
Vol.:(0123456789)

Acta Geodaetica et Geophysica (2021) 56:271–291
https://doi.org/10.1007/s40328-021-00336-6

1 3

ORIGINAL STUDY

Prediction of geodetic point velocity using MLPNN, GRNN, 
and RBFNN models: a comparative study

Berkant Konakoglu1 

Received: 28 April 2020 / Accepted: 20 December 2020 / Published online: 31 March 2021 
© Akadémiai Kiadó 2021

Abstract
The prediction of an accurate geodetic point velocity has great importance in geosciences. 
The purpose of this work is to explore the predictive capacity of three artificial neu-
ral network (ANN) models in predicting geodetic point velocities. First, the multi-layer 
perceptron neural network (MLPNN) model was developed with two hidden layers. The 
generalized regression neural network (GRNN) model was then applied for the first time. 
Afterwards, the radial basis function neural network (RBFNN) model was trained and 
tested with the same data. Latitude ( � ) and longitude (λ) were utilized as inputs and the 
geodetic point velocities ( V

X
,V

Y
,V

Z
 ) as outputs to the MLPNN, GRNN, and RBFNN mod-

els. The performances of all ANN models were evaluated using root mean square error 
(RMSE), mean absolute error (MAE), and coefficient of determination ( R2 ). The first 
investigation demonstrated that it was possible to predict the geodetic point velocities by 
using all the components as output parameters simultaneously. The other result is that all 
ANN models were able to predict the geodetic point velocity with satisfactory accuracy; 
however, the GRNN model provided better accuracy than the MLPNN and RBFNN mod-
els. For example, the RMSE and MAE values were 1.77–1.88  mm and 1.44–1.51  mm, 
respectively, for the GRNN model.

Keywords  Geodetic point velocity · Multi‒layer perceptron neural network · Generalized 
regression neural network · Radial basis function neural network

1  Introduction

Geodetic networking activities in Turkey began in the early 1900s. In the 1950s, Turkey 
National Geodetic Network (TNGN) was established in order to create a basis for the study 
of mapping and cadastral works. In 1954, via eight points of the Greek and Bulgarian geo-
detic networks, TNGN was connected to the European datum ED50. Because Turkey is 
linked to a major world fault line and in terms of crustal movements is an extremely active 
region, Turkey National Horizontal Control Network has witnessed great damage in the 
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region over time. Highly sensitive measurement and calculation methods were needed to 
identify deformations. On the other hand, due to rapid population growth and urbanisa-
tion, the need for infrastructure services had increased. This made it necessary to complete 
Turkey’s digital cadastral situation accurately and as soon as possible. Therefore, there 
was a need for a fundamental geodetic network based on the Global Positioning System 
(GPS) and consisting of points of specified accuracy that sufficiently covered the coun-
try’s surface. With the work carried out between 1997 and 1999 by the General Command 
of Mapping to realise the said objectives, the Turkish National Fundamental GPS Net-
work‒1999 (TNFGN‒99) was established, consisting of nearly 600 points. In the newly 
formed geodetic network, three coordinate values (X, Y, Z) and their velocities ( VX , VY , VZ ) 
were calculated in the three‒dimensional geocentric coordinate system at a given time. The 
TNFGN is within the ITRF (International Terrestrial Reference Frame) coordinate system, 
with a relative sensitivity of 0.1‒0.01 ppm, and point position sensitivity levels of 1‒3 cm. 
Large-scale earthquakes in 1999‒2003 (e.g.: Mw = 7.5/İzmit, Mw = 7.2/Düzce, Mw = 6.1/
Çankırı-Çerkeş, Mw = 6.5/Sultandağı, and Mw = 6.4/Bingöl) caused important changes in 
TNFGN point locations in the earthquake zones. For this reason, TNFGN was updated by 
carrying out GPS measurements.

Turkey is located in the Alpine‒Himalayan earthquake zone and in the collision zone 
with the Eurasian tectonic plate of the African and Arabian plates (McClusky et al. 2000). 
Considering the magnitude of the deformation induced and the active tectonic structure of 
Turkey and its periphery, it is of great importance for the survival and improvement of the 
four-dimensional (X, Y, Z, and time) designed TNFGN to determine the time-dependent 
coordinate changes of the on-site points with high accuracy. Time-dependent changes in 
point coordinates generally caused by tectonic plate movements include pre-earthquake 
(inter-seismic), earthquake moment (co-seismic), and post-seismic effects (Demir and 
Açıkgöz 2000). Point velocities must be determined with high accuracy in order to estab-
lish these time-dependent effects. For the survival and improvement of TNFGN, GPS 
measurements are carried out periodically and these measurements are evaluated and com-
bined into a specified reference epoch. The TNFGN coordinates and velocities are calcu-
lated in the ITRF system (Aktuğ et al. 2011). The velocities of TNFGN points are calcu-
lated by estimating two or more repetitive GPS measurements or, in cases without repeated 
GPS measurements, the speeds of other TNFGN points (Kurt and Deniz 2010).

