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Abstract
This study applies machine learning techniques to improve petrographic classification in 
India’s Bokaro coalfield’s Barakar Formation, using conventional geophysical well logs 
from three wells. We analysed natural gamma ray, true resistivity, bulk density, neutron 
porosity, and photoelectric factor data using k-nearest neighbor (kNN), support vector 
machine (SVM) and random forest (RF) classifiers. A master well provided initial refer-
ence log measurement cut-off values for typical lithologies like shale, sandstone, carbona-
ceous shale, and coal, forming the basis of our training dataset. We assessed model accu-
racy using precision, recall, and F1-score metrics, finding the random forest model to be 
the most effective in litho-type discrimination. During the training phase, the computed 
overall accuracy of the predicted ML modes exceeded 89% and model accuracy hierarchy 
was RF>SVM>kNN. These classifiers were then applied to other well locations to pre-
dict lithological sequences, aiding in lithofacies sequence identification and potential fault 
extension detection. The study demonstrates the random forest model’s superior precision 
and efficiency in lithological discrimination. Our findings enhance automated processes for 
identifying missing lithology during well correlation, offering valuable insights for geolog-
ical interpretation in resource exploration and development. This machine learning-driven 
approach marks a significant advancement in subsurface geological studies.
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1  Introduction

Understanding the inter-bedded sequence of lithologies like coal, shale, carbonaceous 
shale, and sandstone is important not only for well correlation but also for core sample 
extraction and well site decisions. Lithology prediction using machine learning (ML) eases 
the distinction of lithofacies where the classification depends on the geology and petro-
physical properties of the specific area. Accurate description of lithological formation with 
highest resolution can be acquired from the resistivity image log and physical / labora-
tory verification of core specimen. In practice, the acquisition of advanced logs (Forma-
tion Micro-Imager Log, Borehole Televiewer log, Stratigraphic-High Resolution Dipme-
ter Tool) and extraction of core samples from every well is restricted due to time-taking 
and cost escalation. Also, manual interpretation is time-consuming process and requires 
expertise knowledge in the domain. Even, simultaneous interpretation of multiple logs is 
a tedious task, and incorporating a larger number of logs makes the interpretation more 
subjective (Mukherjee and Sain 2021). ML is widely used in automated interpretation of 
large volume of well log and seismic data and therefore integration of these datasets with 
ML architecture can accurately determine the lithology (e.g., Fajana et al. 2019; Dramsch 
2020). ML assists energy and production (E&P) companies in evaluating reservoir param-
eters, tailoring drilling and completion strategies based on geological characteristics and 
evaluating the risk associated with individual wells.

Previous researchers have conducted numerous studies such as petrophysical quanti-
fication, lithological characterisation, geotechnical characterisation, etc., based on auto-
mated interpretation of sub-surface data from geophysical well logs (e.g., Zhou et al. 2001; 
Oyler et  al. 2010). Previously, researchers successfully integrated statistical approaches, 
supervised and unsupervised classification in ML for lithofacies determination and reser-
voir characterisation. (e.g., Busch et al. 1987; Sun et al. 2020; Mukherjee and Sain 2021). 
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However, implementation of AI/ ML in coal reservoir was limited to (i) coal density esti-
mation using Radial Basis Function neural network (RBFNN) (and Self Organized Map 
(SOM), (ii) coal quality estimation (Ghosh et al. 2016; Zhou and O’Brien 2016), and (iii) 
determination of lithological classification of coal layers using well logs (e.g., Horrocks 
et al. 2015; Roslin and Esterle 2016; Srinaiah et al. 2018; Maxwell et al. 2019). For exam-
ple, artificial neural network (ANN), support vector machine (SVM), and Naïve Bayes 
classifier were applied by Horrocks et al. (2015) to identify coal and sandstone using well 
log data of Queensland, Australia. Another application by Maxwell et al. (2019) demon-
strates the output of supervised machine learning techniques for automatic classification 
of thermally affected coal seams and its implication in resource estimation process. How-
ever, current advances in machine learning are stimulating interest among researchers. 
While the concept of using supervised classification to determine lithofacies is not new, 
the comparative analysis of results from various ML techniques captivates researchers’ 
interest in achieving optimal outcomes. Recent studies by Banerjee and Chatterjee (2022) 
in Raniganj coal field of India deduce the application of probabilistic neural network and 
multi-layered neural network in mapping of pore pressure and reservoir parameters using 
2D post-stack time migrated seismic data. Although previous studies demonstrated qual-
ity results, they focused solely on classifying coal and non-coal lithologies in coal fields 
(Horrocks et al. 2015; Zhong et al. 2020).Previous researchers have carried out lithology 
prediction study using several ML algorithms and come out with higher accuracy such 
as: Kumar et al. (2022) have carried out comparative study on lithology prediction study 
in Talcher coalfield India and reported all studied five classifiers (SVM, DT, RF, MLP, 
XGBoost) provided results with more than 88% accuracy. Prajapati et al. (2024) achieved 
over 85% accuracy in predicting lithology in the Cambay Basin using kNN, SVM, and 
ANN. Mukherjee et al. (2024) have predicted lithology with 71% accuracy in the geologi-
cally complex petroliferous Lakadong-Therria formation of the Bhogpara oil field of the 
Assam-Arakan Basin using various ML algorithms (kNN, SVM, decision tree (DT), RF, 
extreme gradient boosting (XGBoost) and artificial neural network (ANN)). Zhang et al. 
(2022) have reported a comparative study on lithology prediction study in Junggar Basin, 
China using kNN, SVM, DT, RF and XGBoost classifiers and achieved more than 88% 
accuracy. Thus, the estimation of lithologies in coal exploration has paramount importance, 
in peeping into the in-situ geological setting. Therefore, to reduce the time consumption 
and efficiency in processing the well log data, we have adopted ML techniques. Till date, 
very few detailed petrographic classification studies have been conducted in the Bokaro 
coalfield. This is particularly significant for large coalfields like Bokaro, where the volume 
of data to be analyzed is substantial. Accurately classifying the types of coal present in 
the Bokaro field enables the development of efficient extraction and utilization strategies. 
This aids in better resource management and planning for future extraction. The primary 
objective of the study is to apply the widely used ML architecture such as k-nearest neigh-
bor (kNN), support vector machines (SVM), and random forest (RF) on well logs to dis-
tinguish the lithological sequences reasonably in an automated manner and to discuss the 
observation of fault presence in the study area.
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2 � Geological setting

