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Abstract
The detection of buried geometrical model parameters is vital to full interpretation of 
potential field data, especially that related to gravity and/or self-potential anomalies. This 
study introduced a proposed non-linear least-squares algorithm for solving a combined for-
mula for gravity and self-potential anomalies due to simple geometric shapes. This pro-
posed algorithm was relied upon delimiting the origin anomaly value and two symmetric 
anomaly values with their equivalent distances along with the anomaly profile in order to 
invert the buried geometry model parameters. After that, a root mean square error (μ-value) 
for each parameter value at different postulated shape factor was assessed. The μ-value 
was considered as a benchmark for detecting the true-values of the subsurface geometry 
structures. The efficacy and rationality of the proposed approach were revealed by numer-
ous synthetic cases with and without random noise. Furthermore, the sensitivity analysis 
between shape factor and μ-value were investigated on synthetic gravity and self-potential 
data. It was evident that the inverted parameters were reliable with the genuine ones. This 
proposed method was tested on samples of gravity data and self-potential data taken from 
Senegal and USA. To judge the satisfaction of this approach, the results gained were com-
pared with other available geological or geophysical information in the published literature.
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1 Introduction

The geometrical parameters due to the causative source bodies are a commonly requested 
task in the interpretation of geophysical data. Many methods are derived to accomplish 
this task. For instance, a combined gravity or self-potential anomaly formula produced for 
simple geometrically shaped models can be signified through an analytical formula. This 
formula is a useful component to determine the depth, shape factor, polarization angle and 
amplitude factor connected to the physical effects of a buried structure. In this method, 
the gravity inversion aims to estimate the depth, amplitude and shape factors, while the 
self-potential inversion aims to estimate the same mentioned parameters and one or more 
parameters, which is called the angle of polarization for simple geometric shaped struc-
tures. These geometric shapes include a sphere, a horizontal cylinder, a semi-infinite ver-
tical cylinder, and a dike. This method is reasonably suitable in some conditions, where 
some geological situations can have a distinct gravity or self-potential anomaly, which can 
be inverted as a single model. This suggests that quick and truthful quantitative elucidation 
approaches rely on simple geometric anomalies utilized for defining the inverse parameters 
of the subsurface model structures from observed gravity and self-potential data.

A number of fixed geometrical methods were introduced to decide the subsurface 
structure model parameters from gravity or self-potential data. They depend on graphical 
approaches, which apply characteristic points and distances (Nettleton 1976; Ram Babu 
and Atchuta Rao 1988; Essa 2007a), using matching curves (Murthy and Haricharan 1984) 
and using nomograms (Paul 1965; Bhattacharya and Roy 1981) all of them involving many 
approximations.

Several numerical methods have been established to construe gravity or self-potential 
data which includes Fourier transformation method (Sharma and Geldart 1968; Roy and 
Mohan 1984; Asfahani et al. 2001), Ratio methods (Bowin et al. 1986), Euler deconvolu-
tion (Thompson 1982; Reid et al. 1990; Roy et al. 2000), Werner deconvolution (Hartmann 
et al. 1971; Jain 1976), Mellin transformation (Mohan et al. 1986; Babu et al. 1991), Walsh 
transformation technique (Shaw et al. 1998; Al-Garni 2008), analytic signal method (Nandi 
et  al. 1997; Sundarajan et  al. 1998), linear and non-linear least-squares (Gupta 1983; 
Abdelrahman et al. 2003, 2008; El-Araby 2004; Essa et al. 2008), neural network applica-
tion (Osman et al. 2007; Al-Garni 2010; Hajian et al. 2012), gradients (Aboud et al. 2004; 
Essa 2007b; Essa and Elhussein 2017; Roy 2019), and moving average method (Abdelrah-
man et al. 2006a, and 2009), 2D and 3D tomography and inversion (Biswas and Sharma 
2017; Pham et al. 2018; Oksum et al. 2019; Vasiljević et al. 2019). The results of these 
approaches require a density data for the gravity elucidation and an existing intensity and a 
resistivity data for the self-potential explanation as a feature of the input, alongside a simi-
lar depth information gained from geologic as well as other geophysical information. Con-
sequently, the subsequent model can fluctuate broadly relying upon these components if the 
gravity and self-potential inverse problem are ill-posed, unstable, and non-unique (Taran-
tola 2005; Mehanee and Essa 2015). Typical methods for acquiring steady solutions of an 
ill-posed inverse problem incorporate some regularization approaches (Tikhonov and Ars-
enin 1977; Ghanati et al. 2017). The three-dimensional gravity and self-potential result rely 
on a rigorous, estimation time, and priori information for inverting the model parameters. 
In addition, metaheuristic algorithms such as particle swarm algorithm (Essa and Munschy 
2019; Essa 2020), anti-colony algorithm (Srivastava et al. 2014), simulated annealing (Bis-
was 2016a , b), and genetic algorithm (Montesinos et al. 2005; Di Maio et al. 2016) can be 
proposed to infer gravity and self-potential anomalies.
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Moreover, Essa (2011) developed a semi-automatic approach to interpret gravity 
and self-potential data using a combined formula for both anomalies, which depends on 
knowing known the shape of the buried structures to estimate the depth and other model 
parameters.

