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Abstract

The aim of this work is to investigate whether retrieving the model parameters of self-
potential (SP) anomalies using a combination of differential evolution (DE) and particle
swarm optimization (PSO) is possible. This approach hybridizes DE and PSO in a paral-
lel way. Each algorithm is self-contained and obtains a [premature] solution after a user-
defined generation number. This hybrid algorithm (DE/PSO) selects the best individual in
DE and PSO populations and carries it to the next iteration. Cooperation of DE and PSO
can significantly improve the results. Simulations through noise-free synthetic anomalies
show that the DE/PSO hybrid algorithm is successful in providing more accurate solutions
than those obtained using each single metaheuristic. The algorithm also speeds up the rate
of convergence to get the optimum solution. We implemented the algorithm in R program-
ming environment using available metaheuristics packages. Then, the reliability of the code
was investigated using some mathematical test functions having two and higher dimensions
(unknowns). The performance of the hybrid to invert SP anomalies was tested by synthetic
and field data sets. The true model parameters were well-recovered from synthetic data
sets including noise-free and noisy data. In the tests with field data, SP anomalies over a
shallow ore deposit in Siileymankdy (Tiirkiye), a deep ore deposit in Arizona (USA), and
multiple sources of graphite deposits in KTB borehole site (Germany) were inverted. Low
misfit values between the observed and calculated SP anomalies were obtained during the
test studies.
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1 Introduction

The self-potential (SP) method is a geophysical method based on measurements of the nat-
ural electrical potential in the earth due to various mechanisms. As an efficient and com-
mon geophysical method about cost and implementation, SP method have been applied on
the current applications in geophysics such as groundwater investigation (Goktiirkler et al.
2008; Bai et al. 2021), mineral exploration (Shao et al. 2017; Yang et al. 2019) and sub-
surface reservoirs (Alarouj et al. 2021). Interpretation of SP anomalies involves with depth
and shape estimations of the buried structures using different methods of modeling and
inversion. These approaches generally use some geometrical models such as 2D inclined
sheet, semi-infinite vertical cylinder, horizontal cylinder with finite or semi-infinite length,
and sphere to approximate the subsurface structure.

In the last two decades, global search methods such as nature- or bio-inspired
metaheuristic algorithms have become more popular for the model parameter estimations
in geophysical inversion problems. Despite their high computational cost, metaheuristics
are preferred to solve optimization problems because of their success to find the global
optimum of a function. Apart from traditional derivative-based optimization methods,
metaheuristic methods avoid local minima and do not need a good initial model to get the
global minimum (Blum and Roli 2003; Goktiirkler 2011).

A wide range of metaheuristics is available in geophysics for the solutions of inverse
problems. Various metaheuristic methods have been used to invert SP anomalies includ-
ing genetic algorithm-GA (e.g. Goktiirkler and Balkaya 2012), differential evolution-DE
(e.g. Li and Yin 2012; Balkaya 2013), particle swarm optimization-PSO (e.g. Goktiirkler
and Balkaya 2012; Ekinci et al. 2020; Essa 2019), simulated annealing-SA (e.g. Goktiir-
kler and Balkaya 2012), very fast simulated annealing-VFSA (e.g. Biswas 2017), crow
search algorithm-CSA (e.g. Haryono et al. 2020), whale optimization algorithm-WOA (e.g.
Abdelazeem et al. 2019), black hole algorithm-BHA (e.g. Sungkono 2018), cuckoo search
algorithm-CSA (e.g. Turan-Karaoglan and Goktiirkler 2021), and Bat optimizing algo-
rithm-BOA (Essa et al. 2023). Recent studies about the geophysical inversions focus on
latest developments using various metaheuristic methods with SP data and field investiga-
tions (Gobashy and Abdelazeem 2021). Elhussein and Essa (2021) carried out an inversion
study to estimate the model parameters and compared the results of SP data obtained by
various methods such as least-squares minimization, particle swam optimization, and neu-
ral network methods. Another inversion study with SP including synthetic and field data
sets was investigated by Abdelrahman and Gobashy (2021) to determine the model param-
eters of buried bodies of simple SP geometry using a fast method. Rao et al. (2021) used
2D inclined plate model for synthetic and field SP anomaly using VFSA and the inversion
results are given with 2D anomaly graphs and 3D cross-plots including true values and
uncertainty boundaries. Ekinci et al. (2020) investigated comprehensive inversion studies
about various near surface potential anomalies including SP using PSO, DE, and differ-
ential search algorithm. In addition to model parameter estimation of SP anomalies, they
carried out uncertainty analysis by Metropolis—Hastings (M—H) sampling algorithm and
reliability analysis by probability density functions. Biswas et al. (2022) used VFSA for the
inversion of various SP field anomalies with 2D thin layer modeling and investigated the
uncertainty analysis in the problem.

Each metaheuristic algorithm has some advantages and disadvantages; consequently
each one can perform well in solving some problems but show some weaknesses in solv-
ing others. To enhance the performance of the metaheuristics, a large number of hybrid
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metaheuristic algorithms have been proposed recently. Such algorithms aim at combining
the advantages of each algorithm and minimizing any substantial weakness of each one.
The performance results of the inversions by the hybridization show some improvements
about computational accuracy or speed (Blum et al. 2011; Talbi 2013; Ting et al. 2015).

PSO (Kennedy and Eberhart 1995) and DE (Storn and Price 1997) methods are well-
studied and popular algorithms in research community, because they are simple to under-
stand, code, and tune. PSO is a swarm-based algorithm able to keep the history information
of the candidate solutions, while DE is an evolutionary algorithm reputable as accurate and
fast technique able to keep the diversity of the population (Salman et al. 2007; Sayah and
Hamouda 2013). Despite the strong characteristics of the algorithms, they have some weak
features. Some researchers (e.g. Sengupta et al. 2018; Shami et al. 2022) have reported the
possibility of premature convergence of PSO. For DE, its performance can be influenced
negatively by high sensitivity to control parameters choice (e.g. Salman et al. 2007; Eltaeib
and Mahmood 2018). PSO is known as flexible algorithm to hybridize, and it has been
mostly combined with DE by researchers. A well-designed DE/PSO (differential evolution
and particle swarm optimization) hybrid approach is expected to make up for the disadvan-
tages of DE and PSO.

Hendtlass (2001) suggested the first DE/PSO hybrid algorithm, in which PSO was used
as the main operator to update the candidate solutions, but in some steps with user-defined
intervals, DE operated on the swarm to enhance their fitnesses. The success of the DE/
PSO causes many DE/PSO hybrid applications with various forms of combinations about
DE and PSO. Most of the typical examples are the hybrid algorithms that incorporated
DE or DE operators into PSO (e.g. Zhang and Xie 2003; Liu et al. 2010). Kannan et al.
(2004) also used DE operations to optimize the control parameters of PSO in hybrid DE/
PSO application. However, DE and PSO are hybridized in parallel in some DE/PSO hybrid
algorithms (e.g. Elragal et al. 2011). Additionally, there are also problem-dependent DE/
PSO hybrids in different optimization problems such as economic dispatch problem (Sayah
and Hamouda 2013), and optimal design for water distribution systems (Sedki and Ouazar
2012).