The Bokaro Coal Field (CF) is situated within the Damodar Valley CF, which are located 
in the eastern region of India in the state of Jharkhand. This CF takes the form of an elon-
gated strip of Gondwana sediments, stretching over a distance of approximately 64 kms 
from east to west, with a width of roughly 12 kms (Banerjee and Chatterjee 2021). The 
presence of Lugu Hill divides the Bokaro CF into two distinct sections: the eastern and 
western parts. The West Bokaro CF encompasses an area spanning 180 square kilometres, 
while the East Bokaro CF covers an expanse of 208 square kilometres (Banerjee and Chat-
terjee 2021). Figure 1 represents the elevation map of Bokaro CF and the investigated area 
falls in the east Bokaro CF with the respective position of the three wells. The geologi-
cal formations in the Bokaro CF follow a typical sequence from the top down, including 
the Mahadeva, Panchet, Raniganj, Barren, Barakar, and Talchir formations. Particularly 
the Barakar Formation is significant within this coalfield, which dates back to the Early 
Permian age. Figure 2a represents the geological map depicting the surface exposure of 
various formations. Figure 2b shows the vertical stratigraphic succession along with age, 
thickness and lithology of the area. The Barakar formation predominantly consists of a 
variety of sediment types, including coarse to fine-grained sandstone, conglomerate, gray 
shale, carbonaceous shale, fine clay and coal seams. The deposition of Gondwana sedi-
ments commenced during the early stages of the Upper Carboniferous period when gla-
cial climatic conditions prevailed. Over time, the climate transitioned to become warm 
and humid, a trend that persisted through the remainder of the Upper Carboniferous and 
the entire Permian period. With the onset of the Triassic period, a warm and dry climate 
took hold and continued throughout the Triassic era. Moving into the Jurassic period, 

Fig. 1   Geological map of the Bokaro Coalfield and the location of wells. Where well-5 (W-5), well-3 (W-3) 
and well-1 (W-1) are specified by their latitude and longitude



Acta Geodaetica et Geophysica	

Fig. 2   a Topographic formation distribution map of Bokaro coalfield (after, Paul et  al. 2018), b Vertical 
stratigraphic sequence of Bokaro coalfield
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the climate remained largely warm and humid. Remarkably, the geological history of the 
Gondwana sediment saw a period of approximately 700 million years characterized by 
minimal geological activity (Banerjee and Chatterjee 2021). During the Upper Carbonifer-
ous period, a geosyncline with an east–west orientation began to take shape. Within this 
narrow basin, the basin floors started to subside concurrently with the accumulation of an 
increasing amount of sediments. Notably, a rhythmic cyclic deposition pattern is prevalent 
in the context of fluvial sedimentation. In the Early Permian Barakar Formation, each of 
these cycles initiated with the deposition of coarse sand, followed by the gradual build-
up of clay. Ultimately, vegetation took root in the clay, effectively completing the cycle. 
Consequently, each cycle is characterized by a sequence that evolves from coarse conglom-
erate or pebbly sandstone, progressing through coarse to medium-grained sandstone, fine-
grained sandstone, shale, and culminating in coal deposition. This lithological sequence 
has been comprehensively examined through field outcrop studies and geophysical well log 
analyses of subsurface formations. The thickness of these fining upward cyclic depositions 
typically falls within the range of 10 to 20 m (Banerjee and Chatterjee 2021). At the top 
of the cyclic sedimentation sequence within the Barakar Formation lies the coal deposits. 
These coal deposits were influenced by an auto-cyclic process driven by the lateral migra-
tion of streams, which, in turn, was triggered by variations in subsidence within the basin. 
The presence of clastic deposits from rivers flowing laterally often disrupted sedimenta-
tion, leading to thinner cycles in areas where the number of cycles was higher. The target 
area is the East Bokaro CF, where geological data and detailed research have substantiated 
the five prospective coal seams (from bottom to top): "Karo-VIII," "Bermo," "Kargali Bot-
tom," and "Kargali Top."