The main objective and goal of the study is to develop a well-organized inversion 
method to overcome ill-posed and non-unique interpretation of gravity and self-potential 
data. The proposed nonlinear least-squares approach for gravity or self-potential inversion 
was established to estimate the depth (z) of the subsurface structures. The inverted prob-
lem of the depth was transformed into a nonlinear formula as z = f(z). This formula was 
deciphered for the depth by minimizing the objective function. By means of such assessed 
depth, a polarization angle and an amplitude factor emerged from the measured gravity or 
self-potential. The proposed approach relied on appraising the root mean square (μ-value) 
of the calculated buried model parameters for the causative bodies, which was utilized as a 
typical for detecting the optimal fit parameters of the subsurface model structure.

Finally, a nonlinear least-squares algorithm was applied to the synthetic examples with 
and without random noise. In addition, gravity and self-potential data set were used to 
investigate the sensitivity analysis of this method. This method was simultaneously tested 
on two real data sets, which revealed that the detected depths and other model parameters 
were in respectable covenant with the real ones.

1.1  The methodology

Essa (2010) proposed a combined gravity and/or self-potential for the simple shaped geo-
logical structures (spheres, cylinders, and sheets) as follows:

to produce the following form:

where z is the depth of the body (unit), θ is the polarization angle (in case of self-potential 
data only), A is an amplitude factor depending on the physical features of the model (in 
gravity: mGal ×  unit2q − j but in self-potential mV ×  unit2q − j),  xi is the horizontal coordinates 
(unit) and q is the shape factor of the model. Values of c, m, n, j, and q are specified in 
Table 1.

Equation (1) gives the next formula at the location of the anomaly origin, i.e.  xi = 0 and 
P(xi, z) = P(0)

From Eq. (1), the next equations are attained at  xi = ± N, N = 1, 2, 3,…, k
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and

From Eqs. (3) and (4), new two variables F and T are introduced as follows:

and

From applying Eq. (5), the next form in shape (q) is deduced

By using Eq. (3) and (4) and relieving in Eq. (6), we obtain the next form:

In this way, we can rewrite Eq. (1) employing Eqs. (7) and (8) as follows

where
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Table 1  Values of the parameters 
c, m, n, and j for various 
simple-geometric shapes in case 
of gravity and self-potential 
approaches (Essa, 2011)

Shape Gravity Self-potential

c m n j c m n j

Semi-infinite vertical cylinder (q = 0.5) 0 0 0 0 1 1 1 1
Horizontal cylinder (q = 1.0) 0 0 0 1 1 1 1 1
Sphere (q = 1.5) 0 0 0 1 1 1 1 1
Finite vertical cylinder (q = 1.0) 0 0 0 1 1 1 1 1
A horizontal sheet (q = 0.0) 0 0 0 0 1 1 1 1
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The unidentified depth in Eq. (9) can be gained applying the least-squares sense by mini-
mizing the subsequent mathematical objective function in the real space. The form is:

where P(xi) is the observed gravity or self-potential anomaly at  xi, P(0) is the anomaly 
value at the origin  (xi = 0), and k is the total number of collected data.

So, Eq.  (10) can be solved using minimization, i.e., �
∑k

i=1 [P(xi)−P(0)W(xi ,z)]
2

�z
= 0 , which 

leads to the next nonlinear formula in z:

where

Hence, Eq. (11) finally is

The depth (z) can be obtained by solving the nonlinear Eq. (12) applying a suitable itera-
tion method (Mustoe and Barry 1998). The iteration form of Eq. (12) is:

where  zf and  zi are the final and the initial depths, the iterative procedure finished at 
|||
zf − zi

|||
≤ E , where E is a real number nearby zero. So, any initial guessing for the depth 

affected well because there is only one global minimum, i.e., no restrictions for the opti-
mum range for the initial guess required.