In order to ensure the standard unity of large-scale mapping, the regulation for the con-
struction of large-scale maps was published in 1988. However, in parallel with the increase 
of GPS usage in geodetic applications and large-scale map activities, it was updated in 
2005 and the system of calculating geodetic point velocities was adopted. In order to com-
press the TNFGN, satellite positioning techniques were used to shift the coordinates of the 
points in the measurement epoch to a specified reference epoch. The point velocities to be 
used for this process are calculated by interpolation from TNFGN or high-grade compres-
sion point velocities, but the method used is not specified. The Kriging (KRIG) interpola-
tion method is the best-known and most used technique. This method has been used in 
geodetic velocity modelling by several researchers (Majdański 2012; Kierulf et al. 2013; 
Bogusz et al. 2014; Ching and Chen 2015; Li et al. 2019). Many studies have been also 
conducted to investigate the geodetic velocity fields for different regions using GPS obser-
vations (Aktuğ et al. 2013; Gülal et al. 2013; Müller et al. 2013; Farolfi and Del Ventisette 
2016; Ito et al. 2019; Poyraz et al. 2019).

Artificial neural networks (ANNs) belong to the family of artificial intelligence (AI) 
techniques widely used in many fields of geoscience. The ANN is utilized for modelling, 
optimization and estimation in order to solve complicated problems and generally presents 
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satisfactory results compared to other conventional techniques. In recent years, the use of 
ANNs in the field of geodesy has been widely adopted and implemented. Its suitability as an 
alternative technique to traditional methods in solving most geodetic problems has been inves-
tigated. Many researchers have used the ANN in the past for solving different geodetic prob-
lems of coordinate transformation (Zaletnyik 2004; Lin and Wang 2006; Tierra et al. 2008; 
Gullu 2010; Tierra and Romero 2014; Konakoğlu and Gökalp 2016; Konakoglu et al. 2016; 
Ziggah et al. 2016a, b, 2019; Elshambaky et al. 2018; Cakir and Konakoglu 2019), model-
ling ionospheric TEC (Hernandez-Pajares et al. 1997; Cander 1998; Habarulema et al. 2007; 
Maruyama 2008; Akhoondzadeh 2014; Huang and Yuan 2014; Tebabal et al. 2018; Inyurt and 
Sekertekin 2019), geoid determination (Hu et al. 2004; Kavzoglu and Saka 2005; Stopar et al. 
2006; Lin 2007; Veronez et al. 2011; Erol and Erol 2013; Cakir and Yilmaz 2014; Kaloop 
et al. 2018a), earth orientation parameter determination (Schuh et al. 2002; Wang et al. 2008; 
Liao et al. 2012; Lei et al. 2015), gravity anomaly prediction (Hajian et al. 2011; Tierra and 
De Freitas 2005; Pereira et  al. 2012), and noise reduction in GNSS signals (Mosavi 2006; 
Kaloop and Hu 2015; Kaloop et al. 2018b).

In addition, one of the geodetic problems is the prediction of the geodetic point velocities. 
A few studies utilizing the ANN in this context have been conducted in the past with suc-
cessful results. For example, Güllü et al. (2011) developed the multi-layer perceptron neural 
network (MLPNN) model to solve this problem using the TNFGN dataset. The geodetic point 
velocities have also been estimated using different interpolation methods. On the basis of sta-
tistical analysis, the MLPNN model is highly preferred compared to traditional interpolation 
models. Yilmaz and Gullu (2014) applied two different types of ANN models for geodetic 
point velocity estimation. They constructed ANN models using the MLPNN and the radial 
basis function neural network (RBFNN). To evaluate the performance of the ANNs, the Krig-
ing (KRIG) method was used to interpolate the velocities. The optimal ANN was developed 
with two neurons in the input layer and one neuron in the output layer. The input parameters 
were the geographic coordinates (latitude and longitude), and the velocity component of the 
geodetic point ( VX or VY or VZ ) was selected separately as the output parameter. A single hid-
den layer was used in the ANN models. The MLPNN and RBFNN models of the ANN suc-
cessfully estimated the geodetic point velocities for regional geodetic networks. The perfor-
mance results predicted using the MLPNN model were better than those obtained using the 
KRIG and RBFNN models. A literature review indicates that an ANN model can be used as 
an alternative to conventional interpolation methods for predicting geodetic point velocities. 
However, only the MLPNN and RBFNN models were used for this purpose. Application of 
the generalized regression neural network (GRNN) model was not conducted in the past. In 
this present work, in addition to the MLPNN and RBFNN models, the GRNN model was 
used to predict geodetic point velocities and to find the appropriate model on the basis of a 
comparative study. This is the novelty of this research. To achieve this objective, 238 points 
and corresponding velocities belonging to the TNFGN were utilized. In order to predict the 
geodetic point velocities, latitude ( � ) and longitude (λ) were selected as input parameters, and 
all geodetic point velocity components ( VX,VY , and VZ ) were selected simultaneously as output 
parameters.
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2 � Study area and applied data

