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Abstract
The aim of this work is to investigate whether retrieving the model parameters of self-
potential (SP) anomalies using a combination of differential evolution (DE) and particle 
swarm optimization (PSO) is possible. This approach hybridizes DE and PSO in a paral-
lel way. Each algorithm is self-contained and obtains a [premature] solution after a user-
defined generation number. This hybrid algorithm (DE/PSO) selects the best individual in 
DE and PSO populations and carries it to the next iteration. Cooperation of DE and PSO 
can significantly improve the results. Simulations through noise-free synthetic anomalies 
show that the DE/PSO hybrid algorithm is successful in providing more accurate solutions 
than those obtained using each single metaheuristic. The algorithm also speeds up the rate 
of convergence to get the optimum solution. We implemented the algorithm in R program-
ming environment using available metaheuristics packages. Then, the reliability of the code 
was investigated using some mathematical test functions having two and higher dimensions 
(unknowns). The performance of the hybrid to invert SP anomalies was tested by synthetic 
and field data sets. The true model parameters were well-recovered from synthetic data 
sets including noise-free and noisy data. In the tests with field data, SP anomalies over a 
shallow ore deposit in Süleymanköy (Türkiye), a deep ore deposit in Arizona (USA), and 
multiple sources of graphite deposits in KTB borehole site (Germany) were inverted. Low 
misfit values between the observed and calculated SP anomalies were obtained during the 
test studies.
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1  Introduction

The self-potential (SP) method is a geophysical method based on measurements of the nat-
ural electrical potential in the earth due to various mechanisms. As an efficient and com-
mon geophysical method about cost and implementation, SP method have been applied on 
the current applications in geophysics such as groundwater investigation (Göktürkler et al. 
2008; Bai et al. 2021), mineral exploration (Shao et al. 2017; Yang et al. 2019) and sub-
surface reservoirs (Alarouj et al. 2021). Interpretation of SP anomalies involves with depth 
and shape estimations of the buried structures using different methods of modeling and 
inversion. These approaches generally use some geometrical models such as 2D inclined 
sheet, semi-infinite vertical cylinder, horizontal cylinder with finite or semi-infinite length, 
and sphere to approximate the subsurface structure.

In the last two decades, global search methods such as nature- or bio-inspired 
metaheuristic algorithms have become more popular for the model parameter estimations 
in geophysical inversion problems. Despite their high computational cost, metaheuristics 
are preferred to solve optimization problems because of their success to find the global 
optimum of a function. Apart from traditional derivative-based optimization methods, 
metaheuristic methods avoid local minima and do not need a good initial model to get the 
global minimum (Blum and Roli 2003; Göktürkler 2011).

A wide range of metaheuristics is available in geophysics for the solutions of inverse 
problems. Various metaheuristic methods have been used to invert SP anomalies includ-
ing genetic algorithm-GA (e.g. Göktürkler and Balkaya 2012), differential evolution-DE 
(e.g. Li and Yin 2012; Balkaya 2013), particle swarm optimization-PSO (e.g. Göktürkler 
and Balkaya 2012; Ekinci et al. 2020; Essa 2019), simulated annealing-SA (e.g. Göktür-
kler and Balkaya 2012), very fast simulated annealing-VFSA (e.g. Biswas 2017), crow 
search algorithm-CSA (e.g. Haryono et al. 2020), whale optimization algorithm-WOA (e.g. 
Abdelazeem et al. 2019), black hole algorithm-BHA (e.g. Sungkono 2018), cuckoo search 
algorithm-CSA (e.g. Turan-Karaoğlan and Göktürkler 2021), and Bat optimizing algo-
rithm-BOA (Essa et  al. 2023). Recent studies about the geophysical inversions focus on 
latest developments using various metaheuristic methods with SP data and field investiga-
tions (Gobashy and Abdelazeem 2021). Elhussein and Essa (2021) carried out an inversion 
study to estimate the model parameters and compared the results of SP data obtained by 
various methods such as least-squares minimization, particle swam optimization, and neu-
ral network methods. Another inversion study with SP including synthetic and field data 
sets was investigated by Abdelrahman and Gobashy (2021) to determine the model param-
eters of buried bodies of simple SP geometry using a fast method. Rao et al. (2021) used 
2D inclined plate model for synthetic and field SP anomaly using VFSA and the inversion 
results are given with 2D anomaly graphs and 3D cross-plots including true values and 
uncertainty boundaries. Ekinci et al. (2020) investigated comprehensive inversion studies 
about various near surface potential anomalies including SP using PSO, DE, and differ-
ential search algorithm. In addition to model parameter estimation of SP anomalies, they 
carried out uncertainty analysis by Metropolis–Hastings (M–H) sampling algorithm and 
reliability analysis by probability density functions. Biswas et al. (2022) used VFSA for the 
inversion of various SP field anomalies with 2D thin layer modeling and investigated the 
uncertainty analysis in the problem.

Each metaheuristic algorithm has some advantages and disadvantages; consequently 
each one can perform well in solving some problems but show some weaknesses in solv-
ing others. To enhance the performance of the metaheuristics, a large number of hybrid 
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metaheuristic algorithms have been proposed recently. Such algorithms aim at combining 
the advantages of each algorithm and minimizing any substantial weakness of each one. 
The performance results of the inversions by the hybridization show some improvements 
about computational accuracy or speed (Blum et al. 2011; Talbi 2013; Ting et al. 2015).

PSO (Kennedy and Eberhart 1995) and DE (Storn and Price 1997) methods are well-
studied and popular algorithms in research community, because they are simple to under-
stand, code, and tune. PSO is a swarm-based algorithm able to keep the history information 
of the candidate solutions, while DE is an evolutionary algorithm reputable as accurate and 
fast technique able to keep the diversity of the population (Salman et al. 2007; Sayah and 
Hamouda 2013). Despite the strong characteristics of the algorithms, they have some weak 
features. Some researchers (e.g. Sengupta et al. 2018; Shami et al. 2022) have reported the 
possibility of premature convergence of PSO. For DE, its performance can be influenced 
negatively by high sensitivity to control parameters choice (e.g. Salman et al. 2007; Eltaeib 
and Mahmood 2018). PSO is known as flexible algorithm to hybridize, and it has been 
mostly combined with DE by researchers. A well-designed DE/PSO (differential evolution 
and particle swarm optimization) hybrid approach is expected to make up for the disadvan-
tages of DE and PSO.

Hendtlass (2001) suggested the first DE/PSO hybrid algorithm, in which PSO was used 
as the main operator to update the candidate solutions, but in some steps with user-defined 
intervals, DE operated on the swarm to enhance their fitnesses. The success of the DE/
PSO causes many DE/PSO hybrid applications with various forms of combinations about 
DE and PSO. Most of the typical examples are the hybrid algorithms that incorporated 
DE or DE operators into PSO (e.g. Zhang and Xie 2003; Liu et al. 2010). Kannan et al. 
(2004) also used DE operations to optimize the control parameters of PSO in hybrid DE/
PSO application. However, DE and PSO are hybridized in parallel in some DE/PSO hybrid 
algorithms (e.g. Elragal et al. 2011). Additionally, there are also problem-dependent DE/
PSO hybrids in different optimization problems such as economic dispatch problem (Sayah 
and Hamouda 2013), and optimal design for water distribution systems (Sedki and Ouazar 
2012).