Finally knowing the depth value, the shape factor (q), the angle of polarization (only in 
case of self-potential data) and the amplitude factor values are obtained from Eqs. (7), (8), and 
(2), respectively.

1.2  Determination of the best‑fit parameters

The root mean square error (μ-value) has been utilized as a standard statistical metric to detect 
the model performance in the field of geosciences (Chai and Draxler 2014), i.e., the average 
model prediction error in the model parameters of interest.

Using the estimated model parameters from gravity or self-potential anomalies, we com-
pute the μ-value in the following form:
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where 2k + 1 is the number of collected points, and P(xi) and P(xi, z) are individually the 
observed and the computed forward model of gravity or self-potential anomalies. The 
model parameters, which give the minimum μ-values are the optimal fit parameters. In this 
way, we can detect the best-fit source parameters outcomes from all gravity or self-poten-
tial data.

Hence, we recommend a statement of origin to delineate data. In practice, since a field 
traverse has a subjective origin, the place of the model  (xi = 0) in Eq. (1) must be deline-
ated. In the gravity method, the maxima and/or the minima values of the profiles can be 
considered as the place of the origin of the body  (xi = 0). While, the straight line connect-
ing the maxima to the minima of the self-potential anomaly profile intersects the anomaly 
curve at the point  xi = 0 (Stanley 1977). In addition, Abdelrahman et al. (2006b) acquainted 
a semi-automatic approach to describe the horizontal position of the structure applying a 
least-squares sense from a self-potential residual anomaly.

1.3  Synthetic examples

The benefits of the proposed method in this study were inspected through different synthetic 
cases, which include noise and anomalies produced by simple geometrically shapes (e.g., 
semi-infinite vertical, cylindrical, horizontal cylindrical, and spherical). The anomalies of 
the relevant models were generated using Eq. (1). In all cases studied, the synthetic anoma-
lies were computed along with a profile extending 40 units with an interval of 1 unit.

1.4  First synthetic case (gravity anomalies)

Three gravity anomalies due to an infinitely extended semi-infinite vertical cylinder, hor-
izontal cylinder, and sphere with source parameters: A = 500  mGal × unit, z = 3 unit and 
q = 0.5, A = 1500 mGal × unit, z = 5 unit and q = 1.0, and A = 2500 mGal ×  unit2, z = 7 unit 
and q = 1.5 were considered. The gravity anomalies of these three models are shown in 
Fig. 1. The generated gravity anomalies are inferred applying the procedures of the pro-
posed approach, i.e., for each N value, the buried model parameters (z, q, A) was com-
puted by utilizing Eqs. (12), (7), and (2), respectively. Besides, the fit between the observed 
and computed gravity anomaly was computed using the μ-value for each set of solutions 
through applying Eq. (14), whereas the evaluated gravity source parameters are presented 
in Tables 2, 3, and 4. The results in Tables 2, 3, and 4 demonstrate that the error (e) in all 
estimated parameters and the μ-value is equal to zero in case of free-noise anomalies used.

To check the stability of the suggested approach in the occurrence of noisy data, each 
gravity anomaly, P(xi), was tainted with a 10% random noise. The contaminated gravity 
anomalies were inferred by using the proposed method as mentioned above. The results are 
given in Tables 2, 3, and 4 for the same N value as follows:

First, Table 2 (in case of estimating parameters for the semi-infinite vertical cylinder) 
shows the estimated values for each model parameter (z, q, A), their percentage of error 
(e), and the μ-value. The minimum μ-value (5.80 mGal) happens at the N value equal 2 
unit and the value of the depth (z) is 2.92 unit with 2.67% error, the shape (q) is 0.49 with 
2% error, and the amplitude factor (A) equals 485.86 mGal × unit with 2.83% error.

Second, Table 3 for the horizontal cylinder model displays the values of all estimated 
parameters as z = 5.21 unit, q = 1.02, and A = 1575.18 mGal × unit, and the error in each 
parameter is 4.2%, 2%, and 5.01%, respectively. This result happens at the minimum 
μ-value (7.32 mGal) at N = 3 unit.
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Finally, Table 4 clearly indicates that μ-value (0.68 mGal at N = 2 unit) is the minima 
value at which the values of depth (6.86 unit), the shape (1.51), and the amplitude factor 
(2542.49 mGal ×  unit2) and their errors are 2%, 0.67%, and 1.69%, respectively.

