respect to Lebesgue measure, with x ∈ Rd, where d 
is the dimension of the space; we have.

where p(x) is a non-negative function; considering a sphere 
having radius ℓ and centre in x, if ℓ is small enough we have:

� (4)

The quantity d y
x y| |− <∫ ( )



µ , which can be seen as the mass 

within the sphere, increases as ℓd.

z ztt+ =1
2

z z ctt+ = +1
2 .

d p dµ( ) ( ) ,x x x=

d y
d

p x
x y

d
d

| |

/
.
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Fig. 4  An example of finite-value basin of attraction for c ≠ 0

 

Fig. 3  Scheme for the construc-
tion of Peano curve
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in fluid dynamics, meteorology and numerical analysis (it is 
sufficient to consider his criterion for the stability of flows, 
the idea of a scale-dependent diffusion coefficient and the 
algorithm bearing his name, still used to integrate differ-
ential equations), he is unfamiliar even to physicists and 
mathematicians.

Besides his important contributions to meteorology, 
numerical analysis and fluid dynamics, Richardson was the 
first to attempt a mathematical description of war; he also 
pioneered the study of self-similar systems and was one of 
the fathers of fractals (for more on Richardson, see [1, 18]).

The first to ask “how long is the coast of Britain?” was not 
Mandelbrot (who is considered to be the father of fractals) 
but Richardson. Among the papers found after his death, 
there are log–log graphs where he plotted, as a function of 
resolution ℓ, the length L(ℓ) of the coastlines of Great Brit-
ain, of the land boundary of Germany, of the Spain-Portugal 
boundary, of the coastlines of Australia and South Africa. 
Rather than a convergence to a constant value, Richardson 
observed a behaviour of the form L(ℓ) ~ ℓ−α, where α is basi-
cally zero for the coastlines of South Africa, while in the 
other cases it is positive and increases with the roughness of 
the line; in modern terms, α = DF − 1 (where DF is the fractal 
dimension).

In his studies of fluid dynamics Richardson realised that 
natural phenomena cannot always be described by regu-
lar functions. For instance, he observed that in turbulence, 
rather than a typical scenario with small variations around 
an average value and some rare, never especially large 
(say on the order of one standard deviation), fluctuations, 
we have long intervals of quiescence, when the signal has 
a regular course and stays close to its mean value, broken 
off by short irregular periods with huge fluctuations. On the 

is the diffusion coefficient, with R, η, T, a and NA, respec-
tively, the universal gas constant, the viscosity of the fluid, 
its temperature, the radius of the colloidal particle (for 
instance, a pollen grain) and Avogadro’s number.

Brownian motion might appear to be just an oddity, but it 
is instead a wonderful magnifying glass into the microscopic 
world and makes it possible to find a relation between mac-
roscopic quantities (which are observable experimentally), 
such as D, T, R, η and a, and a quantity related to the micro-
scopic world, such as Avogadro’s number NA.

In his experimental studies on Brownian motion, Jean 
Baptiste Perrin was among the first ones to realise the 
importance of self-similar systems. Here is Perrin’s inter-
esting remark, perhaps the first statement regarding self-
similar phenomena:

Consider, for instance, one of the white flakes that are 
obtained by salting a soap solution. At a distance its 
contour may appear sharply defined, but as soon as 
we draw nearer its sharpness disappears…. The use 
of magnifying glass or microscope leaves us just as 
uncertain, for every time we increase the magnifica-
tion we find fresh irregularities appearing, and we 
never succeed in getting a sharp, smooth impression, 
such as that given, for example, by a steel ball. [15, 
p. ix]

Figure 5 shows an example of Brownian motion: it is appar-
ent that a magnification of a part has the same properties as 
the whole.

In the 1920s, Norbert Wiener introduced what is now 
called a Wiener process, a continuous Gaussian stochastic 
process with the following properties:

This process is not differentiable, and we have 
∆ ∆ ∆ ∆x t x t t x t t( ) ( ) ( ) ~= + − ; in more formal terms, the 
variable ∆ ∆ ∆x t x t t x tλ λ( ) = +( ) − ( ) has the same proper-
ties as λ∆ ∆x t( ).