According to the literature in geophysics, a hybridized metaheuristic algorithm yields 
better results than a single metaheuristic to estimate the model parameters in an inversion. 
The hybrid metaheuristic algorithms can be divided into two categories as combination 
of a metaheuristic method with local search algorithms (e.g. Gobashy et  al. 2021), and 
combination of two metaheuristic algorithms or using some components of a metaheuristic 
algorithm into another metaheuristic algorithm (e.g. Khajezadeh et  al. 2022). There are 
some recent applications of hybrid metaheuristics in inversion of potential-field anomalies. 
A hybrid metaheuristic algorithm was proposed by Li et al. (2021) including DE and PSO 
in a joint scheme to invert the geoelectric structure parameters from the transient electro-
magnetic data. Jamasb et al. (2018) introduced a combination of PSO and evolution strat-
egies (ES) called PSO/ES to invert three-dimensional gravity anomalies. Di Maio et  al. 
(2016, 2019) proposed a new approach based on the genetic-price hybrid algorithm (GPA) 
and used it to determine the model parameters of SP anomalies. The method (GPA) was 
applied on magnetic anomalies to recover the source parameters, as well (Di Maio et al. 
2020). Sohouli et al. (2022) used a hybrid of PSO and GA to estimate the model param-
eters of magnetic sources with simple geometric shapes.

This study presents the inversion of SP anomalies by a hybrid metaheuristic optimi-
zation algorithm consisted of DE and PSO algorithms called DE/PSO hybrid algorithm. 
The DE/PSO is defined as a teamwork hybridization representing cooperative optimiza-
tion model that both DE and PSO algorithms maintain self-contained and explore their 
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own search spaces separately while they exchange their information during iterations. DE/
PSO hybrid algorithm is implemented in R programming language environment, which is 
released in open-source form under the conditions of the GNU General Public License (R 
Core Team 2021). According to the literature survey on geophysical inversion studies and 
hybrid metaheuristic methods, the inversion of the synthetic and field SP anomalies has not 
been investigated by a DE/PSO hybrid algorithm. Therefore, here a parameter tuning study 
for the determination of the control parameters of the hybrid algorithm and inversion stud-
ies for test functions, synthetic and field SP anomalies are performed.

2 � Methodology of DE/PSO hybrid algorithm

Proposed hybrid algorithm is comprised of DE and PSO for the inversion study. DE algo-
rithm was proposed by Storn and Price (1997) as a stochastic vector-based metaheuristic 
algorithm. DE evolves several candidate solutions (population) iteratively. The set of can-
didate solutions initializes with a randomly distributed individuals within the search space 
of an optimization problem. In each generation, new solutions are created through three 
operations: mutation, crossover or recombination, and selection. For each solution (target 
vector), a mutant vector (v) is created using mutation operator. It is done by mutation of a 
randomly selected base vector (x) using Eq. (1) (Storn and Price 1997; Balkaya 2013; Bal-
kaya et al. 2017; Ekinci et al. 2019).

where r1 and r2 are randomly selected solutions, and F is mutation constant and a user-
defined parameter. Here it should be noted that randomly selected solutions, base vec-
tor and target vector should be different from each other. After mutation step is done, the 
crossover operation generates a trial vector (offspring) using the recombination of target 
vector and its corresponding mutant vector. The crossover operation uses a crossover prob-
ability (Cr) in the range of [0, 1] that determines how many elements of the mutant vector 
to participate in the trial vector. According to DE algorithm introduced by Storn and Price 
(1997), the crossover operation increases the diversity of populations and ensures that the 
trial vector will not be a copy of the target vector. After producing the trial vector with 
combination of the target vector and the mutant vector, the target or trial vector is selected 
by the algorithm based on their fitness values to enter the next generation. The better new 
solutions replace inferior ones in the population. The operations reiterate until a stop cri-
terion (e.g. reaching a defined number of generations) is satisfied and finally a solution is 
yielded (Storn and Price 1997; Balkaya 2013).

As another algorithm of the investigated hybrid algorithm, PSO imitates the social 
behavior of birds or fishes when they try to reach food sources. The initialization of the 
algorithm is carried out by locating a population of random positions. For implementing 
PSO, the particle positions change iteratively up to a criterion of termination is satisfied. 
Each particle (i) has a position in space (xi), which changes with velocity (vi). The posi-
tions and velocities are updated in each iteration:

(1)v = x + F ⋅

(

r1−r2
)

,

(2)v
(k+1)

i
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(k)

i
+ c1rand()

(
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i
− x

(k)
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)
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(k)

i

)
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where k is iteration number, ω is a weighting factor (0 < ω < 1) called the inertia weight; c1 and c2 
are cognitive and social scaling factors, respectively; and rand() is a random number uniformly 
distributed in [0, 1]. According to the formula, each particle’s velocity will be updated consider-
ing: its current position ( x(k)

i
 ), current velocity ( v(k)

i
 ), the best position in its search history (pbesti), 

and the global best position explored by all current particles (gbest). The gbest of the final swarm 
is considered as the solution of the problem (Göktürkler and Balkaya 2012). The pbesti and gbest 
components are evaluated based on objective function of the inversion problem.

The hybrid DE/PSO scheme in this study follows the one by Li et al. (2021). Similarly it 
is initialized by two different random populations, and it runs PSO and DE simultaneously. 
Parameter setting of the hybrid algorithm includes the control parameters of F, Cr, ω, c1, 
and c2. The population size (Npop) and the number of generations per each algorithm 
(

NDE
gen

,NPSO
gen

)

 are defined for DE and PSO together with the maximum iteration number of 
the hybrid (Itmax). In each iteration, each single algorithm independently yields a premature 
solution (two independent implementations can be executed in a parallel code scheme) 
through a number of generations ( NDE

gen
 for DE and NPSO

gen
 for PSO). Then, the hybrid algo-

rithm compares these solutions based on their objective function values and selects the bet-
ter one as the best individual. In this step, there are two populations: NDE

gen
th generation of 

DE and NPSO
gen

th generation of PSO. One of these populations contains the best individual, 
and the premature solution of the other population is replaced by the best individual. In this 
way, the populations share the best individual and go to the next iteration. The optimum 
solution after a user-defined Itmax will be the final best individual. In other words, the 
hybrid algorithm iterates the shared information resulted from two parallel populations 
evolving through the generations of DE and PSO.

The flowchart of the DE/PSO hybrid algorithm is given in Fig.  1. The steps of the 
hybrid algorithm are given as the following:

Step 1 Assigning values to the parameters, F, Cr, ω, c1, c2, Npop, NDE
gen

 , NPSO
gen

 , and Itmax.
Step 2 Population initialization: two different random populations (popDE and popPSO) 

of size Npop are generated.
Step 3 PSO yields NPSO

gen
 times generations, and provides a [premature] solution.

Step 4 DE yields NDE
gen

 times generations, and provides a [premature] solution.
Step 5 The solutions from the steps 3 and 4 are compared based on their objective func-

tion values, then popDE or popPSO are updated with the best individual.
Step 6 The algorithm terminates when the iteration number reaches Itmax. Otherwise, it 

goes to step 3 and loops.
The algorithm proposed by Li et al. (2021) obtains the first generations of DE and PSO 

in steps 2, and 3. As a new and different approach for more improvement in the results, we 
obtain Nth generations of DE and PSO in these steps.