3 � Methodology

Machine learning is a approach of data learning and simultaneously understanding the 
existing prevailing patterns in datasets by automated means without human interference. 
The new datasets used as input for training require gradual and constant learning and 
adapting capability to handle the unknown existing in the unused datasets. The adopted 
flowchart presented in Fig. 3, illustrates the log data as input. Log data of three wells were 
utilized for training and validation using three widely used ML architectures of supervised 
learning: k-nearest neighbor (kNN), support vector machines (SVM), and random forest 
(RF). The results of the classified lithology between these architectures were compared to 
determine the superior result. In methodology sub-section, we will discuss about the (i) 
data sets and the quality check, (ii) ML architectures: kNN, SVM, and RF and (iii) machine 
learning evaluation of model performance. A detail of these techniques is described in 
sub-section.

3.1 � Data sets and preparation

The well logs data were acquired by Oil and Natural Gas Corporation Limited from the 
drilled CBM wells in east Bokaro CF, having 0.1524  m as sampling interval in W-1 
and W-5 whereas W-3 is having a sampling interval of 0.0762 m. Well logs acquired 
from three boreholes (Well IDs: W-1, W-3, and W-5) drilled in the exposed Barakar 
formation undercrossing all lithology from 200 to 925 m consisting of caliper, natural 
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gamma-ray (GR), resistivity (RT), bulk density (ρb), neutron porosity (ΦN) and photo-
electric factor (PEF). In the Barakar formation, we distinguished the lithology into four 
types: coal, shale, sandstone, and shaley coal. Previous study by Banerjee and Chatter-
jee (2021) have distinguished the cut-off range of well log responses to distinguish the 
litho type as coal, shale and sand stone in west Bokaro coalfield. Evaluating the previ-
ous study, we have obtained some modified cut-off log parameters in east Bokaro CF 
and have also classified carbonaceous shale as additional lithology along with the previ-
ous three litho type. Table  1 represents typical lithologies abbreviated with truncated 
codes and their limited range of petrophysical information. To train the ML models, 
only one well W-5 consisting of complete geology and data spectrum was used as mas-
ter well for training purpose and the other two wells (W-1 and W-3) were applied with 
the finalized ML models for testing and validation. Figures 4, 5, 6 represents the availa-
ble logs Caliper (inch), GR (API), RT (Ohm-m), ρb (g/ cm3), ϕN (V/ V) and PEF (barns/ 
e) with respect to the measured depth (m) of W-1, W-3 and W-5, while Fig.  6 addi-
tionally displays model-based lithology in master well W-5. The wells W-1, W-3 and 

Fig. 3   The adopted flowchart of the study illustrating the steps involved

Table 1   Typical lithologies abbreviated with truncated codes and their limited range of the petrophysical 
information

Lithology Code GR (API) Resistivity (Ω-m) Bulk Density (g/cc) ΦN (V/V) PE (barns/e)

Coal A 38–76 500–100000 1.30–1.80 0.42–0.68 0.3–1.43
Sandstone B 30–140 20–80 2.40–2.55 0.08–0.18 1.3–4.73
Shale C 130–250 100–400 2.55–2.75 0.21–0.36 1.5–5.45
Carb Shale D 150–200 500–1000 1.80–2.20 0.36–0.52 0.7–3.84
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W-5 contains respective data spanning from 200 to 908 m, 201–925 m and 200–880 m 
with 4650, 9503, and 4460 data points. Further, we performed well correlation studies 
among the studies wells to map out the continuation of the coal seam among the studies 
wells. Against all seam, a few of them are the objective coal seams also designated as 
target coal seam that has been prospective for the CBM extraction. During correlation, 
the objective seams named A, B, C, D and E are observed only in W-5 while W-1 con-
tains A and B while W-3 contains C, D and E. Both the wells W-1 and W-3 have some 
of these seam missing. Figure 7 represents the well correlation among the studied wells 
(a) in W-5 we have five coal seams, namely A, B, C, D and E; (b) in W-3 we have three 
coal seams, namely C, D and E; (c) in W-1 we have two coal seams, namely A and B; 
(d) simplest coal seam correlation among the wells. Based on the well correlation study, 
we have seen that seam C, D and E are continuous among the W-5 and W-3, whereas, 
seam A and B are continuous among the W-5 and W-1, which infers the presence of 
possible fault in between the wells.

3.2 � k‑Nearest neighbor (kNN)

K-nearest neighbor (kNN) is a machine learning algorithm that is widely used for both 
supervised and unsupervised learning tasks. It is renowned for its simplicity and versa-
tility in various ML applications. kNN is mostly used in classification problems and the 
method classifies new cases based on a similarity measure but it can also be used for 
regression. kNN is a non-parametric algorithm, meaning it doesn’t rely on any specific 
assumptions about the underlying data distribution (Fix and Hodges, 1952). The basic 
functioning of kNN is finding the similarity between the new and the available data 
by correlating it and henceforth categorizing the new data in the most similar category 
within the available dataset. In this method, the available data are stored and a new data 
point is classified based on similarity. This assures the appearance of the new data into 