If we apply to Brownian motion the procedure for 
computing the length DF of a graph, we easily find N 
(∆t) ∼ ∆t−3/2 and hence DF = 3/2. In general, for a curve with 
Hölder exponent 0 < h ≤ 1, that is, ∆x(∆t) ∼ ∆th, one has that 
DF = 2 − h ∈ (1, 2); of course, when x(t) is differentiable, 
that is, when h = 1, then DF = 1.

For more on Brownian motion, see [2, 5].

3.3 � Richardson

The English scientist Lewis Fry Richardson (1881–1953), 
though undeservedly little known, played a fundamen-
tal, often posthumous, role in twentieth-century science. 
Although his name is associated with many important topics 

x x t x t x t t t( ) , ( ) , ( ) ( ) { }.,0 1 2 2= = =0 0 min 1

Fig. 5  An example of Brownian motion; the image in the inset is an 
enlarged detail
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States, where he earned a master’s degree in aeronautics. 
After obtaining his doctorate in mathematics in Paris in 
1952, he spent time in France and Switzerland and in 1957 
he finally moved back to the US, working at IBM and at 
Yale University.

His scientific path was characterised by very varied inter-
ests: linguistics, information theory, finance, turbulence, 
cosmology and more. The diversity of his research is well 
described by the professorships he had: in mathematics, 
economics, physiology, engineering.

By studying very disparate phenomena, from the trend 
of the prices of cotton to the frequency of transmission 
errors in telephone lines, Mandelbrot realised the omnipres-
ence of self-similar phenomena, which, far from being an 
oddity, are often the norm. Even though, as Galileo wrote, 
the book of Nature is written in the language of mathemat-
ics, Mandelbrot became convinced of the necessity to go 
beyond usual geometry; indeed, as quoted above, “clouds 
are not spheres, mountains are not cones”. The introduction 
of fractal geometry and the development of mathematical 
techniques inspired by information theory and probability 
theory made it possible to study very diverse phenomena: 
ecosystems, data on earthquakes, turbulent fluids, large-
scale structures of galaxy clusters, processes of clustering 
and percolation in petroleum prospecting.

For an introduction to fractals, see [14]; for more on their 
mathematical theory, see [6, 7].

4 � Fractals and self-similar structures: not just 
images for T-shirts

4.1 � Fractals and chaos

Consider a dynamical system, given for instance by a dif-
ferential equation

contrary, in the case of Gaussian variables, there is a limit to 
the size of the fluctuations.

These observations led Richardson to seriously consider 
the apparently absurd question “Does wind has a speed?” 
From few empirical data, he guessed the self-similar struc-
ture of turbulence; here is how he summarised his insight in 
a short poem (inspired by a parody of Swift):

Big whorls have little whorls.
That feed on their velocity;
And little whorls have lesser whorls.
And so on to viscosity.
(In the molecular sense). [16, p. 66]
Figure 6 shows the time evolution of the energy dissi-

pated in a turbulent fluid; an alternation of long intervals 
with small fluctuations around the mean value and short, 
strong, irregular excursions can be observed.

The mathematical formalisation of this idea was due, 
in the 1940s, to Andrey Kolmogorov, who showed that, in 
the so-called inertial range, the velocity field is very rough, 
quite different from the ordinary functions we are used to: 
the velocity difference δv(ℓ) between two points at a dis-
tance ℓ is not proportional to ℓ; on the contrary, we have 
a non-analytical behaviour δv(ℓ) ~ ℓ1/3, with enormous (or 
infinite when Reynolds numbers go to infinity) velocity 
gradients.

3.4 � Mandelbrot

Besides Perrin and Richardson, fractals and self-similar 
structures had already been studied at the turn of the twen-
tieth century by Weierstrass, Hausdorff and Julia, as men-
tioned. Then came Mandelbrot.

A Frenchman of Polish–Lithuanian origins, Mandel-
brot studied at the École Polytechnique in Paris. Impatient 
with the too formal climate that the Bourbaki group had 
imposed on French mathematics, he moved to the United 

 0
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Fig. 6  The energy dissipated in a turbulent fluid as a function of time; 
notice how the enlargement of one part is equal to the whole graph

 

Benoît Mandelbrot, on the occasion of the awarding of the Légion 
d'honneur on 11 September 2006 at École Polytechnique (© DAVID 
Monniaux, www.wikipedia.org)
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its attractor is shown in Fig. 7.
In general, the measure µ(x) on the attractor is not homog-

enous; thus, a single dimension does not suffice to describe 
it. The Hungarian mathematician Alfréd Rényi introduced 
a way to characterise non-homogeneous singular measures. 
Divide the phase space (that is, the region where µ(x) ≠ 0) 
in cells {Λi(ℓ)} having side ℓ, and define the probability of 
being in the i-th cell:

We can now define the Rényi dimensions dq (where q is a 
real number)

or in a more formal way

It can be shown that the function dq is non-increasing; for 
q = 0, we have d0 = DF. Obviously in the case of a uniform 
distribution on the fractal we have dq = DF, while in the (typ-
ical) case where this does not happen the measure is said to 
be multifractal. The dimension d1 is called the information 
dimension and is the most important one, since for almost 
all points x in the attractor we have

P d xi
i





( ) = ( )∫
Λ

µ .

Pi
i

q q dq∑ ( ) −
 ~ ,( )1

d
q

P
q

i
q

=
−

( )
→

∑lim
ln

ln





0

1
1

.

or a discrete-time map

confining ourselves to the dissipative case where the vol-
ume in the phase space contracts. Time-asymptotically, 
the system will get closer and closer to its attractor. If the 
motion is not chaotic, the corresponding attractor is said to 
be regular: it can be a point, a closed curve, a surface or a 
hypersurface.

For instance, in the case of a pendulum with friction, the 
attractor is a point: for the van der Pol system

if μ < 0 the attractor is the fixed point (0, 0), while if μ > 0 
the attractor is a closed curve (the limit cycle).

In a system with strong dependence on initial condi-
tions, we have an attractor that is not regular, but has a 
generally very complex structure, typically of a fractal 
nature. In this case, we call it a chaotic attractor or, in 
the terminology introduced by David Ruelle, a strange 
attractor.

As an example, consider Hénon map:

dx
dt

f x= ( ) ,

x t g x t+( ) =1 ( ( )),

dx
dt

y dy
dt

x x y= = − + −, ( ) ,ω µ2 21

x ax y y bxt t t t t+ += − + =1
2

11 , ;

Fig. 7  Hénon attractor (for 
a = 1.4 and b = 0.3), obtained for 
a very long trajectory and with 
some enlargements; the lower 
right image contains little detail 
since it includes few points
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The experimental data show that the dissipated energy has a 
multifractal structure and is localised on a fractal of dimen-
sion between 2.8 and 2.9.

For more on fractals and turbulence, see [4, 8, 12].

4.3 � Fractals more or less everywhere

Let us conclude with a brief overview of the use of fractal 
geometry.

Astrophysics Let us recall quickly an old paradox (due 
to Heinrich Wilhelm Olbers in the nineteenth century): in a 
static universe in which mass distribution, on a sufficiently 
large scale, is uniform, the intensity of light is necessar-
ily infinite at each point. Indeed, the number of stars at a 
distance between R and R + dR from a given point is pro-
portional to R2dR; since the luminosity of a single star is 
proportional to R−2, we have that the contribution given to 
the total luminosity by the stars from R to R + dR is propor-
tional to dR; so, after integrating, we get an infinite value! 
Currently, astronomers believe that the solution lies in the 
expansion of universe.

Nevertheless, it is to be remarked that the paradox would 
not hold in a static universe where the star distribution is 
fractal with D < 2, either. It is easy to repeat the computation: 
the number of stars between R and R + dR is proportional to 
RD−1dR, hence the contribution to luminosity is proportional 
to RD−3dR, and for D < 2 the integral converges.

In the 1970s, it was observed experimentally by the 
French astrophysicist Gérard de Vaucouleurs that the 
density within a sphere of radius R is proportional to 
R−α with α  ≃  1.8; in the language of fractal geometry, 
the galaxies are distributed on a fractal with dimension 
D = 3 − α ≃  1.2. Recent data on more accurate catalogues 
show that D  ≃ 2. Experts are not in complete agreement 
about the fact that fractal distribution holds at all scales, 
but the fractal scaling applies at least up to R of the order 
of 20 megaparsec (that is, about 6.5 × 107 light years). See 
a survey in [9].

Medicine In mammals, blood vessels and the bronchial 
tree show a self-similar, fractal structure. It has been con-
jectured that such a structure optimises the distribution of 
blood in arteries and of oxygen in the bronchi. Fractal mod-
els for blood vessels are now systematically used in numeri-
cal simulations for haemodynamics. See a survey in [19].