According to the literature in geophysics, a hybridized metaheuristic algorithm yields
better results than a single metaheuristic to estimate the model parameters in an inversion.
The hybrid metaheuristic algorithms can be divided into two categories as combination
of a metaheuristic method with local search algorithms (e.g. Gobashy et al. 2021), and
combination of two metaheuristic algorithms or using some components of a metaheuristic
algorithm into another metaheuristic algorithm (e.g. Khajezadeh et al. 2022). There are
some recent applications of hybrid metaheuristics in inversion of potential-field anomalies.
A hybrid metaheuristic algorithm was proposed by Li et al. (2021) including DE and PSO
in a joint scheme to invert the geoelectric structure parameters from the transient electro-
magnetic data. Jamasb et al. (2018) introduced a combination of PSO and evolution strat-
egies (ES) called PSO/ES to invert three-dimensional gravity anomalies. Di Maio et al.
(2016, 2019) proposed a new approach based on the genetic-price hybrid algorithm (GPA)
and used it to determine the model parameters of SP anomalies. The method (GPA) was
applied on magnetic anomalies to recover the source parameters, as well (Di Maio et al.
2020). Sohouli et al. (2022) used a hybrid of PSO and GA to estimate the model param-
eters of magnetic sources with simple geometric shapes.

This study presents the inversion of SP anomalies by a hybrid metaheuristic optimi-
zation algorithm consisted of DE and PSO algorithms called DE/PSO hybrid algorithm.
The DE/PSO is defined as a teamwork hybridization representing cooperative optimiza-
tion model that both DE and PSO algorithms maintain self-contained and explore their
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own search spaces separately while they exchange their information during iterations. DE/
PSO hybrid algorithm is implemented in R programming language environment, which is
released in open-source form under the conditions of the GNU General Public License (R
Core Team 2021). According to the literature survey on geophysical inversion studies and
hybrid metaheuristic methods, the inversion of the synthetic and field SP anomalies has not
been investigated by a DE/PSO hybrid algorithm. Therefore, here a parameter tuning study
for the determination of the control parameters of the hybrid algorithm and inversion stud-
ies for test functions, synthetic and field SP anomalies are performed.

2 Methodology of DE/PSO hybrid algorithm

Proposed hybrid algorithm is comprised of DE and PSO for the inversion study. DE algo-
rithm was proposed by Storn and Price (1997) as a stochastic vector-based metaheuristic
algorithm. DE evolves several candidate solutions (population) iteratively. The set of can-
didate solutions initializes with a randomly distributed individuals within the search space
of an optimization problem. In each generation, new solutions are created through three
operations: mutation, crossover or recombination, and selection. For each solution (target
vector), a mutant vector (v) is created using mutation operator. It is done by mutation of a
randomly selected base vector (x) using Eq. (1) (Storn and Price 1997; Balkaya 2013; Bal-
kaya et al. 2017; Ekinci et al. 2019).

v=x+F-(r-ry), M

where r; and r, are randomly selected solutions, and F is mutation constant and a user-
defined parameter. Here it should be noted that randomly selected solutions, base vec-
tor and target vector should be different from each other. After mutation step is done, the
crossover operation generates a trial vector (offspring) using the recombination of target
vector and its corresponding mutant vector. The crossover operation uses a crossover prob-
ability (Cr) in the range of [0, 1] that determines how many elements of the mutant vector
to participate in the trial vector. According to DE algorithm introduced by Storn and Price
(1997), the crossover operation increases the diversity of populations and ensures that the
trial vector will not be a copy of the target vector. After producing the trial vector with
combination of the target vector and the mutant vector, the target or trial vector is selected
by the algorithm based on their fitness values to enter the next generation. The better new
solutions replace inferior ones in the population. The operations reiterate until a stop cri-
terion (e.g. reaching a defined number of generations) is satisfied and finally a solution is
yielded (Storn and Price 1997; Balkaya 2013).

As another algorithm of the investigated hybrid algorithm, PSO imitates the social
behavior of birds or fishes when they try to reach food sources. The initialization of the
algorithm is carried out by locating a population of random positions. For implementing
PSO, the particle positions change iteratively up to a criterion of termination is satisfied.
Each particle (i) has a position in space (x;), which changes with velocity (v;). The posi-
tions and velocities are updated in each iteration:

i i i

D — oy ® 4 ¢, rand() (pbesti — x(k)) + cyrand() (gbest — xl(.k)), 2)
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x$k+1) _ xgk) n v§k+l)’ 3)
where k is iteration number, w is a weighting factor (0 <@ < 1) called the inertia weight; ¢; and ¢,
are cognitive and social scaling factors, respectively; and rand() is a random number uniformly
distributed in [0, 1]. According to the formula, each particle’s velocity will be updated consider-
ing: its current position (xﬁk)), current velocity (vl(.k)), the best position in its search history (pbest,),
and the global best position explored by all current particles (gbest). The gbest of the final swarm
is considered as the solution of the problem (Goktiirkler and Balkaya 2012). The pbest; and gbest
components are evaluated based on objective function of the inversion problem.

The hybrid DE/PSO scheme in this study follows the one by Li et al. (2021). Similarly it
is initialized by two different random populations, and it runs PSO and DE simultaneously.
Parameter setting of the hybrid algorithm includes the control parameters of F, Cr, o, ¢,

and c,. The population size (N,,,) and the number of generations per each algorithm

(Nggﬁ ,N;; Sno) are defined for DE and PSO together with the maximum iteration number of

the hybrid (Iz,,,,). In each iteration, each single algorithm independently yields a premature
solution (two independent implementations can be executed in a parallel code scheme)
through a number of generations (Ngﬁ for DE and N; SO for PSO). Then, the hybrid algo-
rithm compares these solutions based on their objective function values and selects the bet-

ter one as the best individual. In this step, there are two populations: Ng’f; th generation of
DE and N759th generation of PSO. One of these populations contains the best individual,

gen

and the premature solution of the other population is replaced by the best individual. In this
way, the populations share the best individual and go to the next iteration. The optimum
solution after a user-defined It,,,, will be the final best individual. In other words, the
hybrid algorithm iterates the shared information resulted from two parallel populations
evolving through the generations of DE and PSO.

The flowchart of the DE/PSO hybrid algorithm is given in Fig. 1. The steps of the
hybrid algorithm are given as the following:

Step I Assigning values to the parameters, F, Cr, , ¢}, €5, N,,,» N;’j;, N; 80, and It,,,,.

Step 2 Population initialization: two different random populations (popp and poppg,)
of size N,,, are generated.

Step 3 PSO yields Ngl')e 5;10 times generations, and provides a [premature] solution.