This study was conducted in central and eastern Anatolian regions of Turkey in an area located 
at 34° 48′ E‒44° 7′ E longitudes and 36° 58′ N‒41° 25′ N latitudes (Fig. 2). The study area 
included a total of 238 points belonging to TNFGN. Out of the 238 points, 166 (~ 70%) were 
randomly selected as the references and the remaining 72 points (~ 30%) were used as the test 
points to evaluate the performance of the ANN models. The distribution of the reference and 
test points within the study area is shown in Fig. 1. Here, the blue squares and red asterisks 
denote the reference points and test points, respectively.

The statistical characteristics of the dataset related to the studied points including the aver-
age, minimum, maximum, and standard deviation values are listed in Table 1.

To improve the computational speed and obtain more accurate results, the input and output 
sample data must be normalized to a range of [‒ 1,1], [0,1], or another scaling criterion before 
developing the ANN models. In this study, the data was normalized between ‒ 1 and 1 using 
Eq. (1).

(1)Ynormalized = Lowvalue +
(
Highvalue − Lowvalue

) Yi − Ymin

Ymax − Ymin

Fig. 1   Location of the study area and distribution of the reference and test points

Table 1   Statistical parameters of the dataset

° degree, mm/year millimetre per year

Data Unit Average Minimum Maximum Standard deviation

Latitude ° 39.27002177 36.97123797 41.47965261 1.24861387
Longitude ° 38.91313954 34.81386392 44.12488748 2.54054889
V
X

(mm/year) –22.9 –38.1 –7.9 6.2
V
Y

(mm/year) 2.7 –37.6 16.7 7.7
V
Z

(mm/year) 10.8 –1.8 34.4 5.1
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3 � Artificial neural network (ANN)

McCulloch and Pitts (1943) proposed the artificial neural network (ANN) for the first time. 
The ANN is a computational paradigm which behaves like the human brain, and has been suc-
cessfully used to find solutions to complex problems that are difficult to solve by other known 
methods. This is the main advantage of the ANN method. Many types of ANN models have 
been introduced and successfully applied to date. In this study, the three types of ANN models 
employed to predict geodetic point velocities were the MLPNN, GRNN, and RBFNN. The 
following sections present a brief description of these ANN models.

3.1 � Multi‑layer perceptron neural network (MLPNN)

The MLPNN is known as the most common type of ANN (Haykin 1999) and its structure can 
be represented as in Fig. 2. The MLPNN has three layers: the input layer, the hidden layer, and 
the output layer. Each neuron receives the information from other neurons and transmits it to 
the following layers. Interconnected processing neurons combine together and form an ANN. 
The output of each neuron is the product of weighted inputs. The sum of the weighted inputs 
formed by neurons is as given in Eq. (2).

where wij are the interconnecting weights of input data xi , bj is the bias for the neuron, and 
n is the number of input data. This sum X then passes through transfer function F , which 
generates the output, as shown in Eq. (3).

(2)X =

(
n∑
i=1

wijxi

)
+ bj

(3)Y = F(X) = F

[(
n∑
i=1

wijxi

)
+ bj

]

Fig. 2   Structure of the multi-layer perceptron neural network (MLPNN)
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Hidden and output layers generally have either a linear or non‒linear transfer function. 
The commonly used nonlinear transfer function, as expressed in Eq.  (4), is the sigmoid 
function, whose output lies between 0 and 1.

If the input and output layers have negative values, then the tansig transfer function is 
used, which is expressed as Eq. (5).

3.2 � Generalized regression neural network (GRNN)

The GRNN was proposed by Specht (1991) as a type of radial basis function neural net-
work (RBFNN) and a universal approximator for smooth functions that can solve any 
smooth function approximation problem (Park and Sandberg, 1991). A schematic of the 
GRNN is depicted in Fig. 3.