Fig. 4   Wireline log responses at W-1: a overlay caliper and bit size, b natural gamma ray (GR), c resistivity 
(RT), d bulk density (ρb), e neutron porosity (ΦN), f photoelectric factor (PEF)
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easily classifiable categories. (Cover and Hart, 1967; Azuaje, 2006) kNN is also known 
as lazy learner algorithm because it does not learn from the training set immediately 
instead it stores the dataset and at the time of classification, it performs an action on the 
dataset by classifying the data into a category much similar to the new data. In kNN, 
initially, the number of neighbor (k) is selected, then, the distance function of k number 
of neighbors was calculated. Thereafter, kNN relies on a distance function to compute 
and select the k nearest neighbouring data points. Among these k neighbors, it counts 
the number of data points in each category or class. The algorithm then assigns the new 

Fig. 5   Wireline log responses at W-3: a overlay caliper and bit size, b natural gamma ray (GR), c resistivity 
(RT), d bulk density (ρb), e neutron porosity (ΦN), f photoelectric factor (PEF)

Coal Sand stone Shale Carbonecious shale

Fig. 6   Wireline log responses and model based lithological sequence at W-5: a overlay caliper and bit size, 
b natural gamma ray (GR), c resistivity (RT), d bulk density (ρb), e neutron porosity (ΦN), f photoelectric 
factor (PEF) and g core derived lithological sequence. Where, each lithology is represented through a spe-
cific color code
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data point to the category with the maximum count among its neighbors, thus preparing 
the model for classification. The distance function can be Euclidean (ED), Manhatten 
(MD) and Minkowski (MI) and are represented as:

where, xi and yi denotes are the values of the i-th feature for points x and y, respectively. x 
and y represent two points (or data instances) in an n-dimensional feature space. Each point 
is described by its coordinates in this space, which correspond to the values of the features.

(1)ED =

√√√√
k∑

i=1

(xi − yi)
2

(2)MD =

k∑

i=1

|xi − yi|

(3)MI =

(
k∑

i=1

(|xi − yi|)q
)1∕q

Fig. 7   Well correlation among the studied wells a in W-5 we have five coal seams, namely A, B, C, D and 
E; b in W-3 we have three coal seams, namely C, D, E; c in W-1 we have two coal seams, namely A and B; 
d simplest coal seam correlation among the wells. Based on the well correlation study, we have seen that 
seam C, D and E are continuous among the W-5 and W-3, whereas, seam A and B are continuous among 
the W-5 and W-1, which infers the presence of fault in between the wells
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3.3 � Support vector machine (SVM)

The architecture of Support Vector Machine (SVM) falls under the supervised category 
and is popular and widely used for classification and regression solutions (Vapnik 1995). 
In this method, hyperplanes are constructed that classify datasets into separate classes. 
The distance between the data points and hyperplanes is measured; while the closed point 
lying of the dataset to the hyperplane is known as the support vector and the inter-distance 
amongst these vectors is called margin or street. During classification, a larger margin with 
respect to hyperplane is considered good whereas a smaller margin is weak for classifica-
tion and therefore requires more parameters for fine-tuning.

Let’s consider an occurrence of linearly separable data, y = sign (mT x + c) (in short 
(m,c)).

In the datasets of n points, the training for n points is required, hence, P = {(x1,y1), 
(x2,y2),……. (xn, yn)} where yiε(1, − 1).

Hence, the Euclidean distance between the hyperplane and xi is expressed as (Vapnik 
1995):

The aim of SVM as observed in Eq. (1) is to maximize the factor ||m||−1 and to provide 
the best optimum solution to the problem as (Vapnik 1995):

In the context of hyperplane-based classification, ’m’ and ’c’ symbolize the normal vec-
tor and intercept of the hyperplane, respectively. Meanwhile, ’C’ and ’ ηi’ are used to repre-
sent the penalty and slack parameters. These parameters play a crucial role in balancing the 
smoothness of decision boundaries while ensuring accurate classification of data points.

In cases where data points cannot be linearly separated, SVM employs a kernel tech-
nique to transform the non-linearly separable data into a higher-dimensional space, where 
they become linearly separable. One of the commonly used kernels for this purpose is the 
radial basis function (RBF) kernel. This equation can be expressed as follows:

where δ = 1/2σ2 is a controlling parameter for adjusting the hierarchy level of curvature that 
is required for the decision boundary.

3.4 � Random forest (RF)

The Random Forest (RF) algorithm, a supervised ensemble method, was originally intro-
duced by Ho (1995). It relies on a technique known as the random subspace method for 
learning. Afterward, RF method was modified by Breiman (1996) incorporating the bag-
ging approach. In this approach, the fundamental strategy entails selecting a random subset 
from the original dataset. For each of these subsamples, decision trees are built to per-
form pattern classification. The final output is determined through a majority vote from the 
ensemble of decision trees within the forest. The benefit of employing the bagging method 

(4)r =
|mTx + c|
||m||

(5)(m∗, c∗) = argmin
m,c,�i

||m||2
2

+ C

n∑

i=1

�i

(6)K(xi, xj) = e(−�||xi−xj||
2)
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within the RF algorithm is twofold. Firstly, it leads to an improvement in overall accuracy. 
Secondly, it helps mitigate overfitting by leveraging the average predictions obtained from 
multiple decision trees, as highlighted by Breiman (2001).