Step 4 DE yields NPE times generations, and provides a [premature] solution.
gen

Step 5 The solutions from the steps 3 and 4 are compared based on their objective func-
tion values, then pop or popps, are updated with the best individual.

Step 6 The algorithm terminates when the iteration number reaches I7,,,..
goes to step 3 and loops.

The algorithm proposed by Li et al. (2021) obtains the first generations of DE and PSO
in steps 2, and 3. As a new and different approach for more improvement in the results, we
obtain Nth generations of DE and PSO in these steps.

Otherwise, it

3 Implementation of DE/PSO hybrid algorithm
The test studies with mathematical functions, synthetic and field SP anomalies were

implemented in R programming language version 4.0.5 released on (2021-03-31). R
includes a variety of packages for optimization. All R packages are categorized by topic
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Fig. 1 Flowchart of DE/PSO ]
(after Li et al. 2021) Start
]

Parameter setting of
F,Cr,w,c;, ¢ N,,, ,NPSO,NPE | It

pop » Ngen »Ngen » max

!

Initiate two random populations
Poppso and poppy;

Obtaina solution Obtaina solution
from DE from PSO

Compare two solutions and
select the best individual

{

Update poppg or poppy with
the best individual

iter<1t,,,.

End
:;fi:hnl:/s[e;?fg?:criiit;CNMOF R Package Metaheuristic Function
package NMOF DE DEopt
GA GAopt
PSO PSopt
SA SAopt

in web pages known as Comprehensive R Archive Network (CRAN) task views, which
provide tools for browsing guidance information in special interest areas. A comprehen-
sive listing of packages for optimization algorithms is available in CRAN task view on
“Optimization and Mathematical Programming” (Theussl and Borchers 2018) includ-
ing GA, DE, PSO, and SA. Packages (the names of R packages are written in italics)
called GA (Scrucca 2013) and genalg provide functions for optimization using GAs.
DEoptim (Mullen et al. 2011) package implements DE. Packages called pso and psoptim
implement PSO. There are some other packages such as metaheuristicOpt (Riza and
Nugroho 2018) containing functions for 21 evolutionary optimization algorithms, and
NMOF' (Gilli et al. 2019) offering implementations of several optimization algorithms

! The reference manual of NMOF package is available on: https://cran.project.org/web/packages/NMOF/
NMOE.pdf.
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Fig.2 Illustration of model
parameters for sphere as an
example for simple geometric
shape

V><

ZV

(Table 1). The overview of the cited R packages are presented in the Table 11 of the
Appendix.

Considering the goal of DE/PSO hybridization, we decided to use NMOF package
because it contains functions for both DE and PSO algorithms, respectively called as
DEopt and PSopt. The other reason is the argument options offered by these functions
and the returned outputs. The functions have some optional arguments (initial popula-
tion, store solutions, etc.) and return all of the generated populations, which the hybrid
algorithm requires. The functions also return a list of objective function values. This
enables us to investigate the convergence characteristics of DE, PSO, and DE/PSO
hybrid via the error energy plots.

4 Self-potential anomaly
4.1 Simple geometric shape model

An SP anomaly observed over a polarized body is given as potential measure in a point
with x [m] horizontal distance along a profile. The mathematical expression below cal-
culates the potential [V] due to the subsurface body idealized with simple geometric
shape (Yiingiil 1950; Goktiirkler and Balkaya 2012):

(x - xo) cos 8 + zysinf
[(x —xo)z + Zg]q

where K is the electric dipole moment [mVm?3~'], @ is the polarization angle measured
clockwise from the horizontal axis [], z, and x, are the depth and position of the causa-
tive body [m], respectively. ¢ is shape factor (dimensionless) which equals 0.5, 1.0, and
1.5, respectively for a semi-infinite vertical cylinder, infinitely long horizontal cylinder, and
sphere. Modeling of synthetic and field SP anomalies in this work were carried out using
simple geometric shape forward model where the SP inversion problem aims to estimate
the model parameters of X, 6, z,, g, and x, (Fig. 2).

V(x, X K. 0, 20 q) = K : 0)
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Fig.3 Illustration of 2D inclined 3 X
sheet model parameters. The plot Yo o
is modified from Murthy and t g
Haricharan (1985)

4.2 2D inclined sheet model

A 2D inclined sheet can model a geological structure such as fracture or fault. The SP anom-
aly is given as potential measures in points with x [m] horizontal distances along a profile. The
profile is perpendicular to the strike of the inclined sheet. The potential [V] due to a horizon-
tally infinite and inclined sheet in two dimensions is calculated by following mathematical
expression (Murthy and Haricharan 1985):

2 . 2
X —Xxy) —a cosa| + (h— a sina)
(v ) ~a cos Lo

Vix, xo, Uy, @, h, a) = Uyln
( o0 ) ’ {[(x—xo)+acosa]2+(h+asimx)2

where U, is the polarization amplitude [mV], « is the inclination angle [‘], & and x,, are the
depth and position of the sheet center [m], respectively. a is half-width of the sheet [m]. In
addition to simple geometric shape model, 2D inclined sheet model was also used to inter-
pret KTB field anomaly (Germany). In this model, SP inversion problem aims to estimate
the model parameters of U, a, h, a, and x, (Fig. 3).

5 Synthetic data

A synthetic noise-free SP anomaly was calculated using Eq. (4) through a horizontal profile
of 400 m in points with 5-m intervals. The considered model is a spherical body with the
parameters of K=—20,000 mVm?~!, =25, zp=30m, g=1.5, and x,=220 m (Fig. 4). The
anomaly shows variation from positive to negative values between maximum and minimum
amplitudes around 4 and — 14 mV. The data set was used for parameter tuning of DE, PSO,
and DE/PSO. A comparison of the hybrid algorithm performance with the other two algo-
rithms (DE and PSO) was investigated using this data set.
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Fig.4 Synthetic SP anomaly for
a spherical body 5

=

= Model Parameters
15 _5 L K:-20000 [mVm?¥]
o

(V)]

6. 25 [°]
z, 30 [m]
q: 1.5
10 b Xy 220 [m]
-15 : .
0 100 200 300 400

Distance [m]

6 Parameter tuning for the hybrid algorithm

Firstly, to obtain the optimum control parameters for DE and PSO as the components of the
hybrid algorithm, we carried out parameter tuning studies for each algorithm separately.
The tables of DE and PSO parameter tuning are given in the Appendix (Tables 12, 14).
The optimum values of F, Cr, w, c¢;, and ¢, were used in the hybrid algorithm introduced in

this study. The hybrid algorithm has several control parameters to be optimized: N, ,, If,,.»

and (NDE NPSO ) Secondly, the optimum values for these parameters were determined.

gen’” "gen

The simulations in the parameter tuning studies included five independent runs. The mini-
mum, maximum, mean, and the standard deviation (SD) of root mean square (rms) values
were considered in the statistical analysis of the results. All implementations were done in
computer with 2.4 GHZ processor and 4 GB of memory. The mean elapsed time [s] for
execution of DE, PSO, and DE/PSO hybrid functions were also reported. We considered
the following formula for error energy (E) or objective function during parameter estima-
tion (Goktiirkler 2011):

=

_l obs __ cal\2
E=y & (V" =v) (©6)

4

where N is the number of the data, V°* and V¥ are the observed (synthetic or field) and
calculated data, respectively, and i denotes each observation. The rms value is square root
of the error energy (Table 2).