As seen from Fig. 3, the GRNN consists of four layers (Patterson 1996): the input 
layer, pattern layer, summation layer and output layer. The first layer, referred to as 
input, picks up information and conveys it to the pattern layer. The pattern layer is the 
second layer, which is connected to the summation layer. The output of the pattern layer 
passes through the summation layer. This layer consists of two summations, namely, 

(4)F(X) =
1

1 + e−x

(5)F(X) =
1 − e−2X

1 + e−2X

Fig. 3   Basic structure of GRNN
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S-summation and D-summation neurons, respectively. The sum of the weighted pattern 
outputs is calculated using Eq. (6).

where Yi is the weight connecting the i th neuron in the pattern layer to the summation 
layer. The unweighted pattern output is calculated using Eq. (7).

The results of the sum calculated in the summation layer are then transmitted to the 
output layer. The output Y  , can be derived from the function in Eq. (8).

where � is the spread parameter (also called a smoothing parameter). This is the only net-
work parameter to be regulated and it determines the generalization performance of the 
GRNN. The trial and error procedure was generally used to determine the optimal spread 
parameter. The main advantage of this ANN compared to the other existing ANNs is that 
it is does not require an iterative training procedure. It needs only one‒pass learning to 
achieve optimal prediction performance.

3.3 � Radial basis function neural network (RBFNN)

The RBFNN is a type of feed-forward neural network that was addressed by Broomhead 
and Lowe (1988). The architecture of the RBFNN consists of three layers, namely, the 
input layer, hidden layer, and output layer, as presented schematically in Fig.  4. The 
RBFNN has the advantage of not suffering from local minima and having a simple 
structure and fast training procedure compared to the MLPNN.

The hidden layer of the RBFNN model is a radial basis transfer function and the lin-
ear function is used at the output layer. Among many radial basis functions, the Gauss-
ian function is preferred as the transfer function in the hidden layer, and is defined as in 
Eq. (9) (Haykin 1999).

where aj(x) is the centre of the basis function, �j is the spread of the jth neuron in the hid-
den layer, ‖xi − cj‖ is the radial distance between xi and the centre of the RBF unit. The 
operation of the output layer is linear, as given in Eq. (10).

(6)S =

n∑
i=1

Yiexp

(
−

(
X − Xi

)T(
X − Xi

)
2�2

)

(7)D =

n∑
i=1

exp

(
−

(
X − Xi

)T(
X − Xi

)
2�2

)

(8)Y(X) =
S

D
=

∑n

i=1
Yiexp

�
−
(X−Xi)

T
(X−Xi)

2�2

�

∑n

i=1
exp

�
−
(X−Xi)

T
(X−Xi)

2�2

�

(9)aj(x) = exp

�‖xi − cj‖
2�2

j

�
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where yk is the kth output unit for the input vector x , wjk is the weight connection between 
the kth output unit and the jth hidden layer unit, and bk is the bias.

3.4 � Performance metrics

The outcomes of velocity prediction using the MLPNN, GRNN, and RBFNN models were 
evaluated based on the statistical metrics of root mean square error (RMSE), mean absolute 
error (MAE), and coefficient of determination ( R2).

where n is the number of data, XO,i and XP,i are the observed and predicted values, respec-
tively, and 

−

XO is the mean observed value.

(10)yk(x) =

n∑
j=1

wjkaj(x) + bk

(11)RMSE =

(
1

n

n∑
i=1

(
XO,i − XP,i

)2
)1∕2

(12)MAE =
1

n

n∑
i=1

||XO,i − XP,i
||

(13)R2 =

⎛⎜⎜⎝

n�
i=1

�
XO,i −

−

XO

��
XP,i −

−

XP

�
∕

���� n�
i=1

�
XO,i −

−

XO

�2
n�
i=1

�
XP,i −

−

XP

�2⎞⎟⎟⎠

2

Fig. 4   Schematic diagram of RBFNN
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4 � Results and discussion

In the current study, the MLPNN, GRNN, and RBFNN models were developed in a MAT-
LAB software environment. In this section, the obtained results are presented separately.

4.1 � MLPNN model development and results

The choice of the number of hidden layers is an important step in the operation of the ANN 
and for that there is no theoretical guidance. It has been proven that a single hidden layer 
is sufficient to approximate any continuous function (Hornik et al. 1989). Moreover, using 
more than one hidden layer can lead to a large number of local minima and make training 
difficult. However, the MLPNN that used a single (one) layer did not give accurate train-
ing results. Thus, in this study, double (two) hidden layers were utilized to construct the 
MLPNN model. Due to the low accuracy of the model, the results derived with a single 
hidden layer are not given in this article.

