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Abstract
Fracture or fault can control several geological or geophysical events and exploration, 
where the fault associated with mineralization or fluid flow can be used as a source for 
Self-Potential (SP) anomaly. The 2-D inclined sheet can be used for modeling for fault 
interpretation using SP data. In this paper, the improved crow search algorithm (ICSA) 
using Levy flight is proposed for SP data inversion in determining SP model parameters. In 
order to evaluate ICSA, the ICSA is compared with standard crow search algorithm (CSA) 
for determining synthetic SP data that contains multiple anomalies with inclined sheet type 
structures. It was found that CSA is more explorative than ICSA, and both algorithms can 
estimate the posterior distribution model (PDM) of SP data. Using uncertainty analysis 
within the applied threshold in the objective function, both algorithms are reliable to deter-
mine PDM. Furthermore, ICSA is tested and implemented to both synthetic and field of 
SP anomalies for providing the posterior distribution model of SP parameters. The experi-
mental results demonstrate that the ICSA is feasible and effective for determining model 
parameters and its uncertainty of mono- and multi-SP anomalies. Furthermore, estimat-
ing both model parameter and its uncertainty are sufficient for validation with previous 
researchers. Finally, the interpretation of multiple anomalies in SP anomaly crossing the 
Grindulu Fault in Pacitan, East Java, Indonesia, is analyzed.
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1  Introduction

Fault or fracture can be used to identify the presence of geyser (Monteiro Santos et al. 2002) 
and hydrocarbon (Hardman and Booth 1991), causing instability and water seepage from 
embankments (Sungkono et al. 2014b, 2018), causing seismic hazards (Diambama et al. 2019; 
Pace et al. 2018), controlling aquifer (Saribudak and Hawkins 2019), etc. The geological fault 
is connected with mineralization (Biswas et  al. 2014; Biswas and Sharma 2016; Mehanee 
2015) or associated with water flow through fracture/fault (Monteiro Santos et al. 2002), that 
also produces the self-potential anomaly (Biswas 2017) which can be used for the inversion 
process to obtain the characteristic parameters (e.g., depth, the elevation, width, and edges 
position) from the inclined sheet that formed by this fault.

Analysis of SP data recently classifies into two approaches including signal analysis (Di 
Maio et al. 2016a, 2017; Mauri et al. 2011), inversion process, and combining signal analy-
sis and inversion approaches (Biswas 2018). The inversion process also divided into two 
approaches, namely local optimization (LO) and global optimization (GO) (Biswas 2016), 
where the GO is more robust than LO. The popular global optimizations have successfully 
inversed SP data to determine the model parameter of their anomalies viz. particle swarm 
optimization (PSO) (Essa 2020; Monteiro Santos 2010), differential evolution (DE) (Balkaya 
2013; Sungkono 2020b), simulated annealing (SA) (Sharma and Biswas 2013), grey wolf 
optimizer (GWO) (Agarwal et al. 2018), black hole algorithm (BHA) (Sungkono and War-
nana 2018), hybrid GWO and PSO (Ramadhani and Sungkono 2019), Genetic-Price algo-
rithm (Di Maio et al. 2016b, 2019) and flower pollination algorithm (FPA) (Sungkono 2020a).

Nevertheless, the significant number of GO has been proposed as an algorithm for SP data 
inversion, the last three algorithms provide uncertainty analysis and solution estimation (Ram-
adhani and Sungkono 2019; Sungkono 2020a; Sungkono and Warnana 2018), although both 
steps are important in inversion process (Fernández-Muñiz et al. 2019). The uncertainty anal-
ysis is important to analysis ambiguity for the model parameter in the SP inversion (Biswas 
and Sharma 2015). Uncertainty analysis and solution appraisal can be solved using random 
sampling, Bayesian approach, and exploratory GO methods. The last method is more reliable 
for applying several problems because this method needs lesser time for calculating forward 
modeling and objective function than others, although the wide search space bounds in the 
inversion process are used (Ekinci et al. 2020).

Furthermore, based on the No Free Lunch (NFL) theorem (Wolpert and Macready 1997) 
described that no algorithm could successfully solve all optimization problems. It means 
that GO algorithms have described above does not guarantee to solve all optimization prob-
lems with different type and characteristic. Consequently, several researchers propose to GO 
algorithm for inversion problems. In this paper, a GO, called crow search algorithm (CSA) 
is applied for determining the model parameter of SP data and its uncertainty analysis. The 
diversity of CSA to measure exploration percentage for the algorithm is also evaluated.