3 � Implementation of DE/PSO hybrid algorithm

The test studies with mathematical functions, synthetic and field SP anomalies were 
implemented in R programming language version 4.0.5 released on (2021–03-31). R 
includes a variety of packages for optimization. All R packages are categorized by topic 

(3)x
(k+1)

i
= x

(k)

i
+ v

(k+1)

i
,
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in web pages known as Comprehensive R Archive Network (CRAN) task views, which 
provide tools for browsing guidance information in special interest areas. A comprehen-
sive listing of packages for optimization algorithms is available in CRAN task view on 
“Optimization and Mathematical Programming” (Theussl and Borchers 2018) includ-
ing GA, DE, PSO, and SA. Packages (the names of R packages are written in italics) 
called GA (Scrucca 2013) and genalg provide functions for optimization using GAs. 
DEoptim (Mullen et al. 2011) package implements DE. Packages called pso and psoptim 
implement PSO. There are some other packages such as metaheuristicOpt (Riza and 
Nugroho 2018) containing functions for 21 evolutionary optimization algorithms, and 
NMOF1 (Gilli et al. 2019) offering implementations of several optimization algorithms 

Fig. 1   Flowchart of DE/PSO 
(after Li et al. 2021) Start

Update popPSO or  popDE with 

the best individual

iter < Itmax

End

No

Yes 

Obtain a solution 

from DE

Obtain a solution 

from PSO

Compare two solutions and 

select the best individual

Initiate two random populations

popPSO and  popDE

Parameter setting of

F, Cr, ω, c1, c2, Npop ,          ,         , Itmax

Table 1   Metaheuristic 
algorithms offered by NMOF R 
package

Package Metaheuristic Function

NMOF DE DEopt
GA GAopt
PSO PSopt
SA SAopt

1  The reference manual of NMOF package is available on: https://​cran.​proje​ct.​org/​web/​packa​ges/​NMOF/​
NMOF.​pdf.

https://cran.project.org/web/packages/NMOF/NMOF.pdf
https://cran.project.org/web/packages/NMOF/NMOF.pdf
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(Table 1). The overview of the cited R packages are presented in the Table 11 of the 
Appendix.

Considering the goal of DE/PSO hybridization, we decided to use NMOF package 
because it contains functions for both DE and PSO algorithms, respectively called as 
DEopt and PSopt. The other reason is the argument options offered by these functions 
and the returned outputs. The functions have some optional arguments (initial popula-
tion, store solutions, etc.) and return all of the generated populations, which the hybrid 
algorithm requires. The functions also return a list of objective function values. This 
enables us to investigate the convergence characteristics of DE, PSO, and DE/PSO 
hybrid via the error energy plots.

4 � Self‑potential anomaly

4.1 � Simple geometric shape model

An SP anomaly observed over a polarized body is given as potential measure in a point 
with x [m] horizontal distance along a profile. The mathematical expression below cal-
culates the potential [V] due to the subsurface body idealized with simple geometric 
shape (Yüngül 1950; Göktürkler and Balkaya 2012):

where K is the electric dipole moment [mVm2q−1], θ is the polarization angle measured 
clockwise from the horizontal axis [◦], z0 and x0 are the depth and position of the causa-
tive body [m], respectively. q is shape factor (dimensionless) which equals 0.5, 1.0, and 
1.5, respectively for a semi-infinite vertical cylinder, infinitely long horizontal cylinder, and 
sphere. Modeling of synthetic and field SP anomalies in this work were carried out using 
simple geometric shape forward model where the SP inversion problem aims to estimate 
the model parameters of K, θ, z0, q, and x0 (Fig. 2).

(4)V
(

x, x0, K, �, z0, q
)

= K

(

x − x0
)

cos � + z0sin�
[

(

x − x0
)2

+ z2
0

]q ,

Fig. 2   Illustration of model 
parameters for sphere as an 
example for simple geometric 
shape



248	 Acta Geodaetica et Geophysica (2023) 58:241–272

1 3

4.2 � 2D inclined sheet model

A 2D inclined sheet can model a geological structure such as fracture or fault. The SP anom-
aly is given as potential measures in points with x [m] horizontal distances along a profile. The 
profile is perpendicular to the strike of the inclined sheet. The potential [V] due to a horizon-
tally infinite and inclined sheet in two dimensions is calculated by following mathematical 
expression (Murthy and Haricharan 1985):

where U0 is the polarization amplitude [mV], α is the inclination angle [◦], h and x0 are the 
depth and position of the sheet center [m], respectively. a is half-width of the sheet [m]. In 
addition to simple geometric shape model, 2D inclined sheet model was also used to inter-
pret KTB field anomaly (Germany). In this model, SP inversion problem aims to estimate 
the model parameters of U0, α, h, a, and x0 (Fig. 3).

5 � Synthetic data

A synthetic noise-free SP anomaly was calculated using Eq. (4) through a horizontal profile 
of 400 m in points with 5-m intervals. The considered model is a spherical body with the 
parameters of K = − 20,000 mVm2q−1, θ = 25◦, z0 = 30 m, q = 1.5, and x0 = 220 m (Fig. 4). The 
anomaly shows variation from positive to negative values between maximum and minimum 
amplitudes around 4 and − 14 mV. The data set was used for parameter tuning of DE, PSO, 
and DE/PSO. A comparison of the hybrid algorithm performance with the other two algo-
rithms (DE and PSO) was investigated using this data set.

(5)V
(

x, x0, U0, �, h, a
)

= U0ln

{
[(

x − x0
)

− a cos�
]2

+ (h − a sin�)2

[(

x − x0
)

+ a cos�
]2

+ (h + a sin�)2

}

,

Fig. 3   Illustration of 2D inclined 
sheet model parameters. The plot 
is modified from Murthy and 
Haricharan (1985)
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6 � Parameter tuning for the hybrid algorithm

Firstly, to obtain the optimum control parameters for DE and PSO as the components of the 
hybrid algorithm, we carried out parameter tuning studies for each algorithm separately. 
The tables of DE and PSO parameter tuning are given in the Appendix (Tables 12, 14). 
The optimum values of F, Cr, ω, c1, and c2 were used in the hybrid algorithm introduced in 
this study. The hybrid algorithm has several control parameters to be optimized: Npop, Itmax, 
and 

(

NDE
gen

,NPSO
gen

)

.  Secondly, the optimum values for these parameters were determined. 
The simulations in the parameter tuning studies included five independent runs. The mini-
mum, maximum, mean, and the standard deviation (SD) of root mean square (rms) values 
were considered in the statistical analysis of the results. All implementations were done in 
computer with 2.4 GHZ processor and 4 GB of memory. The mean elapsed time [s] for 
execution of DE, PSO, and DE/PSO hybrid functions were also reported. We considered 
the following formula for error energy (E) or objective function during parameter estima-
tion (Göktürkler 2011):

where N is the number of the data, Vobs and Vcal are the observed (synthetic or field) and 
calculated data, respectively, and i denotes each observation. The rms value is square root 
of the error energy (Table 2).

DE parameter tuning study was done for pairs of F and Cr taken from [0.1, 1] by steps 
of 0.1 with fixed Npop of 50, and generation number of 100. Parameter tuning study for 
PSO also was carried out by constant Npop of 50, and generation number of 150 based on 
its [PSO] slow convergence rate. We used five sets of the control parameters (ω, c1, and c2) 
suggested by some previous studies to tune the PSO. Table 13 in the Appendix lists these 
references. The optimum control parameters for DE and PSO are given in Table 3.