At the start of the training phase, both weights and biases were initialized with random 
values. Hence, each MLPNN model was retrained 100 times with the same training dataset 
to avoid the effects of different initial weights and biases. The mean of the output values 
from these models is then assumed as the final value of the MLPNN model. The hyper-
bolic tangent sigmoid function (tansig) and logarithmic sigmoid function (logsig) were 
used in the hidden layers, whereas the pure linear function (purelin) was used in the output 
layer. Before the training phase, the most appropriate training function must be chosen for 
the problem. Different back-propagation training algorithms including the Levenberg‒Mar-
quardt (LM), Scaled Conjugate Gradient (SCG), Bayesian Regularization (BR), and Gradi-
ent Descent with Momentum and Adaptive Learning Rate (GDX) were used for training 
the MLPNN. Among the four training algorithms for geodetic point velocity prediction, 
the MLPNN trained with the BR training algorithm provided the best performance in the 
training phase, with RMSE about 4 mm. The MLPNN trained with LM and SCG training 
algorithms yielded lower performance in training phase, with RMSE of about 6 mm and 
7 mm, respectively, for all velocity components. The weakest model is the MPLNN trained 
with the GDX training algorithm with an RMSE of about 8 mm for all velocity compo-
nents. To have a complete conclusion, the models’ performances were assessed on the 
testing dataset. Similar results to the training phases were obtained. The MLPNN trained 
with BR training algorithm was the best model in a comparison of the other models. The 
corresponding performance values of the MLPNN trained with BR training algorithm 
also found with an RMSE of about 2 mm for all velocity components. Whereas, MLPNN 
trained with LM training algorithm, MLPNN trained with SCG training algorithm, and 
MLPNN trained with GDX training algorithm proved lower performances, with RMSE 
4 mm, 5 mm, and 6 mm respectively, for all velocity components. From the analysis of the 
results, it is obvious that for MLPNN, BR training algorithm is suitable for predicting the 
geodetic point velocities. The detail results about the MLPNN trained with BR training 
algorithm are given in Table 1. The BR is a training algorithm that updates the weight and 
bias values according to Levenberg‒Marquardt optimization. It minimizes a combination 
of squared weights and biases, and then determines the correct combination so as to pro-
duce a network that generalizes well. To improve generalization ability of the network, the 
regularized training objective function S(w) is denoted as:



280	 Acta Geodaetica et Geophysica (2021) 56:271–291

1 3

where � and � are objective function parameters (regularization parameters), EW is the sum 
of squared network weights, ED is the sum of squared network errors,m is the number of 
weights,

n is the number of input and output examples of the training dataset D, and T  is the 
target value.

In Bayesian framework, the weights of the network are considered to be random vari-
ables. According to Bayes’ rule the probability distribution of the weights can be writ-
ten as:

where M is the network model and architecture, and w is the vector of network 
weights. P(D|w,�,M) is the likelihood function, which shows the probability of the 
data occurring.P(w|�,M) is the prior density, which represents our knowledge of the 
weights.P(D|�,�,M) is a normalization factor, which guarantees that the total probability 
is 1. If the noise in the training set data is Gaussian and that the prior distribution for the 
weights is Gaussian, the probability densities can be obtained by

where ZW (�) = (�∕�)N∕2 and ZD(�) = (�∕�)n∕2

Substituting the expressions for the prior probability and the likelihood function into 
(15) gives.

The objective function parameters � and � determine the complexity of the model M . 
Now we again apply Bayes’ rule to.

From Eqs. (16) and (17), it follows.

In Eq. (20), we already know ZW (�) and ZD(�) . Since the objective function has the 
shape of a quadratic in the small area surrounding the minimum point of the poste-
rior density wMP , where the gradient is zero. Thus, we can estimate ZS(w)(�,�) by Taylor 
series expansion. For solving the normalizing constant, we obtain

(14)S(w) = �EW + �ED; EW =

m∑
i=1

w2
i
; ED =

∑n

i=1

(
Yi − Ti

)2

(15)P(w|D, �, �,M) =
P(D|w,�,M)P(w|�,M)

P(D|�,�,M)

(16)P(w|�,M) =
1

ZW (�)
exp(−�EW )

(17)P(D|w, �,M) =
1

ZD(�)
exp(−�ED)

(18)P(w|D, �, �,M) =
1

ZS(w)(�,�)
exp(−S(w))

(19)P(D|�, �,M) =
P(D|�,�,M)P(�,�|M)

P(D|M)

(20)P(�, �|D,M) =
ZS(w)(�,�)

ZW (�)ZD(�)
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where H is the Hessian matrix of the objective function.