1.5  Second synthetic case (self‑potential anomalies)

Using Eq.  (1), three synthetic self-potential anomalies for a thin sheet, a horizontal  cyl-
inder, and a spherical model were created. The source parameters of these self-potential 
anomalies were: A = − 500 mV, z = 2 unit, θ = 30° and q = 0.5, A = − 2000 mV × unit, z = 4 
unit, θ = 50° and q = 1.0, and A = − 3500 mV ×  unit2, z = 6 unit, θ = 70° and q = 1.5 (Fig. 2). 
The generated self-potential anomalies can be interpreted by using the proposed approach. 
For every N value, the model parameters (z, θ, q, and A) are computed by utilizing 
Eqs. (12), (8), (7), and (2), respectively. The μ-value is also computed applying Eq. (14) 
to measure the optimal fit between the observed and computed self-potential anomalies 
(Tables 5, 6, and 7).

In case of using these anomalies without adding any noise, the results of the estimated 
parameters in Tables 5, 6, and 7 demonstrate that the error (e) in each parameter and the 

Table 2  Numerical results of the present method applied to synthetic example; the gravity anomaly pro-
file over a semi-infinite vertical cylinder model (q = 0.5) with model parameters are z = 3 unit, A = 500 
mGal × unit, and profile length = 40 unit without and with a 10% random noise

Synthetic data without random noise

N (unit) z (unit) e (%) q (dimen-
sionless)

e (%) A (mGal × unit) e (%) μ-value (mGal)

2 3 0 0.5 0 500 0 0
3 3 0 0.5 0 500 0 0
4 3 0 0.5 0 500 0 0
5 3 0 0.5 0 500 0 0
6 3 0 0.5 0 500 0 0
7 3 0 0.5 0 500 0 0
8 3 0 0.5 0 500 0 0
9 3 0 0.5 0 500 0 0

10 3 0 0.5 0 500 0 0

Synthetic data with a 10% random noise

N (unit) z (unit) e (%) q (dimen-
sionless)

e (%) A (mGal × unit) e (%) μ-value (mGal)

2 2.92 2.67 0.49 2.00 485.86 2.83 5.80
3 2.85 5.00 0.47 6.00 469.18 6.16 7.654
4 2.94 2.00 0.49 2.00 491.82 1.64 8.73
5 3.01 0.33 0.51 2.00 508.36 1.67 10.09
6 2.88 4.00 0.48 4.00 479.21 4.16 10.91
7 2.92 2.67 0.49 2.00 486.79 2.64 11.64
8 3.03 1.00 0.51 2.00 507.96 1.59 12.61
9 2.90 3.33 0.48 4.00 482.91 3.41 13.24

10 2.85 5.00 0.47 6.00 474.12 5.17 13.91
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μ-value are equal to zero. While in case of adding a 10% random noise, the inversion pro-
cess run and the optimal fit parameters are picked at the minimum μ-value as follows:

Table  5 shows that the minima μ-value is 10.78  mV occurring at N = 3 unit and at 
which the optimal fit parameters (z, θ, q, and A) are 2.08 unit, 28.98°, 0.52, − 496.75 mV 
with error of 4%, 3.40%, 3.37%, 0.65%, respectively. Table 6 further displays the results 
for the horizontal cylinder model self-potential inversion where the minima μ-value is 
6.26  mV occurring at N = 10 unit and at which the optimal fit parameters (z, θ, q, and 
A) are 3.85 unit with 3.75% error, 50.98° with error of 1.96%, 0.98 with 2.47%, and 
− 1970.04  mV × unit with 1.50% error, respectively. Moreover, Table  7 presents the 
inverted parameter values (z, θ, q, and A) for a spherical model with values as 6.19 unit, 
69.47°, 1.5, and − 3553.26 mV ×  unit2, with percentage of errors of 3.17%, 0.76%, 0%, and 
1.52%, respectively, when this happens at N = 9 unit with the lowest μ-value (8.09 mV).