(6)E =
1

N

N
∑

i=1

(

Vobs
i

− Vcal
i

)2
,

Fig. 4   Synthetic SP anomaly for 
a spherical body
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The parameter tuning studies also included some trial–error studies with the noise-free 
data set to obtain optimum values for the parameters of Npop, Itmax, and 

(

NDE
gen

,NPSO
gen

)

 . It was 

observed that the parameters, 
(

NDE
gen

,NPSO
gen

)

 had substantial effect on the accuracy of the 
results and the rate of convergence. Comparisons of the performances of each algorithm 
(DE, PSO, and hybrid algorithm) are given in Table 2 and Fig. 5. Each algorithm used the 
same initial population of 50 individuals. Number of 100 was set to Itmax and the number of 
generations of PSO and DE were set to 100, 200, 300, and 400. In this way, an equivalent 
comparison condition was set to consider the computational cost of 1, 2, 3, and 4 values for 
(

NDE
gen

,NPSO
gen

)

 parameters in the hybrid algorithm. The plots illustrate the first 50 iterations 
for the sake of comparison. The results and plots in the Table 2 and Fig. 5, altogether show 
that the increase in the values of the parameters 

(

NDE
gen

,NPSO
gen

)

 results in faster convergence 

Table 3   The optimum 
parameters used in test studies of 
this work

Optimum Control Parameters for DE and PSO Algorithms

F Cr ω c1 c2

0.5 0.9 0.729 2.041 0.948

Fig. 5   Convergence curves of the PSO, DE, and DE/PSO hybrid algorithms. (NDE

gen
,NPSO

gen
) parameters are 

equal to 1, 2, 3, 4 in a, b, c, and d plots respectively
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rates, and substantial decreases in rms values. The increase in the elapsed time seems una-
voidable because of the serial implementation of DE and PSO in our coding approach. It 
can be avoidable, when the two metaheuristics run simultaneously. The optimum value for 
the parameters 

(

NDE
gen

,NPSO
gen

)

 , was selected as 3 for a desired accuracy (Table 2).
To optimize the hybrid algorithm further we carried out parameter tuning studies 

(Table 15 in the Appendix) by using noise-free data and a random population. Based on 
these studies the optimized values of the parameters Npop, and Itmax were obtained as 25 
and 40, respectively. Following test studies with two-dimensional mathematical test func-
tions, noise-free, noisy, and field data sets (single anomalies) were implemented by using 
the parameter values of 25 for Npop, 40 for Itmax, and 3 for 

(

NDE
gen

,NPSO
gen

)

 . The Npop, Itmax, and 
(

NDE
gen

,NPSO
gen

)

 parameters used for test studies through high-dimensional mathematical test 
functions and multiple SP anomalies (KTB anomaly) were obtained by trial and error. The 
considered parameters are presented in the related sections.

7 � The hybrid algorithm testing

To investigate the reliability of DE/PSO hybrid algorithm, four typical test functions were 
adopted from unimodal and multi-modal mathematical functions: Sphere, Rosenbrock, 
Griewank, and Himmelblau.2 Sphere (bowl-shaped) and Rosenbrock (valley-shaped) are 
unimodal functions with one global minimum where the best solution is located. Griewank 
and Himmelblau are multi-modal functions, which have many local minima with unique 
global minimum (Hussain et al. 2017). The details of these functions are given in Table 4. 
The table also includes the solutions obtained by DE/PSO hybrid for the test functions 
with two dimensions. For each function, the best results by the proposed hybrid algorithm 
were selected among five independent runs. The statistical information of the five runs is 
presented in Table 16 of the Appendix. Figure 6 illustrates the color images by soobench 
R package (Mersmann et al. 2020) of the test functions with the locations of their corre-
sponding global minima, and the solutions obtained by DE/PSO hybrid.

The performance of the hybrid algorithm was also evaluated for Sphere, Rosenbrock, 
and Griewank functions having three different dimensions, 10, 20, and 30. A different set 
of control parameters for the hybrid algorithm were used to solve the high-dimensional 
functions. We considered 100 for Npop, 500 for Itmax, and 5 for 

(

NDE
gen

,NPSO
gen

)

 parameters to 
obtain the results in Table 5.

8 � Performance analysis of DE/PSO hybrid algorithm

8.1 � Numerical test studies with synthetic data

Synthetic data includes both noise-free and noisy data sets. To generate the noisy data, 
normally distributed pseudo-random numbers with zero mean and standard deviation 
of ± 0.5 mV (Galassi et al. 2009) was added to the noise-free data. The hybrid algorithm 
was applied to noise-free and noisy synthetic data sets and the best estimated parameters 

2  The information and R implementations of the functions are available at http://​www.​sfu.​ca/​~ssurj​ano/​
optim​izati​on.​html.

http://www.sfu.ca/~ssurjano/optimization.html
http://www.sfu.ca/~ssurjano/optimization.html


253Acta Geodaetica et Geophysica (2023) 58:241–272	

1 3

Ta
bl

e 
4  

T
he

 m
at

he
m

at
ic

al
 te

st 
fu

nc
tio

ns
 a

nd
 th

e 
so

lu
tio

ns
 o

bt
ai

ne
d 

by
 th

e 
hy

br
id

 a
lg

or
ith

m

*d
 d

en
ot

es
 th

e 
di

m
en

si
on

 o
f t

he
 fu

nc
tio

n

Te
st 

Fu
nc

tio
n

Re
su

lts
 b

y 
D

E/
PS

O
 H

yb
rid

Fu
nc

tio
n

Fo
rm

ul
a

R
an

ge
M

in
f m

in
O

pt
im

um
 S

ol
ut

io
n 

x 1
O

pt
im

um
 S

ol
ut

io
n 

x 2
f m

in

Sp
he

re
d
∗

∑ i=
1

x
2 i

[−
5
.1
2
,
5
.1
2
]d

[0
]d

0
7.

47
 ×

 10
–1

5
7.

65
 ×

 10
–1

5
1.

30
 ×

 10
–2

8

Ro
se

nb
ro

ck
d
−
1

∑ i=
1

[1
0
0
(x

i+
1
−
x
2 i
)2
+
(x

i
−
1
)2
]

[−
2
.0
5
,
2
.0
5
]d

[1
]d

0
1

1
4.

03
 ×

 10
–2

3

G
rie

w
an

k
∑

d i=
1

x
2 i

4
0
0
0
−
∏

d i=
1
c
o
s(

x
i

√

i
)
+
1

[−
6
0
0
,
6
0
0
]d

[0
]d

0
1.

90
 ×

 10
–7

−
 5.

03
 ×

 10
–9

1.
81

 ×
 10

–1
4

H
im

m
el

bl
au

(x
1
2
+
x
2
−
1
1
)2
+
(x

1
+
x
2
−
7
)2

[−
6
,
6
]2

(3
,
2
)

0
3

2
2.