Substituting ZS(w) in Eq. (21) by Eq. (20), taking the derivative with respect to each of 
the log of Eq. (20) and set them equal to zero, we can find the optimal values for � and � at 
wMP.

where � is the number of effective parameters

where N is the number of parameters in the network.
According to MacKay (1992) and Foresee and Hagan (1997), the iterative procedure is 

as follows: (1) Initialize � , � and the weights. (2) Take one step of the LM training algo-
rithm to find the weights that minimize the objective function S(w) . (3) Compute � using 
the Gauss-newton approximation to Hessian matrix in the Levenberg–Marquardt training 
algorithm and new values for � and � . (4) Iterate steps 2 to 3 until convergence.

In the past, many approaches were suggested for calculating the number of neurons in 
the hidden layer. However, determining the number of hidden neurons was achieved by the 
trial‒and‒error approach. The RMSE was used as a criterion to select the optimum number 
of neurons. Starting from two hidden neurons, the number of hidden neurons was increased 
by one in each trial until the required accuracy was achieved. The value of 7 for both hid-
den neurons was selected as the optimum case. Thus, the optimal MLPNN structure was 
determined as [2:7:7:3]. The performance of the MLPNN model for the training and test-
ing phases in terms of the RMSE, MAE, and R2 is given in Table 2.

Table 2 shows that all velocity components gave similar RMSE and MAE values of 
about 4  mm and 3  mm, respectively, for the training phase. The same table indicates 
that the RMSE and MAE values belonging to all velocity components are about 2.5 mm 
and 2 mm, respectively, for the testing phase. The MLPNN model gave a high R2 value 

(21)ZS(w)(�, �)
v ≈ (2�)N∕2det((HMP)

−1
)
1

2
exp(−S(wMP))

(22)H = �∇2EW + �∇2ED

(23)� = �∕2EW (w
MP)

(24)� = (n − �)∕2ED(w
MP)

(25)� = N − 2�MPtrace−1(HMP)

Table 2   Performance statistics 
of the MLPNN model in the 
training and testing phases

Phase V
X

V
Y

V
Z

Training
RMSE (mm) 3.52 4.71 4.23
MAE (mm) 2.61 2.82 2.99
R2 0.71436 0.66787 0.42005
Testing
RMSE (mm) 2.57 2.28 2.39
MAE (mm) 1.92 1.75 1.95
R2 0.77892 0.89700 0.61488
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for the testing phase, whereas the R2 value for training phase was found to be low. The 
R2 value for the testing phase was close to 0.9 only for the VY component, while the R2 
values of VX and VZ remained below 0.9. The scatter diagrams of the velocity values pre-
dicted by the MLPNN model versus the observed velocities and the residuals produced 
by the MLPNN model in the testing phase is also shown in Fig. 5.

In the VX and VZ components, the intersection rate was far from to 0, although the 
slope rate was close to 1. Nevertheless, the slope and intercept rates were very close 
to 1 and 0 in the VY component. According to the obtained results, the MLPNN model 

Fig. 5   Scatter diagrams of the predicted and observed velocity values (left) and residuals obtained from the 
developed MLPNN model for testing points (right)
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developed for predicting the geodetic point velocities gave acceptable results despite the 
reasonable fitting of the curve.

4.2 � GRNN model development and results

The GRNN was employed to construct the second ANN model. One of the most impor-
tant steps in training a GRNN model is to select the best possible spread parameter 
because this value influences the efficacy of the developed GRNN. The GRNN was 
trained with different spread values ranging from 0.01 to 1. The optimum value of the 
spread parameter was determined according to the RMSE. The point where the error 
decreased and began to increase again was chosen as the most appropriate spread param-
eter. Because of the lowest RMSE at a spread parameter of 0.18, the predicted results 
were satisfactory. In order to reveal the performance of the GRNN model, the training 
and testing results in terms of the RMSE, MAE, and R2 are tabulated in Table 3.

According to the derived results of the GRNN model, based on the training dataset, 
the RMSE for velocity components ranged from 3.47 to 4.22 mm, and the MAE value 
obtained was about 3  mm per component. Considering the testing results, the GRNN 
model provided higher accuracies for all velocity components, with RMSE values of 
1.88 mm, 1.81 mm, and 1.77 mm, respectively. The MAE ranged from 1.44 to 1.51 mm 
with regard to testing results. The GRNN model was similar to the MLPNN model, 
based on the testing dataset, and yielded a high R2 value, whereas the R2 value was low 
for the training phase. The R2 value for the testing phase was about 0.9 for the Vx and 
VY velocity components. For the VZ component, the R2 value was found as 0.8. Figure 6 
shows the scatter diagrams of the velocity values predicted by the GRNN model versus 
the observed velocities and the residuals produced by the GRNN model in the training 
phase.