1.6  Third synthetic case (the effect of the location of origin)

To examine the effect of the location of origin; two synthetic data models with and without 
random errors were selected. The gravity model with the parameters: A = 600 mGal × unit, 

Table 3  Numerical results of the present method applied to synthetic example; the gravity anomaly profile 
over a horizontal cylinder model (q = 1.0) with model parameters are z = 5 unit, A = 1500 mGal × unit, and 
profile length = 40 unit without and with a 10% random noise

Synthetic data without random noise

N (unit) z (unit) e (%) q (dimen-
sionless)

e (%) A (mGal × unit) e (%) μ-value (mGal)

2 5 0 1 0 1500 0 0
3 5 0 1 0 1500 0 0
4 5 0 1 0 1500 0 0
5 5 0 1 0 1500 0 0
6 5 0 1 0 1500 0 0
7 5 0 1 0 1500 0 0
8 5 0 1 0 1500 0 0
9 5 0 1 0 1500 0 0

10 5 0 1 0 1500 0 0

Synthetic data with a 10% random noise

N (unit) z (unit) e (%) q (dimen-
sionless)

e (%) A (mGal × unit) e (%) μ-value (mGal)

2 4.96 0.8 1.00 0 1488.21 0.79 9.12
3 5.21 4.20 1.02 2.00 1575.18 5.01 7.32
4 5.28 5.60 1.04 4.00 1734.00 15.60 8.43
5 5.14 2.80 0.99 1.00 1461.47 2.57 9.47
6 5.28 5.60 1.04 4.00 1732.79 15.52 10.35
7 5.20 4.00 1.02 2.00 1572.26 4.82 11.18
8 5.20 4.00 1.02 2.00 1579.09 5.27 11.94
9 5.16 3.20 1.00 0 1504.56 0.30 12.67

10 5.22 4.40 1.02 2.00 1619.79 7.99 13.35
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z = 8 unit, and q = 1.0, and a self-potential model with A = 600 mV × unit, z = 8 unit, θ = 30° 
and q = 1.0 investigated the effect of changing the value of location of origin by introduc-
ing an error of ± 0.5, ± 1.0, ± 1.5, and ± 2.5 unit to the location of origin in Eq. (1) (Fig. 3). 
Figure 3 shows the significance of choosing the location of origin in all the different model 
calculations vis-à-vis their μ-value errors.

In synthetic data without random errors, Fig. 3a, b show that the μ-value decreases to 
reach zero value at the correct solutions. But in synthetic data with a 10% random error, 
Fig. 3a, b show that the μ-value has a minimum value at the correct solutions. This kind of 
sensitivity analysis is important and necessary to test the effect of the location of origin as 
an important parameter in calculations.

1.7  Field examples

To clarify the benign application of new approaches established in the earlier sections, two 
residual field anomalies from Senegal and USA were sampled to interpret and inspect the 
stability and validity of the proposed method.

Table 4  Numerical results of the present method applied to synthetic example; the gravity anomaly pro-
file over a sphere model (q = 1.5) with model parameters are z = 7 unit, A = 2500 mGal ×  unit2, and profile 
length = 40 unit, without and with a 10% random noise

Synthetic data without random noise

N (unit) z (unit) e (%) q (dimen-
sionless)

e (%) A (mGal ×  unit2) e (%) μ-value (mGal)

2 7 0 1.5 0 2500 0 0
3 7 0 1.5 0 2500 0 0
4 7 0 1.5 0 2500 0 0
5 7 0 1.5 0 2500 0 0
6 7 0 1.5 0 2500 0 0
7 7 0 1.5 0 2500 0 0
8 7 0 1.5 0 2500 0 0
9 7 0 1.5 0 2500 0 0

10 7 0 1.5 0 2500 0 0

Synthetic data with a 10% random noise

N (unit) z (unit) e (%) q (dimen-
sionless)

e (%) A (mGal ×  unit2) e (%) μ-value (mGal)

2 6.86 2.00 1.51 0.67 2542.49 1.69 0.68
3 7.04 0.57 1.50 0 2427.14 2.91 0.75
4 6.83 2.42 1.49 0.67 2318.32 7.27 1.36
5 7.06 0.86 1.51 0.67 2576.28 3.05 1.06
6 6.81 2.71 1.48 1.33 2204.45 11.82 1.66
7 6.83 2.43 1.49 0.67 2263.19 9.47 2.13
8 6.84 2.28 1.49 0.67 2351.55 5.93 2.52
9 7.02 0.28 1.49 0.67 2362.36 5.51 1.50

10 7.01 0.14 1.49 0.67 2343.77 6.25 1.59
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1.8  First real case: the Louga gravity anomaly