01
 ×

 10
–2

4



254	 Acta Geodaetica et Geophysica (2023) 58:241–272

1 3

among five independent runs are given in Table 6. The table also contains the maximum 
and minimum bounds of search spaces considered for the model parameters. The fit of 
the calculated and observed data, and the observed SP versus calculated SP anomalies 
for the synthetic data are illustrated in Fig. 7. The corresponding plots of the error energy 

Fig. 6   The colored plots of the test functions with their corresponding global minima (red points). The blue 
pluses show the solutions obtained by the hybrid algorithm. The plot of Griewank function is zoomed-in for 
a better resolution. (Color figure online)

Table 5   The results from the hybrid algorithm for high− dimensional test functions

Test Function Dimension Results by DE/PSO Hybrid Mean 
Elapsed 
Time [s]fmin fmax Mean (f) SD (f)

Sphere 10 1.59 × 10–99 2.66 × 10–99 2.16 × 10–99 4.45 × 10–100 5.52
20 8.96 × 10–44 1.49 × 10–42 5.52 × 10–43 5.62 × 10–43 6.26
30 1.51 × 10–28 9.67 × 10–28 3.87 × 10–28 3.35 × 10–28 7.14

Rosenbrock 10 0 0 0 0 8.34
20 7.61 × 10–14 1.22 × 10–11 2.87 × 10–12 5.25 × 10–12 9.32
30 1.23 3.93 2.17 1.07 10.94

Griewank 10 0 1.06 × 10–1 2.96 × 10–2 4.37 × 10–2 9.33
20 0 9.86 × 10–3 1.97 × 10–3 4.41 × 10–3 10.84
30 0 0 0 0 13.09



255Acta Geodaetica et Geophysica (2023) 58:241–272	

1 3

variation with respect to iteration number are also shown in the figure, which characterize 
relatively fast rate of convergence. The results with the noise-free data are very close to the 
true model parameters. The solution for the noisy data set has obtained with the rms value 
around 0.46 mV, which seems compatible with the standard deviation of the added noise 
(± 0.5 mV). Figure 8 shows the convergence curves of the model parameters through 40 
iterations for noise-free and noisy data sets.

The error energy maps are one of the approaches to analyze the inverse problem at 
hand (Fernández-Martínez et al. 2013; Ekinci et al. 2017, 2021). It is known that more 
than one model (equivalent parameters) can fit the observed data because of the non-
unique nature of inverse problems. The error energy topography map for the selected 
parameter couples is obtained by the calculation of the objective function values 
over the corresponding ranges of the search space. The global minimum (true model 

Table 6   Tests with synthetic data

Model parameters True values Parameter bounds Estimated parameters

Minimum Maximum Noise−free Noisy

K [mVm2q−1] − 20,000 − 50,000 − 10,000 − 20,000.18 − 22,166.79
θ [°] 25 0 180 25.00 23.77
z0 [m] 30 10 60 30.00 30.02
q 1.5 0 2 1.50 1.51
x0 [m] 220 100 500 220.00 219.20
rms [mV] − − − 0.0006 0.46

Fig. 7   The results from (a–c) noise-free and (d–f) noisy data
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parameters) locates in the valley of the lowest objective function value. The shape of 
contour lines is an indicator of how uniquely a model parameter is estimated. According 
to the interpretations regarding error energy maps in the literature, the contour lines are 
preferred to have closed shapes with relatively small low-error region. A large low-error 
region indicates existence of many solutions with low errors. Figure 9 shows the error 
energy maps for some selected parameter couples. There is not any prominent feature in 
the maps indicating the difficulty of unique estimation of the related model parameters. 
The locations of the estimated parameters by the hybrid algorithm for noise-free and 
noisy synthetic data are also shown on the maps. Considering the close estimations to 
the true solution, we can conclude that the hybrid algorithm is successful in estimations 
of the model parameters.

Fig. 8   Convergence characteristics of the model parameters for (a–e) noise-free and (f–j) noisy synthetic 
data sets. The dashed lines show the true parameter values. The estimations for each parameter by the 
hybrid algorithm are indicated on the panels
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Fig. 9   Error energy maps produced for synthetic noise-free data. The locations of true model parameters 
have shown by red diamonds. The results by the hybrid algorithm for noise-free and noisy data have shown 
respectively by blue circles and stars

Fig. 10   The results from Süleymanköy anomaly
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8.2 � Numerical test studies with field data

8.2.1 � Süleymanköy anomaly (Türkiye)

The SP measurements over a shallow ore deposit in Süleymanköy, Ergani (Türkiye) was 
used as first example for field data (Yüngül 1950). Ergani district is 65 km southeast of 
the city of Elazığ, eastern Türkiye. Figure 10 illustrates the SP anomaly along a profile of 
260 m varying from positive to negative values between maximum and minimum ampli-
tudes around 100  mV and − 225  mV. We considered the search spaces as K ∈ [-60,000, 
-10,000], θ ∈ [5, 50], z0 ∈ [20, 50], q ∈ [0.5, 1.5], and x0 ∈ [50, 100]. The results from the 
hybrid algorithm are illustrated in Fig.  10. A comparison between the estimated param-
eters using DE/PSO hybrid algorithm with those obtained from some prior studies given in 
Table 7 indicates that the hybrid algorithm retrieves similar results to the estimated param-
eters from different methods. The retrieved model parameters of z0 and q from the hybrid 
algorithm are in agreement with the estimated parameters from previous methods. The 
estimated value of q near 1.0 is interpreted as an infinitely long horizontal cylinder in sub-
surface. A plot of visual comparison (Fig. 15) between the results from the present study 
and the prior ones cited in the Table 7 is available in the Appendix.

8.2.2 � Safford deposit anomaly (Arizona, USA)

The SP survey over a deep ore deposit (Safford) in Arizona (Corry 1985; Biswas 2017) 
was used as second example for field data. Drilling data revealed that the caused polarized 
body was in the depth of 550 m (Corry 1985). Figure 11 illustrates the SP anomalies with 
negative values, along a profile of 2900 m approximately, which reaches maximum ampli-
tude around − 600  mV. We considered the search spaces as K ∈ [− 1500, − 10], θ ∈ [60, 
120], z0 ∈ [10, 600], q ∈ [0, 2], and x0 ∈ [− 100, 100]. The results from the hybrid algorithm 
are illustrated in Fig. 11. Table 8 contains the result from DE/PSO hybrid algorithm for 
Safford deposit anomaly and those obtained from some previous studies. The retrieved 
model parameters of θ, z0, and q from the hybrid algorithm are in agreement with the esti-
mated parameters from previous methods. The estimated value of q near 0.5 is interpreted 
as a semi-infinite vertical cylinder in subsurface. A plot of visual comparison plot (Fig. 16) 
between the results from the present study and the prior ones cited in the Table 8 is avail-
able in the Appendix.

8.2.3 � KTB anomaly (Germany)

The SP measurements around the KTB boreholes in the Oberpfalz (NE Bavaria, Germany) 
(Stoll et al. 1995; Biswas 2017) were considered as third example for field data. KTB bore-
holes were drilled during the German Continental Deep Drilling Program. Drilling site was 
a faulty zone located above Nottersdorf fault zone. According to drilling data, graphite 
deposits joined with steeply inclined sheer planes were exposed in the holes (Bigalke and 
Grabner 1997). KTB anomaly along a profile of 1800 m (Figs. 12a, 13a) is caused by mul-
tiple sources and shows two negative anomalies reaching maximum amplitudes 
around − 400  mV (anomaly 1) and − 600  mV (anomaly 2). It is presumed that the high 
magnitudes of anomalies are related to high conductivity of graphitic layers in the faulty 
zone (Stoll et  al. 1995). We tried to test the DE/PSO hybrid algorithm for KTB field 
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anomaly with two different possible approaches. Then, the total potential was calculated 
from undersurface sources using two simple geometric shape bodies (approach-I) and two 
2D inclined sheets (approach-II). In approach-I, the search spaces were considered as 
K ∈ [− 9000, − 100], θ ∈ [0, 180], z0 ∈ [1, 500], q ∈ [0, 2], and x0 ∈ [0, 1800] for both anoma-
lies. In approach-II, the search spaces were considered as U0 ∈ [− 3000, − 10], α ∈ [0, 180], 
h ∈ [10, 1000], a ∈ [1, 2000], and x0 ∈ [0, 1800] for both anomalies. We assigned 150 for 
Npop, 300 for Itmax, and 5 for 