DE parameter tuning study was done for pairs of F' and Cr taken from [0.1, 1] by steps
of 0.1 with fixed N,,, of 50, and generation number of 100. Parameter tuning study for
PSO also was carried out by constant N, of 50, and generation number of 150 based on
its [PSO] slow convergence rate. We used five sets of the control parameters (, c¢;, and c,)
suggested by some previous studies to tune the PSO. Table 13 in the Appendix lists these

references. The optimum control parameters for DE and PSO are given in Table 3.
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Table 3 The optimum

. . Optimum Control Parameters for DE and PSO Algorithms
parameters used in test studies of

this work F Cr ® ¢y Cy
0.5 0.9 0.729 2.041 0.948
a
8 1
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Fig.5 Convergence curves of the PSO, DE, and DE/PSO hybrid algorithms. (Ng[)efl: ,N; $0) parameters are
equal to 1,2, 3,4 in a, b, ¢, and d plots respectively

The parameter tuning studies also included some trial-error studies with the noise-free

data set to obtain optimum values for the parameters of N, , It,,,,, and <NDE ,NP SO). It was
gen’ "' gen

observed that the parameters, (NgDe'Z,N; Sf) had substantial effect on the accuracy of the

results and the rate of convergence. Comparisons of the performances of each algorithm
(DE, PSO, and hybrid algorithm) are given in Table 2 and Fig. 5. Each algorithm used the
same initial population of 50 individuals. Number of 100 was set to I7,,,. and the number of

generations of PSO and DE were set to 100, 200, 300, and 400. In this way, an equivalent
comparison condition was set to consider the computational cost of 1, 2, 3, and 4 values for

(Nggf ,N; sno) parameters in the hybrid algorithm. The plots illustrate the first 50 iterations
for the sake of comparison. The results and plots in the Table 2 and Fig. 5, altogether show
that the increase in the values of the parameters (NDE NP so) results in faster convergence

gen’” "gen
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rates, and substantial decreases in rms values. The increase in the elapsed time seems una-
voidable because of the serial implementation of DE and PSO in our coding approach. It
can be avoidable, when the two metaheuristics run simultaneously. The optimum value for

the parameters (Nfe’g , N; Sf), was selected as 3 for a desired accuracy (Table 2).

To optimize the hybrid algorithm further we carried out parameter tuning studies
(Table 15 in the Appendix) by using noise-free data and a random population. Based on
these studies the optimized values of the parameters N,,,, and [z, were obtained as 25
and 40, respectively. Following test studies with two-dimensional mathematical test func-
tions, noise-free, noisy, and field data sets (single anomalies) were implemented by using

the parameter values of 25 for N,,,,,, 40 for It,,,,, and 3 for <NDE Nfe ff)). The N, ,It, ., and

op> max> gen® g pop> *max>

(Nggﬁ N ; io) parameters used for test studies through high-dimensional mathematical test
functions and multiple SP anomalies (KTB anomaly) were obtained by trial and error. The

considered parameters are presented in the related sections.

7 The hybrid algorithm testing

To investigate the reliability of DE/PSO hybrid algorithm, four typical test functions were
adopted from unimodal and multi-modal mathematical functions: Sphere, Rosenbrock,
Griewank, and Himmelblau.? Sphere (bowl-shaped) and Rosenbrock (valley-shaped) are
unimodal functions with one global minimum where the best solution is located. Griewank
and Himmelblau are multi-modal functions, which have many local minima with unique
global minimum (Hussain et al. 2017). The details of these functions are given in Table 4.
The table also includes the solutions obtained by DE/PSO hybrid for the test functions
with two dimensions. For each function, the best results by the proposed hybrid algorithm
were selected among five independent runs. The statistical information of the five runs is
presented in Table 16 of the Appendix. Figure 6 illustrates the color images by soobench
R package (Mersmann et al. 2020) of the test functions with the locations of their corre-
sponding global minima, and the solutions obtained by DE/PSO hybrid.

The performance of the hybrid algorithm was also evaluated for Sphere, Rosenbrock,
and Griewank functions having three different dimensions, 10, 20, and 30. A different set
of control parameters for the hybrid algorithm were used to solve the high-dimensional

500 for It,,,,, and 5 for (NDE ,NP SO) parameters to

max> gen gen

functions. We considered 100 for N,

pop?
obtain the results in Table 5.

8 Performance analysis of DE/PSO hybrid algorithm
8.1 Numerical test studies with synthetic data

Synthetic data includes both noise-free and noisy data sets. To generate the noisy data,
normally distributed pseudo-random numbers with zero mean and standard deviation
of +£0.5 mV (Galassi et al. 2009) was added to the noise-free data. The hybrid algorithm
was applied to noise-free and noisy synthetic data sets and the best estimated parameters

2 The information and R implementations of the functions are available at http:/www.sfu.ca/~ssurjano/
optimization.html.
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Fig.6 The colored plots of the test functions with their corresponding global minima (red points). The blue
pluses show the solutions obtained by the hybrid algorithm. The plot of Griewank function is zoomed-in for
a better resolution. (Color figure online)

Table 5 The results from the hybrid algorithm for high— dimensional test functions

Test Function  Dimension  Results by DE/PSO Hybrid Mean
Elapsed
fimin fnax Mean (f) SD (f) Time [s]
Sphere 10 1.59x107%°  2.66x107°  2.16x107°  445x1071% 552
20 89610  149x10™% 552x10™%  5.62x107% 6.26
30 1.51x1072%  9.67x102%  3.87x102%  3.35x10°%8 7.14
Rosenbrock 10 0 0 0 0 8.34
20 7.61x107%  1.22x107"" 287x1071?  5.25%x 1072 9.32
30 1.23 3.93 2.17 1.07 10.94
Griewank 10 0 1.06x107"7  296x1072%  437x107 9.33
20 0 9.86x107  1.97x107  4.41x107 10.84
30 0 0 0 0 13.09

among five independent runs are given in Table 6. The table also contains the maximum
and minimum bounds of search spaces considered for the model parameters. The fit of
the calculated and observed data, and the observed SP versus calculated SP anomalies
for the synthetic data are illustrated in Fig. 7. The corresponding plots of the error energy
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Table 6 Tests with synthetic data