A residual gravity anomaly profile was collected from the west coast of Senegal (Nettleton, 
1976). Figure 4 shows the appropriate residual gravity anomaly profile, 25 km long, and 
digitized at interims of 0.88 km. For every N value, the offered inverse method was utilized 
to the digitized anomaly profile to detect the model parameters z, q and A using Eqs. (12), 
(7) and (2), respectively (Table 8). Utilizing the estimated model parameters at various N 
values, the μ-value of the contrast among the observed and the calculated gravity anoma-
lies (Fig. 4) was assessed. This Figure exhibits that the shape of the subsurface structure 
looks like a sphere (q = 1.55) at a depth of 9.09 km. The shape and the depth of the ore 
body attained through the current method are consistent very well with those achieved by 
Nettleton (1976) and Asfahani and Tlas (2011) (Table 9).

Table 9 indicates that the gravity parameters obtained by the suggested approach are in 
acceptable concurrence with those reported in different studies. Overall, there is a realistic 
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Fig. 1  The residual gravity anomalies of the buried structures representing by: a a semi-infinite vertical cyl-
inder, b a horizontal cylinder and c a sphere as obtained from Eq. (1)
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concurrence between all results, except the amplitude factor (A = 11,472.89 mGal ×  km2) 
value (Table 9). The difference in A value is due to a discrepancy in the units used for A, as 
these units rely upon the shape factor (q) of the body.

1.9  Second real case: the Malachite mine anomaly

Another self-potential profile was measured on the Malachite mine, Jefferson County, Colo-
rado, USA collected by Heiland et al. (1945) (Fig. 5). These measurements were analyzed and 
described by Dobrin (1960). A sulphide ore body was found almost in vertical—cylindrical 
massive shaped with 11 m width and 13.7 m depth (drilling information; Heiland et al. 1945; 
Dobrin 1960). Moreover, the sulphide mine was an amphibolite belt constrained by a schist 
and gneiss. A quartz diorite sheet was sliced through schists with about vertical dip and with 
lenticular copper sulfides. The self-potential investigation helped in assessing the potential 
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Fig. 2  The residual self-potential anomalies of the buried structures representing by: a a semi-infinite verti-
cal cylinder, b a horizontal cylinder and c a sphere as obtained from Eq. (1)
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difference between equidistant points along with profile lines vertical to the extension of the 
ore body.

This anomaly profile was digitized at an interim of 6.8 m. All digitized self-potential values 
were used to calculate the model parameters z, θ, q, and A applying Eqs. (12), (8), (7) and (2) 
for each N value, respectively (Table 10). The detected parameters were applied to decide the 
optimal fit of the geometric body (shape factor) by utilizing the μ-value standard. The model 
with a minimum μ-value (8.338 mV) was for a 3D semi-infinite vertical cylinder model. Its 
parameters were: z = 15.5 m, θ = 79.2°, q = 0.55, and A = − 240.4 mV (Fig. 5). The shape and 
the other model parameters recovered by our inversion method are in a good agreement with 
those attained by drilling information and with the outcomes available in other scientific litera-
ture such as Abdelrahman et al. (2004) and Tlas and Asfahani (2007) (Table 11).

Table 5  Numerical results of the present method applied to synthetic example; the self-potential anomaly 
profile over a thin sheet model (q = 0.5) with model parameters are z = 2 unit, θ = 30°, A = -500 mV, and 
profile length = 40 unit without and with a 10% random noise

Synthetic data without random noise

N (unit) z (unit) e (%) θ (deg.) e (%) q (dimen-
sionless)

e (%) A (mV) e (%) μ-value (mV)

2 2 0 30 0 0.5 0 − 500 0 0
3 2 0 30 0 0.5 0 − 500 0 0
4 2 0 30 0 0.5 0 − 500 0 0
5 2 0 30 0 0.5 0 − 500 0 0
6 2 0 30 0 0.5 0 − 500 0 0
7 2 0 30 0 0.5 0 − 500 0 0
8 2 0 30 0 0.5 0 − 500 0 0
9 2 0 30 0 0.5 0 − 500 0 0

10 2 0 30 0 0.5 0 − 500 0 0

Synthetic data with a 10% random noise

N (unit) z (unit) e (%) θ (deg.) e (%) q (dimen-
sionless)

e (%) A (mV) e (%) μ-value (mV)