The RF classification algorithm with model input dataset (D) is expressed as (Breiman 
2001),

where ϵ(x) is the base learner, n is the number of the samples in each data subset, M is the 
number of the features allowed in each split inside a base learner. The model output G(x) 
as final classifier using majority vote is expressed as (Breiman 2001),

The above discussed three ML methods, were implemented in wells. Well-5 is consid-
ered as master well which is used for the training samples, and well-1 and well-3 were 
considered as validation wells.

3.5 � Machine learning evaluation of model performance

To evaluate the performance of the predictive machine learning models, cross-validation 
and hyper-parameter tuning, confusion matrix and receiver operating characteristic (ROC) 
were employed as assessment tools. The details of the basic performance are discussed:

3.5.1 � Cross‑validation and hyper‑parameter tuning

The task of finding a suitable ML algorithm is conducted from a significant cross-vali-
dation tool and for achieving optimum model performance, hyper-parameters are used 
(Haykin 2009). In this method, a mother well is selected and the data are partitioned into 
training and testing sets. Subsequently, each dataset was evaluated kth times using K-Fold 
cross-validation algorithm. In this sequence, all data are studied comprehensively for a par-
ticular ML architecture and its respective accuracy is calculated based on the score magni-
tude that indicates the capability of a particular ML algorithm to grasp the design against 
the target for a given dataset (Haykin 2009).

Another crucial step in the process of constructing machine learning models is hyper-
parameter tuning, which is responsible for determining the optimal and final hyperparam-
eters of a given ML algorithm. The GridSearchCV method accomplishes this by systemati-
cally exploring a range of parameter values on a grid and assessing the performance using 
K-Fold cross-validation (Hall 2016; Meshalkin et al. 2020).

3.5.2 � Confusion matrix

A tabular representation in the form of confusion matrix presenting actual and predicted 
values. A ML classifier generates the actual and predicted values based on the statistical 
approach. These statistical measures can be classified as (i) true positives (TP), (ii) true 
negatives (TN), (iii) false positive (FP), and (iv) false negative (FN) (Navin and Pankaja 
2016). The coordination between the actual and the predicted values is reflected in the 
diagonal component of the confusion matrix (Navin and Pankaja 2016). The confusion 

(7)D = {(x1, y1), ....., (xi, yi), ...., (xn, yn)}, yi ∈ {−1, 1}, xi ∈ RM

(8)G(x) = argmin
y∈{−1,1}

T∑

t=1

(∈t (x) = y)
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matrix can be better represented from normalization of the confusion matrix thereby rep-
resenting the magnitude in the observed range between 0 and 1. There are two important 
metrics; (i) precision, and (ii) recall, which are used to evaluate the model performance. 
The precision and recall metrics can be expressed as (Navin and Pankaja 2016):

The precision or recall equilibrium of the result is provided by the F1 score also known 
as F measure. The equation for measuring F1 score is given as:

3.5.3 � Receiver operating characteristics (ROC)

The concept of ROC curve was used for the first time during the Second World War with 
an application to differentiate the noise from the radar signal and to recognize the actual 
data. Later, ROC was implemented to understand the performance of the predicted models 
(Bressan et al. 2020). ROC curve represents false-positive rate (FPR) versus true positive 
rate (TPR) plot. Where TPR and FPR are expressed as:

4 � Results

Various geophysical logs show numerous range of values. Presently, GR log varies from 
29–412 API; RT varies from 0.98 to 100,000 Ohm-m; ΦN varies from 0.03 to 1.09 v/ v; ρb 
varies from 1.29 to 3.11 g/cm3 and PEF varies from 0.30 to 6.19 barns/ e. Statistical analy-
sis of the log curve was carried out by determining mean, variance, standard deviation, 
coefficient of skewness and kurtosis. Table 2 tabulates the statistical analysis of the train-
ing sample (prepared from the data at W-5), and data of the test wells W-3 and W-1. The 
target variable in this study is different lithologies derived from cut-off criteria from well 
log parameters, which has been validated from the previous study of geophysical logs in 
the same field. The Barakar formation comprises four different types of lithology namely 
coal, carbonaceous shale, shale and sand stone. Here each of the lithology was abbrevi-
ated with a categorical code, such as litholog class: CL represents coal, CSH represents 
carbonaceous shale, SH represents shale and SST represents sand stone. Input and target 
features from the training wells are affirmed, wherein input features were scaled to eradi-
cate the influence of any single input feature. The selection and implementation of machine 

(9)Precision =
TP

TP + FP

(10)Recall =
TP

TP + FN

(11)F1 score =
2 ∗ (precision ∗ recall)

(precision + recall)

(12)FPR =
FP

FP + TN

(13)TPR =
TP

TP + FN
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learning algorithms according to the nonlinearity of the data set is imperative. Here, we 
presented a comparative study, by implementing three ML algorithms namely kNN, SVM, 
and RF to chalk up the dependency of log responses with individual lithologies form the 
training data set and to predict lithology from independent input features at test wells. 
In the present study, we have chosen leave-one-out cross-validation scheme (Zhou et  al.   
2020) with fivefold, beforehand model training to examine the predictive accuracy of the 
fitted models and able to compare all the models using the same validation scheme. In 
cross-validation scheme no data is reserved for testing by default setting. Presently we have 
chosen k = 5, which implicates entire training data (4460 data point in a single input fea-
ture) was segregated into 5 folds (divisions) of equal size (892 data points in a single fea-
ture of each fold). Now one subset was used in model validation and the remaining subsets 
were used to trained models. Thus, during training phase, at a time 80% is used for training 
and rest of the 20% validation-fold data was used to assesses model performance (valida-
tion of the models). This process was repeated for 5 times (as k = 5), so that each subset 
was used just once for model validation and the average error was computed for all folds. 
Further, by measuring the consistent accuracy from each folds we have tuned the hyper-
parameters using the GridSearchCV algorithm. Table 3 shows the optimum hyperparam-
eter and the value of the parameter used in each of the models.