Model parameters True values Parameter bounds Estimated parameters
Minimum Maximum Noise—free Noisy
K [mVm?i~1] —20,000 —50,000 —10,000 —20,000.18 —22,166.79
0[°] 25 0 180 25.00 23.77
7y [m] 30 10 60 30.00 30.02
q 1.5 0 2 1.50 1.51
Xo [m] 220 100 500 220.00 219.20
rms [mV] - - - 0.0006 0.46
(o]
5 a 5 b 15
oG N
5 Er
S Estimated Parameters e >
£ 5| K:-20000.18 [nvm?) g 0 g
o 0:25.00 7] q @ c
(7] 2,2 30.00 [m] a2 w
q:1.50 o 55
40 b %,:220.00[m] b
rms: 0.0006 mV/
15 5 0
0 100 200 300 400 5 0 5 0 10 20 30 40
Distance [m] Calculated SP Iteration
s d . e . f
)
2%, _ 10
0 g
b % oo °° E 8
%' Estimated Parameters K >
 22166. 201 =
£ f o 3 E
2] 24730.02 [m] 2 w
q:1.51 o O/S° ‘é 4
10} %o 219.20 [m] 00, o Ll\j
© 2
rms: 0.46 mV/
15 5 0
0 100 200 300 400 5 0 5 0 10 20 30 40
Distance [m] Calculated SP Iteration

Fig. 7 The results from (a—c) noise-free and (d—f) noisy data

variation with respect to iteration number are also shown in the figure, which characterize
relatively fast rate of convergence. The results with the noise-free data are very close to the
true model parameters. The solution for the noisy data set has obtained with the rms value
around 0.46 mV, which seems compatible with the standard deviation of the added noise
(0.5 mV). Figure 8 shows the convergence curves of the model parameters through 40
iterations for noise-free and noisy data sets.

The error energy maps are one of the approaches to analyze the inverse problem at
hand (Fernandez-Martinez et al. 2013; Ekinci et al. 2017, 2021). It is known that more
than one model (equivalent parameters) can fit the observed data because of the non-
unique nature of inverse problems. The error energy topography map for the selected
parameter couples is obtained by the calculation of the objective function values
over the corresponding ranges of the search space. The global minimum (true model
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Fig.8 Convergence characteristics of the model parameters for (a—e) noise-free and (f—j) noisy synthetic
data sets. The dashed lines show the true parameter values. The estimations for each parameter by the
hybrid algorithm are indicated on the panels

parameters) locates in the valley of the lowest objective function value. The shape of
contour lines is an indicator of how uniquely a model parameter is estimated. According
to the interpretations regarding error energy maps in the literature, the contour lines are
preferred to have closed shapes with relatively small low-error region. A large low-error
region indicates existence of many solutions with low errors. Figure 9 shows the error
energy maps for some selected parameter couples. There is not any prominent feature in
the maps indicating the difficulty of unique estimation of the related model parameters.
The locations of the estimated parameters by the hybrid algorithm for noise-free and
noisy synthetic data are also shown on the maps. Considering the close estimations to
the true solution, we can conclude that the hybrid algorithm is successful in estimations
of the model parameters.
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Fig.9 Error energy maps produced for synthetic noise-free data. The locations of true model parameters
have shown by red diamonds. The results by the hybrid algorithm for noise-free and noisy data have shown
respectively by blue circles and stars
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Fig. 10 The results from Siileymankdy anomaly
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8.2 Numerical test studies with field data
8.2.1 Siileymankody anomaly (Tiirkiye)

The SP measurements over a shallow ore deposit in Siilleymankoy, Ergani (Tiirkiye) was
used as first example for field data (Yiingiil 1950). Ergani district is 65 km southeast of
the city of Elaz1g, eastern Tiirkiye. Figure 10 illustrates the SP anomaly along a profile of
260 m varying from positive to negative values between maximum and minimum ampli-
tudes around 100 mV and —225 mV. We considered the search spaces as K€ [-60,000,
-10,000], €[5, 501, z,€[20, 50], ¢€[0.5, 1.5], and x,€[50, 100]. The results from the
hybrid algorithm are illustrated in Fig. 10. A comparison between the estimated param-
eters using DE/PSO hybrid algorithm with those obtained from some prior studies given in
Table 7 indicates that the hybrid algorithm retrieves similar results to the estimated param-
eters from different methods. The retrieved model parameters of z, and g from the hybrid
algorithm are in agreement with the estimated parameters from previous methods. The
estimated value of g near 1.0 is interpreted as an infinitely long horizontal cylinder in sub-
surface. A plot of visual comparison (Fig. 15) between the results from the present study
and the prior ones cited in the Table 7 is available in the Appendix.

8.2.2 Safford deposit anomaly (Arizona, USA)

The SP survey over a deep ore deposit (Safford) in Arizona (Corry 1985; Biswas 2017)
was used as second example for field data. Drilling data revealed that the caused polarized
body was in the depth of 550 m (Corry 1985). Figure 11 illustrates the SP anomalies with
negative values, along a profile of 2900 m approximately, which reaches maximum ampli-
tude around —600 mV. We considered the search spaces as K€[— 1500, —10], 8€[60,
120], z,€[10, 600], g €[O0, 2], and x,€[— 100, 100]. The results from the hybrid algorithm
are illustrated in Fig. 11. Table 8 contains the result from DE/PSO hybrid algorithm for
Safford deposit anomaly and those obtained from some previous studies. The retrieved
model parameters of 6, z,, and ¢ from the hybrid algorithm are in agreement with the esti-
mated parameters from previous methods. The estimated value of g near 0.5 is interpreted
as a semi-infinite vertical cylinder in subsurface. A plot of visual comparison plot (Fig. 16)
between the results from the present study and the prior ones cited in the Table 8 is avail-
able in the Appendix.

8.2.3 KTB anomaly (Germany)

The SP measurements around the KTB boreholes in the Oberpfalz (NE Bavaria, Germany)
(Stoll et al. 1995; Biswas 2017) were considered as third example for field data. KTB bore-
holes were drilled during the German Continental Deep Drilling Program. Drilling site was
a faulty zone located above Nottersdorf fault zone. According to drilling data, graphite
deposits joined with steeply inclined sheer planes were exposed in the holes (Bigalke and
Grabner 1997). KTB anomaly along a profile of 1800 m (Figs. 12a, 13a) is caused by mul-
tiple sources and shows two negative anomalies reaching maximum amplitudes
around —400 mV (anomaly 1) and—600 mV (anomaly 2). It is presumed that the high
magnitudes of anomalies are related to high conductivity of graphitic layers in the faulty
zone (Stoll et al. 1995). We tried to test the DE/PSO hybrid algorithm for KTB field
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Fig. 11 The results from Safford deposit anomaly
Table 8 Tests with field data (Safford deposit anomaly)
Parameters Mehanee (2014) Biswas (2017) Abdelazeem Present Study
et al. (2019)
Tikhonov regularization VESA WOA? DE/PSO
K [mVm*~'] 590 603.0 677.48 —-872.24
0[°] -85 94.5 —84.65 95.97
7, [m] 273 271.7 297.10 290.95
q 0.5 0.5 0.51 0.53
Xo [m] — —-6.8 2.30 15.39
rms [mV] - - - 16.36
a Whale optimization algorithm
b [
0 14000
100 12000
g 20 “g 10000
B Z 8000
> 300 5
o | 6000
8 -400 é
LE 4000
-500 2 -500 2000
rms: 1215 mV
-600 00 0
0 500 1000 1500 2000 -600 -400 -200 0 0 100 200 300
Distance [m] Calculated SP Iteration