2 1.82 9.00 30.31 1.03 0.53 6.80 − 499.60 0.08 13.15
3 2.08 4.00 28.98 3.40 0.52 3.37 − 496.75 0.65 10.78
4 2.16 8.00 29.16 2.80 0.51 2.01 − 493.99 1.20 12.37
5 1.83 8.50 30.48 1.60 0.54 9.00 − 497.06 0.59 12.59
6 2.03 1.50 28.77 4.10 0.49 0.66 − 500.18 0.04 11.37
7 2.02 1.00 28.69 4.36 0.52 4.72 − 501.37 0.27 11.91
8 2.14 7.00 29.43 1.90 0.48 3.00 − 489.97 2.01 14.08
9 2.08 4.00 29.03 3.23 0.49 1.62 − 496.07 0.78 10.78

10 2.15 7.50 29.77 0.77 0.47 5.34 − 484.87 3.03 17.98
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2  Conclusions

This study proposed nonlinear least-squares method to detect the depth of a subsurface 
structure and calculate the model parameters for simple-class geometrical shapes bodies: 
spherical, horizontally and vertically cylindrical, to interpret gravity and/or self-potential 
combined formula. The procedure of the offered method mainly relied upon deciphering a 
non-linear equation z = f(z) and the statistical μ-value criteria between observed and com-
puted anomalies and determine a preferable structure for the gravity and/or self-potential 
anomaly. The efficiency and sensitivity of the proposed method were investigated through 
analyzing and interpreting synthetic theoretical examples. Furthermore, the advantage of 

Table 6  Numerical results of the present method applied to synthetic example; the self-potential anom-
aly profile over a horizontal cylinder model (q = 1.0) with model parameters are z = 4 unit, θ = 50°, 
A = -2000 mV × unit, and profile length = 40 unit, without and with a 10% random noise

Synthetic data without random noise

N (unit) z (unit) e (%) θ (deg.) e (%) q (dimen-
sionless)

e (%) A (mV × unit) e (%) μ-value (mV)

2 4 0 50 0 1 0 − 2000 0 0
3 4 0 50 0 1 0 − 2000 0 0
4 4 0 50 0 1 0 − 2000 0 0
5 4 0 50 0 1 0 − 2000 0 0
6 4 0 50 0 1 0 − 2000 0 0
7 4 0 50 0 1 0 − 2000 0 0
8 4 0 50 0 1 0 − 2000 0 0
9 4 0 50 0 1 0 − 2000 0 0

10 4 0 50 0 1 0 − 2000 0 0

Synthetic data with a 10% random noise

N (unit) z (unit) e (%) θ (deg.) e (%) q (dimen-
sionless)

e (%) A (mV × unit) e (%) μ-value (mV)

2 4.00 0 52.99 5.98 1.07 7.44 − 1993.62 0.32 10.87
3 3.87 3.25 51.48 2.96 0.96 4.02 − 1970.43 1.48 6.63
4 3.86 3.50 51.65 3.30 0.99 1.22 − 1961.31 1.93 6.86
5 3.85 3.75 50.71 1.42 0.97 3.19 − 1977.90 1.10 6.35
6 3.84 4.00 51.55 3.10 0.97 2.86 − 1951.01 2.45 6.77
7 3.89 2.75 49.61 0.78 0.95 5.32 − 2031.97 1.60 8.96
8 3.85 3.75 50.75 1.50 1.00 0.30 − 1980.98 0.95 6.34
9 3.86 3.50 50.71 1.42 1.06 6.04 − 1984.60 0.77 6.38

10 3.85 3.75 50.98 1.96 0.98 2.47 − 1970.04 1.50 6.26
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using the proposed method over the earlier one is not need to priori information about 
the shape of the subsurface structure. The synthetic data revealed that the viability of the 
offered method was precise and firm. In addition, utilizing the proposed method to real 
data from Senegal and USA established that the acquired outcomes were reliable with the 
information from drilling and outcomes available in other works. Furthermore, the pro-
posed method proved robust as it could be simply placed in a code. Besides, its conver-
gence to the optimum model solutions was definite and rapid. Accordingly, this method is 
endorsed for routine exploration of field anomalies in an attempt to detect the geophysical 
parameters for the mentioned structures.