The performance of the ML predictive models was evaluated through the Overall 
Accuracy, Precision, Recall and F1-score obtained from the confusion matrix of each ML 
model. The confusion matrix of the ML models are depicted in Fig. 8, which illustrates 
the confusion matrix at training phase for studied ML algorithms: (a) kNN, (b) SVM and 
(c) RF. Where, class CL represents coal, class CSH represents carbonaceous shale, class 
SH represents shale and class SST represents sandstone. For each ML models we have 
computed the Precision, Recall and F1-score parameters from their confusion matrix for 
a lithology type (class) given in Tables 4, 5, 6. In Tables 4, 5, 6, the precision, recall and 
F1-Score of the kNN, SVM and RF models at the training phase for a particular lithology 
are tabulated. The overall accuracy of the predictive ML models are varying from ~89.1 to 
96.4%. Thus, for each lithology obtained from the confusion matrix of all three studied ML 
classifiers, values of Precision vary from 85.74 to 98.51, values of Recall vary from 81.72 
to 98.91 and values of F1-Score vary from 78.11 to 190.34.

The accuracy of the predictive models for each lithology type (class) are obtained 
from Receiver Operating Characteristic (ROC) plot. These plots are derived from of 
true positive rate against false positive rate of the ML models for each class, wherein 
the area under the receiver operating characteristic curve (AUC) is one of the user 
defined parameter to measure accuracy in the present analysis AUC value. The per-
formance of the ROC spectrum can be better or worse depending on the points that 
lie in the ROC graph. The points lying in the graph at the top left corner indicate a 
better performer compared to the points that lie near the diagonal and hence are repre-
sented as poor performers of the classifier. For achieving an ideal classification of the 
required class using ML algorithm, the ROC curve originating from the origin gradu-
ally increases to (0, 1) and then attains a stable state. ROC curves of classifier model 
for lithology type (a) coal (class CL), (b) carbonaceous shale (class CSH), (c) shale 
(class SH), and (d) sandstone (class SST) for kNN, SVM, and RF is shown in Figs. 9, 
10, 11. AUC values for lithological classes obtained from: (i) kNN model are varies 
from 0.96 to 1.0; (ii) SVM model are varies from 0.97 to 1.0; and (iii) RF model are 
varies from 0.98 to 1.0. Considering each of the ROC characteristics, Fig. 12 shows the 
bar graph of the accuracy of the machine learning models during the training phase. 
It can be seen that the RF shows better result with an accuracy of 97% compared to 



	 Acta Geodaetica et Geophysica

Table 3   Optimum hyperparameter used in the studied models

Model Hyperparameter (Symbol) Parameter value

kNN Number of nearest neighbors (n-neighbor) 3
SVM Penalty parameter of the error term (c) 1000

Kernel coefficient for Gaussian function (γ) 0.001
RF Minimum number of sample at leaf node (min sample leaf) 1

Minimum number of samples required to split an internal node (min 
sample split)

2

Number of trees in the forest (n-estimators) 100
Max depth 6

Fig. 8   Confusion matrix at training phase for studied ML algorithms: a kNN, b SVM and c RF. Where, 
class CL represents coal, class CSH represents carbonaceous shale, class SH represents shale and class SST 
represents sandstone

Table 4   Precision, Recall and 
F1-Score of the kNN models at 
training phase for a particular 
lithology

Class (Lithol-
ogy type)

Precision (%) Recall (%) F1-Score (%)

Cl 98.24 98.64 107.695
CSH 93.24 81.72 82.00584
SH 85.74 92.59 94.16044
SST 87.79 82.88 78.11095

Table 5   Precision, Recall and 
F1-Score of the SVM models at 
training phase for a particular 
lithology

Class (Lithol-
ogy type)

Precision (%) Recall (%) F1-Score (%)

Cl 98.51 98.51 103.7163
CSH 93.92 88.62 89.43897
SH 90.83 92.20 93.03995
SST 88.85 89.19 84.41129
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91% and 87% accuracy for SVM and kNN. In the training phase all the ML predictive 
modes show accuracy in the range of 89.1–96.4%. Thus, the models are now ready to 
yield reasonable prediction of lithologs from unseen wireline logs of test wells.