Fig. 12 The results from KTB anomaly using simple geometric shape model

anomaly with two different possible approaches. Then, the total potential was calculated
from undersurface sources using two simple geometric shape bodies (approach-I) and two
2D inclined sheets (approach-II). In approach-I, the search spaces were considered as
K€[-9000, —100], 6€10, 180], z,€[1, 500], g €[0, 2], and x, € [0, 1800] for both anoma-
lies. In approach-II, the search spaces were considered as U, €[—3000, —10], a €[0, 180],
h€[10, 1000], a€[1, 2000], and x,€[0, 1800] for both anomalies. We assigned 150 for

N300 for I, . and 5 for (NDE NPSO

pop? max> gen’ " " gen
parameters were estimated due to inversion of KTB anomaly in each approach. The illus-
trations of the results and the estimated parameters from DE/PSO hybrid algorithm are

) parameters to obtain the results. Ten model
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Fig. 13 The results from KTB anomaly using 2D inclined sheet model

Table9 Tests with field data (KTB anomaly) using simple geometric shape model

Source Parameters Di Maio et al. Sungkono (2020) Present study
(2019)
GPA MDE? WADE® DE/PSO
Anomaly 1 K [mVm?41] 4669 902.12 4078.24 —4281.28
01[°] 96 —99.34 —-98.37 69.71
7, [m] 145 96.85 167.56 78.69
q 0.75 0.60 0.73 0.80
X, [m] 1305 1294.88 1308.41 554.53
Anomaly 2 K [mVm?~1] 1664 395.43 2194.95 —131.71
01[°] 79 —80.09 —80.54 93.00
7o [m] 111 76.73 96.41 31.13
q 0.64 0.49 0.67 0.30
Xo [m] 1967 1975.50 1969.38 1206.03
rms — — - 12.15

a Micro-differential evolution (MDE) variant including vectorized random mutation factor (MVDE)
b Adaptive Micro-differential evolution MDE (uADE)

presented for approach-I (Fig. 12, and Table 9) and approach-II (Fig. 13, and Table 10).
The results for KTB anomaly in present study and those obtained from some previous stud-
ies are given in the tables. The comparison of the results from the two approaches shows
that approach-I provides a smaller rms value (12.15 mV) than approach-II (19.80 mV).

Figure 14 shows the geometrical characteristics of the subsurface structures obtained
from inversion of KTB anomaly using the hybrid algorithm DE/PSO. The used model was
2D inclined sheet in this estimation.

9 Conclusions
In this work, a hybrid metaheuristic algorithm (DE/PSO) was implemented. The algo-
rithm hybridizes DE with PSO in a cooperative approach, in which DE or PSO takes/gives

its best [premature] solution from/to the other iteratively. Simulations by noise-free syn-
thetic SP anomalies indicated that the hybrid algorithm provides faster and more accurate
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Table 10 Tests with field data (KTB anomaly) using 2D inclined sheet model

Source Parameters  Biswas (2017)  Sungkono (2020) Essaetal. (2023)  Present Study
VESA MVDE WADE BOA DE/PSO
Anomaly 1 U, [mV] 73.5 74.98 67.08 72 —55.43
al°] 139.6 79.11 80.00 75 83.38
h [m] 371.8 447.09 556.99 380 666.68
a[m] 524.6 429.13 530.23 350 651.00
Xo [m] 998.6 505.52 500.00 400 511.29
Anomaly 2 U, [mV] 79.0 120.06 91.67 80 —73.62
al] 134.2 103.95 117.76 120 129.07
h [m] 298.2 134.82 154.15 275 193.45
a [m] 394.8 128.86 149.84 360 232.88
Xo [m] 1472.1 122499  1271.08 1370 1348.46
rms - - - - 19.30
Fig. 14 KTB anomaly and the 0
corresponding subsurface model
including 2D inclined sheets -100 1
-200 ]
>
,E, 300
% -400
-500 1
-600 1
-700 L ; *
0 500 1000 1500 2000

Distance [m]

511.29m 1348.46 m

|
| 193.45m
| 129.07°
'y [/ \ L
666.68 m | 5
I J
|
83.38°

\4

1307 m

estimations of the true model parameters in comparison to those estimated by each single
metaheuristic. The hybrid algorithm yielded a satisfactory result even with small size of
population 25 and iteration number 40 for noise-free, and noisy data sets. The results by
the application of the hybrid on some high-dimensional test functions ensured the good
validation of the algorithm. During test studies with synthetic anomalies including noise-
free and noisy data, the estimated model parameters were close to true model parameters.
Single SP anomalies over shallow (Turkey) and deep (USA) ore deposits were considered
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as field data sets to test the hybrid algorithm. For testing the hybrid algorithm on multi-
ple SP anomalies, the well-published anomaly from the KTB borehole site (Germany) was
selected. This anomaly was interpreted with two different approaches using simple geomet-
ric shape and 2D inclined sheet models. For the field examples including single and multi-
ple anomalies, the calculated SP anomaly fitted well with the observed data. We conclude
that implementation of the presented hybrid algorithm provides us with accurate and reli-
able solutions. It is also worth to mention that R programming language is a feasible tool
for application of metaheuristics to solve geophysical inverse problems hence of providing
accurate results and a variety of R packages.

Appendix

Figures 15, 16 and Tables 11, 12, 13, 14, 15 and 16.

Fig. 15 The visual comparison 150 T T T T T
between the results of the present
study and some prior studies
from the Siileymankdy anomaly

SP [mV]

o
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Fig. 16 The visual comparison 0 T T T T T
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Table 11 Metaheuristic
algorithms offered by R packages

@ Springer

Package Metaheuristic Function
DEoptim DE DEoptim
GA GA ga
Genalg GA rbga
rbga.bin
Metaheuristicopt  Ant lion optimizer ALO
Artificial bee colony algorithm ABC
Bat algorithm BA
Black hole optimization BHO
Cat swarm optimization CSO
Clonal selection algorithm CLONALG
Cuckoo search CS
DE DE
Dragonfly algorithm DA
Firefly algorithm FFA
GA GA
Grasshopper optimisation algorithm  GOA
Gravitational based search GBS
Grey wolf optimizer GWO
Harmony search algorithm HS
Krill-herd algorithm KH
Moth flame optimizer MFO
PSO PSO
Shuffled frog leaping SFL
Sine cosine algorithm SCA
Whale optimization algorithm WOA
Pso PSO psoptim
Psoptim PSO psoptim
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Table 12 Parameter tuning study for DE algorithm