For the VZ component, the slope rate was close to 1, whereas the intersection rate 
was about 2. The rates of slope and intercept were very close to 1 and 0 for components 
VX and VY . That is to say, the predicted velocity values were near to the real velocity 
values of the cleaning width. Similar to the MLPNN model results, the fitting curves of 
the VY and VZ components gave less sensitive results compared to the VX component. In 
general, based on the obtained results, the GRNN model developed for predicting the 
geodetic point velocities is reasonably good.

Table 3   Performance statistics of 
the GRNN model in the training 
and testing phases

Phase V
X

V
Y

V
Z

Training
RMSE (mm) 3.47 4.74 3.92
MAE (mm) 2.80 3.04 2.93
R2 0.73208 0.67801 0.52686
Testing
RMSE (mm) 1.88 1.81 1.77
MAE (mm) 1.51 1.47 1.44
R2 0.87061 0.93299 0.78032
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4.3 � RBFNN model development and results

The RBFNN was employed to construct the third ANN model and the same parameters 
were used. The spread parameter was varied to achieve a lower RMSE value. After sev-
eral trials, it was found that the RBFNN model showed good results at a spread of 1.5. 
To achieve good prediction, 60 neurons were taken in the hidden layer of the RBFNN 
model. The prediction results of RMSE, MAE, and R2 for the training and testing phases 
are given in Table 4.

Fig. 6   Scatter diagrams of the predicted and observed velocity values and residuals obtained from the 
developed GRNN model for testing points
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According to the derived results of the RBFNN model, based on the training dataset, the 
RMSE for all velocity components ranged from 3.57 to 4.78 mm, while the RMSE for all 
velocity components was about 2.34 mm based on the testing dataset. Based on the training 
dataset, the MAE value was about 3 mm per component, while the MAE value was about 
2 mm per component for the testing dataset. Similar to the MLPNN and GRNN models, 
the RBFNN model gave a low R2 value for the testing dataset, whereas a high R2 value was 
found for the training dataset. The R2 value for the testing phase was about 0.8 for both 
the VX and VY components. The R2 value was about 0.6 for component VZ . Figure 7 shows 
the scatter diagrams of the predicted values of velocities via the RBFNN model versus the 
observed velocities and the residuals produced by the RFBNN model in the training phase.

The RBFNN gave slope and intersection rates very close to the MLPNN results (Fig. 7). 
In components VX and VZ , the slope rate was close to 1, whereas the intersection rate was 
about 3. As with both the MLPNN and GRNN methods, the slope and intercept rates 
for the VY component were very close to 1 and 0. As a result, it was understood that the 
RBFNN was likely capable of reasonably predicting the velocity values within a broad 
range of data despite the poor fitting of the curve.

4.4 � Comparisons of models

Performances of the MLPNN, GRNN, and RBFNN models were compared with each other 
and the appropriate ANN model was found for predicting the geodetic point velocities. The 
comparison of results from the three different ANN models, based on the RMSE, MAE, 
and R2, is given in Table 5. This table shows that the RMSE values of the MLPNN, GRNN, 
and RBFNN models were approximately 2.41 mm, 1.82 mm, and 2.34 mm, respectively. 
According to the RMSE results of the GRNN model considering all components of geo-
detic point velocities, the RMSE values were below 2 mm. Similarly, the MAE values were 
below 2  mm, at approximately 1.87  mm, 1.47  mm, and 1.85  mm, respectively. The R2 
values of the MLPNN, GRNN, and RBFNN models were approximately 0.76360, 0.86131, 
and 0.77651, respectively. In light of these comparisons, it is clear that the GRNN model 
produced the best accuracy in all the geodetic point velocity components with respect 
to RMSE, MAE, and R2. As can be observed from Table 5, after the GRNN model, the 
RBFNN model performed better than the MLPNN model.The results shown in bold in the 
Table 5 indicate the best values.