Table 7  Numerical results of the present method applied to synthetic example; the self-potential anomaly 
profile over a sphere model (q = 1.5) with model parameters are z = 6 unit, θ = 70°, A = -35,000 mV ×  unit2 
and profile length = 40 unit, without and with a 10% random noise

Synthetic data without random noise

N (unit) z (unit) e (%) θ (deg.) e (%) q (dimen-
sionless)

e (%) A (mV ×  unit2) e (%) μ-value (mV)

2 6 0 70 0 1.5 0 − 3500 0 0
3 6 0 70 0 1.5 0 − 3500 0 0
4 6 0 70 0 1.5 0 − 3500 0 0
5 6 0 70 0 1.5 0 − 3500 0 0
6 6 0 70 0 1.5 0 − 3500 0 0
7 6 0 70 0 1.5 0 − 3500 0 0
8 6 0 70 0 1.5 0 − 3500 0 0
9 6 0 70 0 1.5 0 − 3500 0 0

10 6 0 70 0 1.5 0 − 3500 0 0

Synthetic data with a 10% random noise

N (unit) z (unit) e (%) θ (deg.) e (%) q (dimen-
sionless)

e (%) A (mV ×  unit2) e (%) μ-value (mV)

2 6.01 0.17 67.93 2.96 1.51 0.67 − 3488.09 0.34 13.90
3 6.21 3.50 69.59 0.58 1.48 1.33 − 3559.16 1.69 8.14
4 6.28 4.67 70.78 1.12 1.49 0.67 − 3572.60 2.07 12.03
5 6.16 2.67 68.71 1.84 1.52 1.33 − 3553.16 1.52 9.49
6 6.18 3.00 68.97 1.47 1.47 2.00 − 3558.99 1.69 8.70
7 6.19 3.17 69.97 0.04 1.49 0.67 − 3542.52 1.21 8.78
8 6.20 3.33 68.77 1.75 1.51 0.67 − 3574.85 2.14 9.25
9 6.19 3.17 69.47 0.76 1.50 0.00 − 3553.26 1.52 8.09

10 6.21 3.48 68.98 1.46 1.51 0.67 − 3575.58 2.16 8.68
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Fig. 3  The relation between offset and μ-value errors; a gravity model and b self-potential model
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Fig. 4  The measured gravity 
anomaly (open circles) over an 
area on the west coast of Senegal 
and the calculated response 
(solid circles) computed from the 
present inverse algorithm
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Table 8  Modeling results of the 
buried body of the Louga gravity 
anomaly, Senegal using the 
proposed method

N
(km)

z
(km)

q
(dimensionless)

A
(mGal ×  km2)

μ-value
(mGal)

7.04 10.284 1.910 85,408.740 3.531
7.92 9.899 1.802 45,526.370 3.526
8.80 10.053 1.871 66,145.670 3.550
9.68 10.196 1.900 79,413.500 3.538

10.56 9.090 1.555 11,472.890 3.522
11.44 9.739 1.746 33,380.730 3.523

Table 9  Comparative results 
for the Louga gravity anomaly, 
Senegal

Nettleton method
(1976)

Asfahani and 
Tlas method 
(2011)

Suggested
method

z
(km)

9.30 9.13 9.09

q
(dimensionless)

1.5
Assumed

1.499
estimated

1.55
estimated

A
(mGal ×  km2)

– 6931.78 11,472.89
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Fig. 5  The measured self-potential anomaly (open circles) over the Malachite mine, Jefferson County, Col-
orado, USA and the calculated response (solid circles) computed from the present inverse algorithm

Table 10  Modeling results of 
the buried body of the Malachite 
Mine self-potential anomaly, 
USA using the proposed method

N
(m)

z
(m)

q
(dimensionless)

θ
(deg.)

A
(mV)

μ-value (mV)

34.00 16.067 0.531 79.716  − 233.196 8.470
40.80 15.498 0.550 79.214  − 240.382 8.338
47.60 16.676 0.609 79.285  − 268.797 10.783
54.40 17.674 0.626 80.347  − 280.337 12.693
61.20 15.334 0.512 81.776  − 223.923 10.804
68.00 14.387 0.481 81.220  − 213.663 9.067
74.80 13.780 0.471 80.041  − 211.856 8.971
81.60 15.176 0.568 74.553  − 251.619 14.735

Table 11  Comparative results for the Malachite Mine self-potential anomaly, USA

Drilling informa-
tion

Abdelrahman et al. 
method (2004)

Tlas and Asfahani 
method (2007)

Suggested
method

z
(m)

13.7 15.5 12.79 15.49

q
(dimensionless)

– 0.5
assumed

0.5
assumed

0.55
estimated

θ
(deg.)

– 83.4 79.98 79.2

A
(mV)

–  − 227  − 229.28  − 240.3
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