Geophysics In the dynamics of the atmosphere and the 
oceans several kinds of turbulent phenomena (with features 
technically more complex than those previously discussed) 
play a fundamental role, so it is not surprising to find fractal 
and multifractal distributions.

Fractal structures are present in seismic faults, drainage 
basins and coastlines. Studying these problems from first 

The farther dq is from the horizontal line DF, the more 
dishomogeneous the measure is. For the Hénon map having 
a = 1.4 and b = 0.3 we have d2 ≃ 1.20, d0 = DF ≃ 1.26.

4.2 � Fractals in turbulence

Developed turbulence, that is, the irregular behaviour of a 
fluid at high Reynolds numbers Re = UL/ν (where U and L 
are the characteristic speed and length of the velocity field, ν 
is the kinematic viscosity), is a phenomenon of great impor-
tance and very difficult to explain. We shall briefly discuss 
only the aspects related to self-similarity.

In 1941 Kolmogorov showed that in the inertial range 
(that is, η  ≪  ℓ   ≪  L, where η = −LRe

3 4/ , is the length at  
which dissipation becomes significant) the following rela-
tion holds:

� (5)

where δv(ℓ) is the difference between the longitudinal 
velocities of two points at a distance ℓ, and 〈ϵ〉 is the mean 
density of dissipated energy.

From (5) it is natural to conjecture that δv(ℓ) is a process 
with Hölder exponent h = 1/3. Experimental measurements, 
and more recently numerical simulations, show a more 
complex scenario: rather than a power law for a process 
with Hölder exponent 1/3, that is, δ v( ) ~ /

 

p p 3, we have

with ζp ≠ p/3.
We are witnessing the so-called anomalous scaling, in 

which a single exponent does not suffice to describe the 
statistical properties. This is a situation somehow similar 
to multifractal measures. For the developed turbulence, it 
has been shown that the multiaffine structure of the velocity 
field is associated to the multifractalness of the dissipated 
energy density of the space ϵ(x), which is concentrated in 
very small zones. Under suitable hypotheses, it is possible to 
show that Rényi dimensions dp of the measure μ(x) = Cϵ(x), 
where C is determined by the normalisation ∫dμ(x) = 1, 
determine the exponents ζp:

d y
x y

d
| |

( ) ~ .
− <∫

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3 4
5
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If the following inequality holds

then, by iterating a large number of times the algorithm

where i(t) is chosen independently of i(t  −  1) and equals 
1 with probability p1, 2 with probability p2, and so on, we 
obtain a well-defined image. Obviously, the shape of the 
image depends on the transformations {Wi}, while the 
density of the points depends on the probability {pi}. It is 
possible to obtain colour images by suitably associating a 
colour shade to a given point density.

Even with just a few linear transformations, for 
instance N = 4, it is possible to generate beautiful, real-
istic images; of course, some practice is necessary to 
use this method. Figure  8 shows an example of image 
obtained with IFSs.

For more on fractals and imaging, see [3, 13].
Translated from the Italian by Daniele A. Gewurz.

| ( ) ( ) | | |W x W y s x yi i i− < −

s s sp p
N
pN

1 2
1 2 1… <

x W xi t tt+ ( )= ( )1

principles has a forbidding difficulty. Fortunately, in some 
cases (for instance, for coastlines and basins), it is possible 
to use mathematical models able to reproduce, even quan-
titatively, the observed data; this makes it possible to detect 
the fundamental mechanisms underlying the formation of 
structures. See a survey in [17].

Fractals in Hollywood The imaging techniques based on 
the iterated function system (IFS), which can generate self-
similar images, are widely used in film industry. Many of 
the images we see in films (especially in science-fiction and 
fantasy ones), such as landscapes, clouds, aurorae, fires, are 
computer-generated.

4.3.1 � Iterated function system

Let us close with a brief look at the IFS method to generate 
fractal images. This very powerful technique is also used to 
compress images.

Consider a vector x in D dimensions and a linear trans-
formation W(x) = Ax + b, where A is a D × D matrix and b 
a D-dimensional vector. Assume that we have N possible 
linear transformations, that is, (A1, b1) with probability  
p1, (A2, b2) with probability p2, and so on until (AN, bN)  
with probability pN; moreover, for each i we have

Fig. 8  An example of an image of obtained with IFS: a fantasy architecture
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