The comparisons of the observed results with the predicted results of the MLPNN, 
GRNN, and RBFNN models, and the velocity residuals obtained from all the ANN 

Table 4   Performance statistics of 
the RBFNN model in the training 
and testing phases

Phase V
X

V
Y

V
Z

Training
RMSE (mm) 3.57 4.78 4.11
MAE (mm) 2.83 3.00 3.05
R2 0.70488 0.65500 0.44845
Testing
RMSE (mm) 2.33 2.34 2.34
MAE (mm) 1.83 1.90 1.83
R2 0.82344 0.88553 0.62057
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models in the testing phase are shown in Fig. 8. For the MLPNN, GRNN, and RBFNN 
models, the velocity residual ranges were ‒6.99  mm‒5.37  mm, ‒3.94  mm‒3.87  mm, 
and ‒6.22  mm‒4.89  mm for VX ; ‒6.08  mm‒4.88  mm, ‒3.59  mm‒3.93  mm, and 
‒5.70  mm‒5.90  mm for VY ; and ‒7.29  mm‒3.64  mm, ‒3.59  mm‒3.36  mm, and 
‒6.38 mm‒6.61 mm for VZ . As a result of the prediction made using the GRNN model, the 
velocity residuals did not exceed 4 mm for any of the geodetic point velocity components. 
The extreme velocity residuals were found for the VZ geodetic point velocity component.

It is clear that the velocity residual values of the GRNN model were lower than either 
the MLPNN or RBFNN model.

Fig. 7   Scatter diagrams of the predicted and observed velocity values and residuals obtained from the 
developed RBFNN model for testing points
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5 � Conclusions

The applicability of the two ANN models, the MLPNN and RBFNN, in the prediction 
of geodetic point velocities has been investigated in previous studies. The MLPNN 
model was proposed as an alternative to classical interpolation methods in the predic-
tion of geodetic point velocities (Güllü et  al. 2011). In addition to the MLPNN, the 
RBFNN was applied and tested for prediction of geodetic point velocity (Yilmaz and 
Gullu 2014). However, the GRNN model has never been used for this purpose. This 
study investigated the potential of the GRNN in predicting the geodetic point velocities 
as compared to the MLPNN and RBFNN. All ANN model performances were evaluated 
and compared through the statistical parameters RMSE, MAE and R2 for each model. 
The following conclusions can be made from the results of this study:

•	 All geodetic point velocity components ( VX , VY , VZ ) can be predicted used as output 
parameters simultaneously.

Table 5   Comparisons of 
MLPNN, GRNN, and RBFNN 
models for each geodetic point 
velocity component

Types of model Velocity RMSE (mm) MAE (mm) R2

MLPNN V
X

2.57 1.92 0.77892
V
Y

2.28 1.75 0.89700
V
Z

2.39 1.95 0.61488
GRNN V

X
1.88 1.51 0.87061

V
Y

1.81 1.47 0.93299
V
Z

1.77 1.44 0.78032
RBFNN V

X
2.33 1.83 0.82344

V
Y

2.34 1.90 0.88553
V
Z

2.34 1.83 0.62057

Fig. 8   Comparison between observed velocities and predicted velocities for each velocity component using 
MLPNN, GRNN, and RBFNN models
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•	 The MLPNN, GRNN, and RBFNN models offered satisfactory prediction of geodetic 
velocity (at mm accuracy).

•	 The GRNN model was found to be superior to the other ANN models (MLPNN and 
RBFNN) since it achieved the lowest RMSE and MAE, and the highest R2 values. In 
this regard, the GRNN can be said to be able to predict geodetic point velocity.

•	 After the GRNN, the RBFNN model was found to perform better than the MLPNN 
model.

Although the R2 performance criteria results obtained from the ANN models were 
generally not very good, especially in the training phase, the RMSE and MAE results 
indicated that sufficient accuracy was achieved in both the training and testing phases. It 
should be noted that the R2 should not be applied alone as a performance criterion (Leg-
ates and McCabe 1999) and that being equal to 1 does not guarantee that a model cap-
tures the behaviour of the investigated parameter (Kisi 2008). The reason for the low R2 
is thought to have been the distribution of the training and testing datasets. In this cur-
rent study, to predict the velocities of the geodetic points, the training and testing datasets 
were selected randomly. Incorrect data partition could have led to reduced accuracy of the 
results on the predictive performance of the ANN model. To overcome this problem, the 
use of cross-validation (i.e. k-fold) technique has been recommended (Reitermanová 2010). 
Cross‒validation is an assessment method used to improve the flexibility of a model, thus 
the performance of the proposed model; and then further statistical analysis will generalize 
onto an individual dataset. In further studies, the potential of the ANN with different cross-
validation methods can be investigated for prediction of geodetic point velocity. Otherwise, 
the GRNN model should be applied and tested at different point densities. Thus, different 
datasets can be utilized to assess the impact of point density on the GRNN velocity predic-
tion results. The GRNN-predicted outcomes can significantly deviate from the geodetically 
derived velocities. In this study, the GRNN can provide reasonable predictions, so it can be 
a promising tool for this purpose. The velocity predicting framework of the GRNN model 
needs further discussion and research. To assess the effectiveness of the GRNN, more stud-
ies should be conducted using different data sets in future works.
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