F Cr  Model Parameters rms [mV] Mean
Py " - Elapsed
K[mVm™™] 6[°] z,[m] q Xy [m]  Min Max Mean SD Time [s]
0.1 0.1 -23,460.24 2544 3560 149 21941 0.53 1.09 081 026 0.59
02 —2459752 2426 2992 153 220.28 0.11 1.68 080 0.68 0.52
03 —-16,737.21 2746 29.70 148 221.22 0.15 223 1.07 081 0.56
04 -24,857.67 2431 3058 1.52 219.77 0.03 0.27 0.10 0.10 0.57
0.5 -20,355.74 2473 30.27 150 219.83 0.03 0.81 028 033 055
0.6 -18,171.06  25.10 29.74 1.49 220.02 0.01 042 0.19 020 0.58
0.7 —18,494.66 2534 29.73 149 220.16 0.01 092 034 039 055
0.8 —23,082.88 27.46 30.36 1.52 221.11 0.18 0.88 0.69 029 052
0.9 -27,040.29 2446 30.81 154 21996 0.03 246 1.13 091 053
1 —-11,036.83 2532 2795 143 220.09 0.19 293 189 1.07 054
0.2 0.1 -—13,442.0 2546 3248 144 219.05 045 129 075 034 050
02 -16,556.98 2692 2925 148 222.63 0.34 0.69 049 0.13 054
0.3 -19,522.05 27.22 30.13 150 221.26 0.16 097 046 034 049
04 -20,23091 2494 29.80 1.50 220.08 0.04 0.11 0.08 0.01 0.8
0.5 -20,31099 25.19 30.10 1.50 220.21 0.05 0.09 0.06 0.01 0.8
0.6 —18,43639 2528 29.75 149 220.12 0.03 1.53 037 065 0.57
0.7 -22,801.52 2470 30.39 1.51 21992 0.01 0.08 0.05 003 058
0.8 —18,302.25 25.19 29.75 149 220.03 0.009 0.85 0.04 003 056
09 -22232.10 2476 3032 151 21994 0.01 1.68 038 0.72 0.56
1 —25,260.65 2645 2647 156 22096 0.53 142 085 037 0.60
03 0.1 -32448.39 2093 32.01 156 218.68 0.48 199 134 059 058
0.2 -28378.09 22.11 29.56 154 219.84 0.28 0.71 052 0.17 053
03 -19,608.59  27.69 30.35 1.50 221.50 0.20 0.54 037 0.15 057
04 -19,753.87 2485 30.39 149 21995 0.05 0.14 0.10 0.04 0.58
0.5 -29923.66 2499 31.13 154 220.18 0.07 0.10 0.08 0.01 0.55
0.6 —-19,21430 2539 2998 149 220.15 0.03 0.06 004 001 059
0.7 -22,14330 2474 30.27 151 21996 0.01 0.05 0.04 002 059
0.8 -19,576.67 25.06 29.93 149 220.02 0.003 0.21 006 0.08 0.53
0.9 —-19,984.66 25.01 29.99 149 220.00 0.0007 0.05 0.03 0.02 0.56
1 —24,137.59  24.62 3051 1.52 21993 0.02 1.52 040 064 053
04 0.1 -2751545 2480 30.82 154 216.11 0.69 1.17 092 023 0.58
02 -—14,820.83 23.76 2992 145 216.68 0.52 1.37 1.00 040 0.51
03 -—13,16445 2476 2848 145 221.37 0.3l 1.39 061 045 0.59
04 -28,377.38 2353 31.19 154 219.54 0.07 022 0.16 007 057
0.5 -26,168.74 24.66 30.53 1.53 220.05 0.04 0.13 0.09 0.04 051
0.6 —1949596 2470 30.06 149 219.86 0.03 0.06 005 0.01 058
0.7 —23,29239 2471 3041 1.52 21991 0.02 0.04 003 001 059
0.8 —22,726.25 2473 30.36 1.51 21990 0.01 0.03 0.02 0.009 049
0.9 —20,900.11 2491 30.11 1.50 21998 0.005 0.05 0.02 0.02 0.60
1 —19,983.38  25.00 2999 149 21999 0.0001 053 0.11 023 0.73
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Table 12 (continued)

F Cr Model Parameters rms [mV] Mean

py - Elapsed
K[mVm™~—] 6[°] z,[m] q Xy [m] Min Max Mean SD Time [s]

05 0.1 -29363.71 28.14 31.11 1.56 220.83 0.60 1.68 122 042 0.0
02 -27,45432 26.09 3054 1.55 21946 0.38 1.01 061 024 049
03 -26,607.65 26.09 31.63 153 219.53 024 0.68 042 0.18 0.50
04 -21,41576  25.01 2986 1.51 220.15 0.14 027 020 0.05 0.62
0.5 —-22,974.21 2427 30.65 1.51 219.51 0.07 022 0.13 005 0.57
0.6 —2328147 2457 3033 1.52 220.03 0.03 0.11 0.07 0.03 0.58
0.7 —27458.05 2441 3077 154 219.87 0.03 0.09 005 0.02 049
0.8 —18,272.63 2526 29.74 149 220.14 0.02 0.04 003 0.01 0.59
09 -20,601.08 2491 30.07 150 21999 0.005 0.02 0.01 0.007 0.61

1 -20,018.32 2499 30.00 150 219.99 0.0002 0.03 0.007 0.01 0.59
06 0.1 -33381.09 2525 32,67 155 21642 0.68 1.79 144 045 047
02 -24,49329 2498 2667 156 220.80 0.1 1.14 081 027 0.59
03 -38,716.51 23.61 3232 157 219.80 0.13 0.75 041 022 0.77
04 -32,611.24 2320 30.19 156 219.55 0.19 045 033 0.09 0.58
0.5 -33,23649 2343 31.14 156 21938 0.10 023 0.15 0.05 048
0.6 —28,438.63 24.79 30.44 154 219.88 0.09 021 0.14 0.05 0.59
0.7 -28,330.72 2424 3092 154 219.82 0.05 0.12 0.08 0.03 0.58
0.8 —28,089.14 24.61 30.80 1.53 220.04 0.04 0.07 0.06 0.01 046
09 -23216.890 2453 3040 152 219.86 0.02 0.05 003 0.01 0.53
1 —19,703.15  25.01 2994 149 21999 0.003 0.04 002 001 0.8
0.7 0.1 -19,81475 2129 3375 147 222.07 0.83 154 1.19 030 0.57
0.2 -31,43794 2579 29.02 1.56 22151 0.35 1.06 0.68 030 047
03 -30,484.29 2190 3094 1.55 218.59 0.18 0.88 051 027 0.63
04 -—21,048.89 2476 2998 1.50 220.54 0.14 050 030 0.13 061
0.5 —23,343.99 2473 2958 1.52 219.86 0.11 032 020 0.08 046
0.6 —20,694.29 2657 29.64 1.51 221.14 0.14 030 0.19 007 046
0.7 -=25,263.04 25.12 3026 1.53 219.84 0.09 0.16 0.12 0.03 0.8
0.8 —24,838.17 2498 31.04 152 22034 0.08 0.13 0.10 0.02 0.8
09 -—18,755.02 25.13 29.70 149 21993 0.02 0.10 0.06 0.03 044
1 —-22,724.13 2490 3030 1.51 21997 0.02 0.04 004 0.01 0.58
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Table 12 (continued)