We satisfactorily apprehended the patterns of the petrophysical parameters inherited 
into the studied log responses associated with numerous lithologies though the ML 
models. Subsequently, we fed the input features from the training well (W-5) and pre-
dicted the lithologies at test wells (W-1 and W-3). Since, we do not have core derived 
lithologies at the test wells, therefore, the accuracy of ML models in lithology predic-
tion was computed using unseen log data of the test wells. It is seen that accuracy of 
ML models for lithology prediction varies from ~89 to 97%. Through the visual analy-
sis of the ML predicted lithologies it is clearly observed that all models provide more 
or less similar prediction at the same depth interval, which itself act as a validation. 
Figure 13 represents the comparison between model-based lithological sequence and 
machine learning-assisted lithology sequences at W-5, (a) model-based lithological 
sequence (b) lithological sequence predicted using kNN, (c) lithological sequence pre-
dicted using SVM and (d) lithological sequence predicted using RF. Figures  14 and 
15 shows the comparison between machine learning-assisted lithology sequence pre-
diction of W-3 and W-1, using (a) kNN, (b) SVM and (c) RF. As RF model gives the 
best result, therefore, RF model was correlated among the wells. During correlation 
with ML generated lithological model (Fig. 15), it was observed that the lithological 
sequence in wells were not matching with each other and some of the coal seams were 
missing as the same was understood from Fig.  7. Hence, this was verified from the 
resistivity image log that fault was present in between these wells.

5 � Discussion

ML algorithm is helpful in E&P industry where we can emphasize a procedure for select-
ing a model out of numerous models, based on their performance. In the present ML algo-
rithm, we strive to do our best to highlight the computation power and capability to handle 
the data in lesser time and higher accuracy. In the comparative analysis of each ML litho-
logical models (kNN, SVM, and RF), it has been established that for determining the litho-
logical sequence RF model is yielding the superior result compared to the other two (SVM 
and kNN) (96.4% for RF; 91.2% for SVM; and 89.1 for kNN). Once a particular model is 
fixed, it is convenient to propagate to the other wells. As illustrated in Fig. 13, the dem-
onstrated approach efficiently detects lithological units as thin as 0.3048 m, with machine 
learning models properly projecting the presence of the thin beds generated from core data. 
The application of ML increases the accuracy in resolving the lithology with greater confi-
dence than manual interpretation.

Table 6   Precision, Recall and 
F1-Score of the RF models at 
training phase for a particular 
lithology

Class (Lithol-
ogy type)

Precision (%) Recall (%) F1-Score (%)

Cl 97.59 98.91 101.778
CSH 94.89 92.09 91.27241
SH 96.53 96.59 97.27525
SST 94.69 95.17 190.34
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In the present study we have performed with the k-fold cross-validation scheme for train-
ing and validating our predictive models to protect models against overfitting / underfitting. 
Bressan et al. (2020) and Kumar et al. (2022) have used k-fold cross-validation scheme for 
model training purpose in lithology prediction. However, other available cross-validation 
techniques are namely holdout, repeated random sub-sampling, stratify and resubstitution 
have been used by previous researchers (e.g., Refaeilzadeh et al. 2009). For hyperparameter 
tuning, we used Grid Search Cross-Validation (GridSearchCV) for finding optimal hyper-
parameters for the ML models to increase the performance of the ML models. There are 
many algorithms exists for hyperparameter tuning such as Random Search, Grid Search, 
Manual Search, Bayesian Optimizations, etc. Researchers have suggested that selection 
of better hyperparameter tuning method is imperative and it is depending on understating 
of priorities, constraints and objectives of the problem statement and data. However, we 
have implemented GridSearchCV method in hyperparameter tuning based on its previous 
applications in lithology prediction study (e.g., Kumar et al. 2022). Many researchers used 

Fig. 9   Receiver Operating Characteristic (ROC) curves of k-nearest neighbor (kNN) classifier model a for 
lithology type coal (class CL), b for lithology type carbonaceous shale (class CSH), c for lithology type 
shale (class SH), d for lithology type sand stone (class SST)
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standardization and normalization of data sets beforehand to use ML techniques to achieve 
higher accuracy of the predictive models (Jobe et al. 2018). However, many have reported 
the advantages and disadvantages of the use of normalized and standardized data in ML 
works (Xu et al. 2019). In our present case as we achieved more than 94.1% accuracy of 
ML models during the training stage. Hence, normalized and standardized data were not 
used to train ML models.

The RF can classify the lithology and help to identify the missing coal seam based on 
correlation. The possible fault has been anticipated which helps to build the sub-surface 
model. ML methodology applied in this study is beneficial in the automated determination 
of the lithological sequence. A model established from ML is best proven when the model 
matches with the subsurface litholog. Hence, the input data used for model generalization 
needs to be ensured that the model is trained to generalize the validation dataset for a spe-
cific area and find patterns from the training datasets. The coal seams identified in ML 