(

NDE
gen

,NPSO
gen

)

 parameters to obtain the results. Ten model 
parameters were estimated due to inversion of KTB anomaly in each approach. The illus-
trations of the results and the estimated parameters from DE/PSO hybrid algorithm are 

Fig. 11   The results from Safford deposit anomaly

Table 8   Tests with field data (Safford deposit anomaly)

a Whale optimization algorithm

Parameters Mehanee (2014) Biswas (2017) Abdelazeem 
et al. (2019)

Present Study

Tikhonov regularization VFSA WOAa DE/PSO

K [mVm2q−1] 590 603.0 677.48 − 872.24
θ [°] − 85 94.5 − 84.65 95.97
z0 [m] 273 271.7 297.10 290.95
q 0.5 0.5 0.51 0.53
x0 [m] − − 6.8 2.30 15.39
rms [mV] − − − 16.36

Fig. 12   The results from KTB anomaly using simple geometric shape model
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presented for approach-I (Fig. 12, and Table 9) and approach-II (Fig. 13, and Table 10). 
The results for KTB anomaly in present study and those obtained from some previous stud-
ies are given in the tables. The comparison of the results from the two approaches shows 
that approach-I provides a smaller rms value (12.15 mV) than approach-II (19.80 mV).   

Figure  14 shows the geometrical characteristics of the subsurface structures obtained 
from inversion of KTB anomaly using the hybrid algorithm DE/PSO. The used model was 
2D inclined sheet in this estimation.

9 � Conclusions

In this work, a hybrid metaheuristic algorithm (DE/PSO) was implemented. The algo-
rithm hybridizes DE with PSO in a cooperative approach, in which DE or PSO takes/gives 
its best [premature] solution from/to the other iteratively. Simulations by noise-free syn-
thetic SP anomalies indicated that the hybrid algorithm provides faster and more accurate 

Fig. 13   The results from KTB anomaly using 2D inclined sheet model

Table 9   Tests with field data (KTB anomaly) using simple geometric shape model

a Micro-differential evolution (MDE) variant including vectorized random mutation factor (MVDE)
b Adaptive Micro-differential evolution MDE (µADE)

Source Parameters Di Maio et al. 
(2019)

Sungkono (2020) Present study

GPA MDEa µJADEb DE/PSO

Anomaly 1 K [mVm2q−1] 4669 902.12 4078.24 − 4281.28
θ [°] 96 − 99.34 − 98.37 69.71
z0 [m] 145 96.85 167.56 78.69
q 0.75 0.60 0.73 0.80
x0 [m] 1305 1294.88 1308.41 554.53

Anomaly 2 K [mVm2q−1] 1664 395.43 2194.95 − 131.71
θ [°] 79 − 80.09 − 80.54 93.00
z0 [m] 111 76.73 96.41 31.13
q 0.64 0.49 0.67 0.30
x0 [m] 1967 1975.50 1969.38 1206.03
rms − − − 12.15



262	 Acta Geodaetica et Geophysica (2023) 58:241–272

1 3

estimations of the true model parameters in comparison to those estimated by each single 
metaheuristic. The hybrid algorithm yielded a satisfactory result even with small size of 
population 25 and iteration number 40 for noise-free, and noisy data sets. The results by 
the application of the hybrid on some high-dimensional test functions ensured the good 
validation of the algorithm. During test studies with synthetic anomalies including noise-
free and noisy data, the estimated model parameters were close to true model parameters. 
Single SP anomalies over shallow (Turkey) and deep (USA) ore deposits were considered 

Table 10   Tests with field data (KTB anomaly) using 2D inclined sheet model

Source Parameters Biswas (2017) Sungkono (2020) Essa et al. (2023) Present Study

VFSA MVDE µJADE BOA DE/PSO

Anomaly 1 U0 [mV] 73.5 74.98 67.08 72 − 55.43
α [°] 139.6 79.11 80.00 75 83.38
h [m] 371.8 447.09 556.99 380 666.68
a [m] 524.6 429.13 530.23 350 651.00
x0 [m] 998.6 505.52 500.00 400 511.29

Anomaly 2 U0 [mV] 79.0 120.06 91.67 80 − 73.62
α [°] 134.2 103.95 117.76 120 129.07
h [m] 298.2 134.82 154.15 275 193.45
a [m] 394.8 128.86 149.84 360 232.88
x0 [m] 1472.1 1224.99 1271.08 1370 1348.46
rms − − − − 19.30

Fig. 14   KTB anomaly and the 
corresponding subsurface model 
including 2D inclined sheets
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as field data sets to test the hybrid algorithm. For testing the hybrid algorithm on multi-
ple SP anomalies, the well-published anomaly from the KTB borehole site (Germany) was 
selected. This anomaly was interpreted with two different approaches using simple geomet-
ric shape and 2D inclined sheet models. For the field examples including single and multi-
ple anomalies, the calculated SP anomaly fitted well with the observed data. We conclude 
that implementation of the presented hybrid algorithm provides us with accurate and reli-
able solutions. It is also worth to mention that R programming language is a feasible tool 
for application of metaheuristics to solve geophysical inverse problems hence of providing 
accurate results and a variety of R packages.

Appendix

Figures 15, 16 and Tables 11, 12, 13, 14, 15 and 16.

Fig. 15   The visual comparison 
between the results of the present 
study and some prior studies 
from the Süleymanköy anomaly

Fig. 16   The visual comparison 
between the results of the present 
study and some prior studies 
from the Safford deposit anomaly
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Table 11   Metaheuristic 
algorithms offered by R packages

Package Metaheuristic Function

DEoptim DE DEoptim
GA GA ga
Genalg GA rbga

rbga.bin
Metaheuristicopt Ant lion optimizer ALO

Artificial bee colony algorithm ABC
Bat algorithm BA
Black hole optimization BHO
Cat swarm optimization CSO
Clonal selection algorithm CLONALG
Cuckoo search CS
DE DE
Dragonfly algorithm DA
Firefly algorithm FFA
GA GA
Grasshopper optimisation algorithm GOA
Gravitational based search GBS
Grey wolf optimizer GWO
Harmony search algorithm HS
Krill-herd algorithm KH
Moth flame optimizer MFO
PSO PSO
Shuffled frog leaping SFL
Sine cosine algorithm SCA
Whale optimization algorithm WOA

Pso PSO psoptim
Psoptim PSO psoptim
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Table 12   Parameter tuning study for DE algorithm

F Cr Model Parameters rms [mV] Mean 
Elapsed 
Time [s]K [mVm2q−1] θ [°] z0 [m] q x0 [m] Min Max Mean SD

0.1 0.1 − 23,460.24 25.44 35.60 1.49 219.41 0.53 1.09 0.81 0.26 0.59
0.2 − 24,597.52 24.26 29.92 1.53 220.28 0.11 1.68 0.80 0.68 0.52
0.3 − 16,737.21 27.46 29.70 1.48 221.22 0.15 2.23 1.07 0.81 0.56
0.4 − 24,857.67 24.31 30.58 1.52 219.77 0.03 0.27 0.10 0.10 0.57
0.5 − 20,355.74 24.73 30.27 1.50 219.83 0.03 0.81 0.28 0.33 0.55
0.6 − 18,171.06 25.10 29.74 1.49 220.02 0.01 0.42 0.19 0.20 0.58
0.7 − 18,494.66 25.34 29.73 1.49 220.16 0.01 0.92 0.34 0.39 0.55
0.8 − 23,082.88 27.46 30.36 1.52 221.11 0.18 0.88 0.69 0.29 0.52
0.9 − 27,040.29 24.46 30.81 1.54 219.96 0.03 2.46 1.13 0.91 0.53
1 − 11,036.83 25.32 27.95 1.43 220.09 0.19 2.93 1.89 1.07 0.54