2 � Self‑potential (SP) method

SP method is one of the earliest geophysical methods. This method measures the superposi-
tion of multiple source contribution (natural potential) including electrokinetic (streaming), 
mineralization (geobattery), electrochemical (liquid junction or diffusion), and thermoelec-
tric potentials (Revil and Jardani 2013; Sharma 1997). Consequently, some application of SP 
method can be known, for example: water seepage in embankment and landslides potential 
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can be identified using potential electrokinetic concepts in SP method (Ikard et al. 2014; Sung-
kono 2020b; Sungkono and Warnana 2018); exploration of minerals including copper, sulfide, 
silica, uranium, graphite and copper deposits (Biswas 2017) is associated with mineralization 
potential; study of geothermal systems using SP data is based on the thermoelectric poten-
tial because strong thermal gradients, hot gas emission, and thermal conduction have existed 
in the subsurface around the geothermal system (Zlotnicki and Nishida 2003); assessment 
of landfill leachate is based on combining electrokinetic, mineralization and electrochemical 
potentials (Arora et al. 2007; Giang et al. 2018).

The approach in modeling the SP anomaly can be classified as an idealized anomaly body 
(horizontal, vertical cylinder, sphere and inclined sheet) and non-ideal body that use the finite 
element approach. For the geological model that contains fracture or fault, the SP anomaly 
can be considered as a 2-D inclined sheet (Fig. 1a) which mathematically, the voltage can be 
described as follow (Biswas and Sharma 2014a, b):

where N is counted anomaly that identified through SP data in x measurement, while 
k = I�∕(2�) indicated the polarization parameter (mV), while x1 , z1 and x2 , z2 show the 
coordinates of the top and bottom edges of the sheet (Fig.  1a). Equation  (1) is used to 
avoid the ambiguity that formed by the inversion process of SP data in an inclined sheet 
anomaly. Also, this formula is far more realistic for multiple anomalies of SP data (Biswas 
and Sharma 2013, 2014a, 2017). Generally, SP anomaly for the inclined sheet which is 
frequently used for interpretation of SP data is formulated in Eq. (2) as shown in Fig. 1b 
(Sundararajan et  al. 1998). Equation  (2) have lower uncertainty than Eq.  (1), however, 
Eq. (1) is better to interpret multiple anomalies of SP data than Eq. (2) (Biswas and Sharma 
2014a).
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Fig. 1   Two sketch diagram for 2-D inclined sheet model parameters based on forward modeling a using 
Eq. (1); b using Eq. (2)
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where xa, a, h and � are x-coordinate as a center of anomaly, half-length of a sheet, depth 
from the center of the sheet, and inclination counterclockwise in x positive axis, respec-
tively. The other parameters have the same meaning as Eq. (1). According to Eq. (2) we 
can determine that the geological model is relevant if only h ≥ a sin � (Biswas and Sharma 
2014a). The condition must be owned by inclined sheet model parameters.

3 � Crow search algorithm (CSA)

3.1 � Original CSA

CSA is developed using the intelligent behavior of crow bird (Askarzadeh 2016). This 
algorithm is based on behavior and characteristic of crows which are: (1) Generally, crow 
lives as a group; (2) crows have memories for their last current position and nest; (3) crows 
follow the others clandestinely; (4) crows protect their nest from another intruder with sev-
eral probabilities.

According to the following characteristic, CSA is being developed and applied for solv-
ing several problems. The main characteristic of crow shows that the CSA algorithm uses 
a distinct population which is N population. Furthermore, for initializing the crow position 
(for M population) are commenced randomly in the model room with specified approxima-
tion Xi = Xmin + randi ×

(
Xmax − Xmin

)
 , with i = 1, 2,… ,M . Then, the objective func-

tion calculation for every position of crow is initialized. After the following initialization 
process, because every crow has a memory for its nest, mi , the initialization parameter is 
also executed. For every memory in a position of crow is the best last known memories. 
Mathematically, this memory is analogous to Pbest in the PSO algorithm. This memory 
parameter is used for a crow to move to a better nest and hunt.