F Cr Model Parameters rms [mV] Mean
Elapsed
K[mVm*™'] 0[] zyml g  x[m] Min  Max Mean SD  Time[g]
0.8 0.1 -263357 1947 27.50 1.56 217.00 0.66 1.65 142 042 058
02 -34,53743 2193 3280 1.54 218.08 0.35 1.80 095 0.58 0.61
0.3 -—28,00898 29.05 31.65 1.54 22505 0.63 076 0.69 0.05 0.60
04 -31,350.73 2794 31.14 1.57 22255 045 0.76 057 0.12 046
0.5 -32447.16 2575 3192 155 22098 0.17 0.59 032 0.16 046
0.6 —47435.81 2475 3276 1.60 220.22 0.14 035 027 0.08 0.60
0.7 -31,087.74 2476 30.84 1.55 221.00 0.16 033 024 0.06 046
0.8 —37,784.52  23.15 31.75 1.57 219.59 0.08 023 0.15 0.06 0.6l
09 -27.817.72 2356 30.88 153 21948 0.07 0.15 0.12 0.04 045
1 —18,84544 2534 29.69 149 220.03 0.03 0.06 0.04 0.01 0.61
0.1 -25,67522 27.15 33.11 153 221.65 0.8 1.60 1.13 047 0.60
02 -—-31,858.07 2258 33.90 153 21746 0.40 1.47 098 042 043
0.3 —-30,388.47 2521 3032 156 220.83 0.30 1.13 082 034 0.9
04 -3047481 2593 30.66 1.55 22029 0.16 0.81 051 027 057
09 05 -33,767.68 2452 2997 157 22152 0.30 071 048 0.16 0.57
0.6 -—37,001.06 2256 3235 1.56 219.14 0.12 049 029 0.16 0.61
0.7 -19,682.98 26.84 30.17 149 221.38 0.18 042 030 0.09 0.67
0.8 -26,852.13 23.60 30.66 153 218.72 0.16 0.39 028 0.09 0.59
09 -31,77576  23.03 31.18 1.55 21931 0.09 029 0.18 0.08 0.59
1 —26,928.27 2375 3050 1.53 219.52 0.07 021 014 0.05 043
0.1 -17,578.18 26.51 3531 144 21924 0.78 196 140 051 044
1 02 -18,253.81 31.94 3224 148 22503 0.66 1.65 122 050 0.59
0.3 —-37,646.26 2931 33.17 1.57 22335 0.46 1.12 081 025 050
04 -36,941.04 24.15 3591 1.54 21944 046 0.10 080 025 0.59
0.5 -33,739.70 23.64 28.69 1.57 220.72 0.39 0.87 062 022 0.6l
0.6 —22,384.03 2654 3228 150 22097 0.27 0.83 054 020 046
0.7 -21,727.04  25.05 30.83 1.51 21934 0.25 0.47 038 0.091 048
0.8 —-27,260.61 2541 30.37 1.54 22050 0.18 056 034 0.14 049
09 -26,569.10 26.86 3049 1.54 22142 023 039 031 0.07 049
1 —-21,451.86 2330 29.55 1.51 219.54 0.13 032 022 0.07 0.58
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Table 13 Sets of the PSO control parameters suggested by some previous studies

Coefficients References Inertia weight Cognitive Social
scaling factor scaling

factor

Set 1 Kennedy and Eberhat (1995) 1 2 2

Set 2 Clerc (1999) Eberhat and Shi (2000) 0.729 1.494 1.494

Clerc and Kennedy (2002)

Set 3 Trelea (2003) 0.6 1.7 1.7

Set 4 Carlisle and Dozier (2001) 0.729 2.041 0.948

Set 5 Jiang et al. (2007) 0.715 1.7 1.7

Table 14 Parameter tuning study for PSO algorithm

Coefficients Model parameters Rms [mV] Mean
elapsed
K[mVm®*™'] 0[] z[m] q Xo[m]  Min Max Mean SD (e [g]
Set 1 -19,122.31 23.71 28.64 150 219.77 022 182 1.16 0.62 0.78
Set 2 —36,416.47 2383 31.74 157 2199 0.06 121 054 055 056
Set 3 —26,408.7 2424 3076 1.53 219.82 0.03 1.72 067 0.69 0.70
Set 4 —23,274.09 2476 30.52 1.52 21998 0.02 0.75 037 032 0.78
Set 5 -20,544.84 2638 30.30 1.50 220.80 0.11 1.51 090 0.59 0.82

Table 15 Parameter tuning study for DE/PSO hybrid algorithm

Npop  Itmax Model parameters Rms [mV] Mean
Py - elapsed
K[mVm™ ] 0[] z,[m] q Xo [m] Min Max Mean SD time [s]

15 20 —-20,199.61  25.18 29.86 1.50 220.00 0.04 0.8 03 0.3 0.13
30 -20,351.11 2496 30.06 1.50 220.00 0.003 0.12 0.03 0.05 0.18
40 —19,527.72  25.08 29.94 150 220.03 0.003 0.05 0.02 002 02

20 20 -20,390.16  25.04 30.03 1.50 219.97 0.03 0.1 006 003 0.15
30 —19,75395 25.02 2997 150 21999 0.003 0.07 0.04 0.02 021
40 -20,016.57 25.01 30.00 1.50 220.00 0.0009 0.03 0.02 0.01 027

25 20 —25,279.81 2439 3053 1.53 219.74 0.03 0.07 006 0.01 0.18
30 —20,06043  25.02 30.02 1.50 220.00 0.003 0.04 0.01 001 024
40 —20,000.18 25.00 30.00 1.50 220.00 0.0006 0.02 0.007 0.009 0.3

Table 16 Statistical information of the results from the hybrid algorithm for two— dimensional mathemati-
cal test functions

Test function Results by DE/PSO hybrid Mean
elapsed
fmin fmax Mean (f) SD (f) time [s]
Sphere 1.30x 10728 1.67x107% 4.61x10728 7.03x107%6 0.11
Rosenbrock 4.03%x107% 1.20x107% 2.97x107% 5.14x107%! 0.13
Griewank 1.81x 1071 5.69% 10710 1.14x 10710 2.54%1071° 0.17
Himmelblau 2.01%x1072 2.86x10713 5.73%x 1070 1.28x1071 0.16
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