0.2 0.1 − 13,442.0 25.46 32.48 1.44 219.05 0.45 1.29 0.75 0.34 0.50
0.2 − 16,556.98 26.92 29.25 1.48 222.63 0.34 0.69 0.49 0.13 0.54
0.3 − 19,522.05 27.22 30.13 1.50 221.26 0.16 0.97 0.46 0.34 0.49
0.4 − 20,230.91 24.94 29.80 1.50 220.08 0.04 0.11 0.08 0.01 0.58
0.5 − 20,310.99 25.19 30.10 1.50 220.21 0.05 0.09 0.06 0.01 0.58
0.6 − 18,436.39 25.28 29.75 1.49 220.12 0.03 1.53 0.37 0.65 0.57
0.7 − 22,801.52 24.70 30.39 1.51 219.92 0.01 0.08 0.05 0.03 0.58
0.8 − 18,302.25 25.19 29.75 1.49 220.03 0.009 0.85 0.04 0.03 0.56
0.9 − 22,232.10 24.76 30.32 1.51 219.94 0.01 1.68 0.38 0.72 0.56
1 − 25,260.65 26.45 26.47 1.56 220.96 0.53 1.42 0.85 0.37 0.60

0.3 0.1 − 32,448.39 20.93 32.01 1.56 218.68 0.48 1.99 1.34 0.59 0.58
0.2 − 28,378.09 22.11 29.56 1.54 219.84 0.28 0.71 0.52 0.17 0.53
0.3 − 19,608.59 27.69 30.35 1.50 221.50 0.20 0.54 0.37 0.15 0.57
0.4 − 19,753.87 24.85 30.39 1.49 219.95 0.05 0.14 0.10 0.04 0.58
0.5 − 29,923.66 24.99 31.13 1.54 220.18 0.07 0.10 0.08 0.01 0.55
0.6 − 19,214.30 25.39 29.98 1.49 220.15 0.03 0.06 0.04 0.01 0.59
0.7 − 22,143.30 24.74 30.27 1.51 219.96 0.01 0.05 0.04 0.02 0.59
0.8 − 19,576.67 25.06 29.93 1.49 220.02 0.003 0.21 0.06 0.08 0.53
0.9 − 19,984.66 25.01 29.99 1.49 220.00 0.0007 0.05 0.03 0.02 0.56
1 − 24,137.59 24.62 30.51 1.52 219.93 0.02 1.52 0.40 0.64 0.53

0.4 0.1 − 27,515.45 24.80 30.82 1.54 216.11 0.69 1.17 0.92 0.23 0.58
0.2 − 14,820.83 23.76 29.92 1.45 216.68 0.52 1.37 1.00 0.40 0.51
0.3 − 13,164.45 24.76 28.48 1.45 221.37 0.31 1.39 0.61 0.45 0.59
0.4 − 28,377.38 23.53 31.19 1.54 219.54 0.07 0.22 0.16 0.07 0.57
0.5 − 26,168.74 24.66 30.53 1.53 220.05 0.04 0.13 0.09 0.04 0.51
0.6 − 19,495.96 24.70 30.06 1.49 219.86 0.03 0.06 0.05 0.01 0.58
0.7 − 23,292.39 24.71 30.41 1.52 219.91 0.02 0.04 0.03 0.01 0.59
0.8 − 22,726.25 24.73 30.36 1.51 219.90 0.01 0.03 0.02 0.009 0.49
0.9 − 20,900.11 24.91 30.11 1.50 219.98 0.005 0.05 0.02 0.02 0.60
1 − 19,983.38 25.00 29.99 1.49 219.99 0.0001 0.53 0.11 0.23 0.73
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Table 12   (continued)

F Cr Model Parameters rms [mV] Mean 
Elapsed 
Time [s]K [mVm2q−1] θ [°] z0 [m] q x0 [m] Min Max Mean SD

0.5 0.1 − 29,363.71 28.14 31.11 1.56 220.83 0.60 1.68 1.22 0.42 0.50

0.2 − 27,454.32 26.09 30.54 1.55 219.46 0.38 1.01 0.61 0.24 0.49

0.3 − 26,607.65 26.09 31.63 1.53 219.53 0.24 0.68 0.42 0.18 0.50

0.4 − 21,415.76 25.01 29.86 1.51 220.15 0.14 0.27 0.20 0.05 0.62

0.5 − 22,974.21 24.27 30.65 1.51 219.51 0.07 0.22 0.13 0.05 0.57

0.6 − 23,281.47 24.57 30.33 1.52 220.03 0.03 0.11 0.07 0.03 0.58

0.7 − 27,458.05 24.41 30.77 1.54 219.87 0.03 0.09 0.05 0.02 0.49

0.8 − 18,272.63 25.26 29.74 1.49 220.14 0.02 0.04 0.03 0.01 0.59

0.9 − 20,601.08 24.91 30.07 1.50 219.99 0.005 0.02 0.01 0.007 0.61

1 − 20,018.32 24.99 30.00 1.50 219.99 0.0002 0.03 0.007 0.01 0.59
0.6 0.1 − 33,381.09 25.25 32.67 1.55 216.42 0.68 1.79 1.44 0.45 0.47

0.2 − 24,493.29 24.98 26.67 1.56 220.80 0.51 1.14 0.81 0.27 0.59
0.3 − 38,716.51 23.61 32.32 1.57 219.80 0.13 0.75 0.41 0.22 0.77
0.4 − 32,611.24 23.20 30.19 1.56 219.55 0.19 0.45 0.33 0.09 0.58
0.5 − 33,236.49 23.43 31.14 1.56 219.38 0.10 0.23 0.15 0.05 0.48
0.6 − 28,438.63 24.79 30.44 1.54 219.88 0.09 0.21 0.14 0.05 0.59
0.7 − 28,330.72 24.24 30.92 1.54 219.82 0.05 0.12 0.08 0.03 0.58
0.8 − 28,089.14 24.61 30.80 1.53 220.04 0.04 0.07 0.06 0.01 0.46
0.9 − 23,216.89 24.53 30.40 1.52 219.86 0.02 0.05 0.03 0.01 0.53
1 − 19,703.15 25.01 29.94 1.49 219.99 0.003 0.04 0.02 0.01 0.58

0.7 0.1 − 19,814.75 21.29 33.75 1.47 222.07 0.83 1.54 1.19 0.30 0.57
0.2 − 31,437.94 25.79 29.02 1.56 221.51 0.35 1.06 0.68 0.30 0.47
0.3 − 30,484.29 21.90 30.94 1.55 218.59 0.18 0.88 0.51 0.27 0.63
0.4 − 21,048.89 24.76 29.98 1.50 220.54 0.14 0.50 0.30 0.13 0.61
0.5 − 23,343.99 24.73 29.58 1.52 219.86 0.11 0.32 0.20 0.08 0.46
0.6 − 20,694.29 26.57 29.64 1.51 221.14 0.14 0.30 0.19 0.07 0.46
0.7 − 25,263.04 25.12 30.26 1.53 219.84 0.09 0.16 0.12 0.03 0.58
0.8 − 24,838.17 24.98 31.04 1.52 220.34 0.08 0.13 0.10 0.02 0.58
0.9 − 18,755.02 25.13 29.70 1.49 219.93 0.02 0.10 0.06 0.03 0.44
1 − 22,724.13 24.90 30.30 1.51 219.97 0.02 0.04 0.04 0.01 0.58
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Table 12   (continued)