Fig. 10   Receiver Operating Characteristic (ROC) curves of support vector machine (SVM) classifier model 
a for lithology type coal (class CL), b for lithology type carbonaceous shale (class CSH), c for lithology 
type shale (class SH), d for lithology type sand stone (class SST)
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Fig. 11   Receiver Operating Characteristic (ROC) curves of random forest (RF) classifier model a for lithol-
ogy type coal (class CL), b for lithology type carbonaceous shale (class CSH), c for lithology type shale 
(class SH), d for lithology type sand stone (class SST)
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Fig. 12   Accuracy of the machine learning models during training phase
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models have been compared. Figure 16 represents the correlation of important coal seam 
among the RF-predicted lithologs at the studied wells (a) W-5, (b) W-3, and (c) W-1. We 
have also seen a few local coal seams and missing target coal seams in these three nearby 
wells. This could be possibly due to the existence of fault. A correlation between the wells 
helps to identify the possible fault presence between the wells. Subsequently, the missing 
coal sequence in these wells indicates the presence of fault between these wells. The result 
interpreted with the dip pattern in the resistivity image log in well W-3 corroborates the 
presence of fault. Resistivity image log records the micro-resistivity magnitude in image 
form of the entire borehole cross-section in clockwise direction (North-East-South-West-
North). The image is presented in static and dynamic form, where static image represents 
the color code in constant color band throughout the borehole depth interval, whereas in 
dynamic image, the code changes with lithological depth interval say 5 m each, to enhance 
the geological features. Figure 17 represents the resistivity image log of the entire borehole 
cross section in clockwise direction in the form of static and dynamic image with dip track 
showing the dip magnitude and azimuth of the bedding. In Fig. 17a, above 567 m depth, 
a consistent dip of magnitude 30°–40° with azimuth of N220°–230°E is observed, how-
ever when the wellbore trajectory moves beyond this depth, an abrupt change in the dip 

Coal Sand stone Shale carbonaceous shale

Fig. 13   Comparison between model based lithological sequence and machine learning assisted lithology 
sequences at W-5, a model based lithological sequence, b lithological sequence predicted using kNN, c 
lithological sequence predicted using SVM and d lithological sequence predicted using RF



	 Acta Geodaetica et Geophysica

magnitude (10°–40°) and azimuth (N135°–250°E) in a scattered pattern is observed, indi-
cating the well path through fault plane, a representation of the image from depth interval 
582–585 m is shown in Fig. 17b.

The implemented ML classifiers have several merits and demerits in data analysis and 
prediction. The kNN classifier has the simplest mathematical background and is easy to 
implement. However, kNN is sensitive to the noise content of the data and requires optimal 
“k” values for reasonable performance. kNN is also not recommended for large and highly 
nonlinear data sets. SVM can effectively handle high-dimensional data set having smaller 
sample numbers. SVM is robust against overfitting as its diagnostic steps involve the use 

Coal Sand stone Shale carbonaceous shale

Fig. 14   Comparison between machine learning assisted lithology prediction at W-3, a lithological sequence 
predicted using kNN, b lithological sequence predicted using SVM and c lithological sequence predicted 
using RF



Acta Geodaetica et Geophysica	

of versatile kernel. The interpreter has to carefully choose the kernel function and hyperpa-
rameters to get the best result functions (Cawley and Talbot 2004).

6 � Conclusions

In this manuscript, we explore the use of machine learning (ML) techniques, specifi-
cally kNN, SVM, and RF algorithms, for deducing lithologies within subsurface geologi-
cal structures using geophysical log data. These logs, which show a broad spectrum of 
values, underwent statistical analysis to discern the responses corresponding to different 

Coal Sand stone Shale carbonaceous shale
Fig. 15   Comparison between machine learning assisted lithology prediction at W-1, a lithological sequence 
predicted using kNN, b lithological sequence predicted using SVM and c lithological sequence predicted 
using RF
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lithologies. Notably, the RF algorithm outperformed kNN and SVM in predicting lithol-
ogy, boasting an impressive accuracy of ~ 96%. The training and validation of these ML 
models were rigorously conducted through k-fold cross-validation, complemented by 
hyperparameter optimization using GridSearchCV. We evaluated the models’ effectiveness 
using various measures like precision, recall, F1-score, and ROC analysis, where the AUC 
values varied between 0.96 and 1.0 across different lithological categories.

Furthermore, the ML models reliably predicted lithologies in both the training well and 
in test wells (W-1 and W-3), with accuracies ranging from 89 to 96%. A comparison of 
the lithological sequences derived from the models and the ML-assisted predictions under-
scored the consistency of the ML approach. The study also shed light on potential faults 
and missing coal seams through a correlation analysis between wells, demonstrating ML’s 
extensive utility in subsurface characterization. Overall, the ML methodology was found to 
be highly efficient, yielding more accurate and rapid results than traditional manual meth-
ods, thus establishing itself as a crucial tool for predicting lithological sequences in the 
exploration and production sector.

Coal Sand stone Shale carbonaceous shale

Fig. 16   Correlation of important coal seam among the RF predicted lithologs at the studied wells a RF pre-
dicted litholog at W-5, b RF predicted litholog at W-3, c RF predicted litholog at W-1. We have also seen a 
few local coal seam present in the studied wells
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This study aimed at identifying lithological sequences using a predefined geophysical 
well log, analysed through ML algorithms such as kNN, SVM, and RF, which underwent 
thorough training and testing. Key performance indicators for the ML models, including 
the confusion matrix and ROC curve, were carefully examined. The top-performing ML 
algorithm was then selected for optimal lithological sequence determination. When applied 
to well log datasets, the ML algorithm exhibited an overall accuracy exceeding 89%, 
affirming its effectiveness in differentiating between coal and non-coal lithologies (shale, 
carbonaceous shale, and sandstone). This ML approach is particularly adept at offering a 
more detailed and precise classification of coal in the Bokaro coal field, considering the 
intricate interplay between coal characteristics and geological features like faults. These 
models are also instrumental in predicting possible faults by identifying missing coal 
seams during the correlation of wells.
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