F Cr Model Parameters rms [mV] Mean 
Elapsed 
Time [s]K [mVm2q−1] θ [°] z0 [m] q x0 [m] Min Max Mean SD

0.8 0.1 − 26,335.7 19.47 27.50 1.56 217.00 0.66 1.65 1.42 0.42 0.58

0.2 − 34,537.43 21.93 32.80 1.54 218.08 0.35 1.80 0.95 0.58 0.61

0.3 − 28,008.98 29.05 31.65 1.54 225.05 0.63 0.76 0.69 0.05 0.60

0.4 − 31,350.73 27.94 31.14 1.57 222.55 0.45 0.76 0.57 0.12 0.46

0.5 − 32,447.16 25.75 31.92 1.55 220.98 0.17 0.59 0.32 0.16 0.46

0.6 − 47,435.81 24.75 32.76 1.60 220.22 0.14 0.35 0.27 0.08 0.60

0.7 − 31,087.74 24.76 30.84 1.55 221.00 0.16 0.33 0.24 0.06 0.46

0.8 − 37,784.52 23.15 31.75 1.57 219.59 0.08 0.23 0.15 0.06 0.61

0.9 − 27,817.72 23.56 30.88 1.53 219.48 0.07 0.15 0.12 0.04 0.45

1 − 18,845.44 25.34 29.69 1.49 220.03 0.03 0.06 0.04 0.01 0.61

0.1 − 25,675.22 27.15 33.11 1.53 221.65 0.58 1.60 1.13 0.47 0.60

0.2 − 31,858.07 22.58 33.90 1.53 217.46 0.40 1.47 0.98 0.42 0.43

0.3 − 30,388.47 25.21 30.32 1.56 220.83 0.30 1.13 0.82 0.34 0.59

0.4 − 30,474.81 25.93 30.66 1.55 220.29 0.16 0.81 0.51 0.27 0.57
0.9 0.5 − 33,767.68 24.52 29.97 1.57 221.52 0.30 0.71 0.48 0.16 0.57

0.6 − 37,001.06 22.56 32.35 1.56 219.14 0.12 0.49 0.29 0.16 0.61
0.7 − 19,682.98 26.84 30.17 1.49 221.38 0.18 0.42 0.30 0.09 0.67
0.8 − 26,852.13 23.60 30.66 1.53 218.72 0.16 0.39 0.28 0.09 0.59
0.9 − 31,775.76 23.03 31.18 1.55 219.31 0.09 0.29 0.18 0.08 0.59
1 − 26,928.27 23.75 30.50 1.53 219.52 0.07 0.21 0.14 0.05 0.43
0.1 − 17,578.18 26.51 35.31 1.44 219.24 0.78 1.96 1.40 0.51 0.44

1 0.2 − 18,253.81 31.94 32.24 1.48 225.03 0.66 1.65 1.22 0.50 0.59
0.3 − 37,646.26 29.31 33.17 1.57 223.35 0.46 1.12 0.81 0.25 0.50
0.4 − 36,941.04 24.15 35.91 1.54 219.44 0.46 0.10 0.80 0.25 0.59
0.5 − 33,739.70 23.64 28.69 1.57 220.72 0.39 0.87 0.62 0.22 0.61
0.6 − 22,384.03 26.54 32.28 1.50 220.97 0.27 0.83 0.54 0.20 0.46
0.7 − 21,727.04 25.05 30.83 1.51 219.34 0.25 0.47 0.38 0.091 0.48
0.8 − 27,260.61 25.41 30.37 1.54 220.50 0.18 0.56 0.34 0.14 0.49
0.9 − 26,569.10 26.86 30.49 1.54 221.42 0.23 0.39 0.31 0.07 0.49
1 − 21,451.86 23.30 29.55 1.51 219.54 0.13 0.32 0.22 0.07 0.58
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Table 13   Sets of the PSO control parameters suggested by some previous studies

Coefficients References Inertia weight Cognitive  
scaling factor

Social 
scaling 
factor

Set 1 Kennedy and Eberhat (1995) 1 2 2
Set 2 Clerc (1999) Eberhat and Shi (2000) 

Clerc and Kennedy (2002)
0.729 1.494 1.494

Set 3 Trelea (2003) 0.6 1.7 1.7
Set 4 Carlisle and Dozier (2001) 0.729 2.041 0.948
Set 5 Jiang et al. (2007) 0.715 1.7 1.7

Table 14   Parameter tuning study for PSO algorithm

Coefficients Model parameters Rms [mV] Mean 
elapsed 
time [s]K [mVm2q−1] θ [°] z0 [m] q x0 [m] Min Max Mean SD

Set 1 − 19,122.31 23.71 28.64 1.50 219.77 0.22 1.82 1.16 0.62 0.78
Set 2 − 36,416.47 23.83 31.74 1.57 219.9 0.06 1.21 0.54 0.55 0.56
Set 3 − 26,408.7 24.24 30.76 1.53 219.82 0.03 1.72 0.67 0.69 0.70
Set 4 − 23,274.09 24.76 30.52 1.52 219.98 0.02 0.75 0.37 0.32 0.78
Set 5 − 20,544.84 26.38 30.30 1.50 220.80 0.11 1.51 0.90 0.59 0.82

Table 15   Parameter tuning study for DE/PSO hybrid algorithm

Npop Itmax Model parameters Rms [mV] Mean 
elapsed 
time [s]K [mVm2q−1] θ [°] z0 [m] q x0 [m] Min Max Mean SD

15 20 − 20,199.61 25.18 29.86 1.50 220.00 0.04 0.8 0.3 0.3 0.13
30 − 20,351.11 24.96 30.06 1.50 220.00 0.003 0.12 0.03 0.05 0.18
40 − 19,527.72 25.08 29.94 1.50 220.03 0.003 0.05 0.02 0.02 0.2

20 20 − 20,390.16 25.04 30.03 1.50 219.97 0.03 0.1 0.06 0.03 0.15
30 − 19,753.95 25.02 29.97 1.50 219.99 0.003 0.07 0.04 0.02 0.21
40 − 20,016.57 25.01 30.00 1.50 220.00 0.0009 0.03 0.02 0.01 0.27

25 20 − 25,279.81 24.39 30.53 1.53 219.74 0.03 0.07 0.06 0.01 0.18
30 − 20,060.43 25.02 30.02 1.50 220.00 0.003 0.04 0.01 0.01 0.24
40 − 20,000.18 25.00 30.00 1.50 220.00 0.0006 0.02 0.007 0.009 0.3

Table 16   Statistical information of the results from the hybrid algorithm for two− dimensional mathemati-
cal test functions

Test function Results by DE/PSO hybrid Mean 
elapsed 
time [s]fmin fmax Mean (f) SD (f)

Sphere 1.30 × 10–28 1.67 × 10–25 4.61 × 10–28 7.03 × 10–26 0.11
Rosenbrock 4.03 × 10–23 1.20 × 10–20 2.97 × 10–21 5.14 × 10–21 0.13
Griewank 1.81 × 10–14 5.69 × 10–10 1.14 × 10–10 2.54 × 10–10 0.17
Himmelblau 2.01 × 10–24 2.86 × 10–15 5.73 × 10–16 1.28 × 10–15 0.16
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