In the iteration process, i crow decides to follow j crow to approach the crow j’s nest. 
This may cause several probabilities such as: (1) j crow doesn’t know that he is being fol-
lowed by i crow, so that i crow will approach j’s crow nest; (2) j crow knows that he is 
being followed by i crow, to protect his nest from intruder, j crow will trick i crow by 
moving to another position in model. In addition, this probability can be mathematically 
represented as:

while ri and rj denote uniform random number with a value between 0 and 1, fli indicates 
as flight length of crows,AP is awareness probability from crow j , also xmin and xmax 
orderly is a lower and upper bond of the model parameter.

After the updated position of the crow, the next step is checking the feasibility of the 
new position. If the position is feasible, the crow position will be updated otherwise, if the 
position is not feasible, the crow position will be randomized through the model are. The 
position that has been checked for feasibility also checked for the objective function. This 
calculation, however, is required to maintain the memory for each crow. Detailed step of 
the CSA is shown in Appendix A.

The idealized GO usually provides the proper balance between exploration and exploi-
tation (Fernández-Martínez et al. 2010a; Laby et al. 2016; Sungkono and Warnana 2018). 
In order to obtain the correct model parameter for optimum global faster. The explorative 
and exploitative characteristic in CSA is determined by two parameters ( fl and AP ), that 

(3)Xi(iter + 1) =

{
Xi(iter) + ri × fli(iter) ×

(
mj − Xi(iter)

)
rj ≥ APrj ≥ AP

Xmin + ri ×
(
Xmax − Xmin

)
otherwise
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have to be tuned firstly. Askarzadeh (2016) suggests that the fl parameter should be higher 
than one. Otherwise, Eq. (1) shows that big AP will cause CSA to be more explorative with 
a diverse model parameter, but require more iteration to reach optimum global. Contrary, if 
AP is lower, the probability of CSA to be exploitative and tend to have better local search; 
however, the parameter model for the solution is often trapped in a local optimum.

3.2 � Improved CSA

In order to make the CSA is usable for estimating the optimum global parameter correctly, 
in this research use the adaptive AP,fl = 2.5 and use the Lévy flight for random movement 
as shown in Eq.  (3) (Diaz et al. 2018). This adaptive AP is determined according to the 
value of objective function, which mathematically can be described as following:

with f
(
Xi(iter)

)
 is objective function for every crow. Furthermore, the crow position in 

CSA can be written as follows:

where Xbest is the best individual, while L representing step size parameter with Lévy 
distribution. Furthermore, CSA uses Eq. (5) with AP as shown in Eq. (4) called improved 
CSA (ICSA), while CSA that uses Eq (3) with constant AP, in this case is 0.1, called CSA.

3.3 � Inversion of SP data using CSA or ICSA

The measured data obtained from a fix based method needs to correction process, includ-
ing reference correction and drift correction (Revil and Jardani 2013). Next, the corrected 
SP data usually contains unwanted noise that reflects near and far telluric interference. This 
interference can distort the low amplitude anomaly or long-wave anomaly (Biswas 2017). 
Moreover, SP noise can be sourced from a strong heterogeneity of the resistivity distribu-
tion in the shallow subsurface (Fajriani et al. 2017; Revil and Jardani 2013). Consequently, 
any SP data needs to be filtered using a moving average (Fajriani et al. 2017) or empirical 
mode decomposition based (Sungkono and Warnana 2018) before carried out for inversion.

Inversion SP data using CSA or ICSA process is automatically finding model 
parameter Xi associated with the global minimum of the objective function. The 
model parameter Xi contains SP data parameters (in Eq.  1) including k, x1 , z1 , x2 and 
z2 for all sources of SP data. It means that for each individual (crow) can be written as 
Xi = [k1,… , kN , x11,… , x1N , z11,… , z1N , x21,… , x2N , z21,… , z2N] with N indicates the 
number of anomalies. Further, the inversion of SP data uses CSA or ICSA as following flow 
in Appendix A for minimizing an objective function. The objective function must reflect 
for fitting between calculated Vc = [Vc

1
,Vc

2
,… ,Vc

Nd
] and observed Vo = [Vo

1
,Vo

2
,… ,Vo

Nd
] 

SP response. The objective function for each individual as following (Monteiro Santos 
2010)

(4)AP(iter) = 0.9 ×
f
(
xi(iter)

)

max{f (x(iter))}
+ 0.1

(5)Xi(iter + 1) =

{
Xi(iter) + ri × fli(iter) ×

(
mj − Xi(iter)

)
rj ≥ AP(iter)

Xi(iter) + 0.01 × L⊙
(
Xi(iter) − Xbest(iter)

)
otherwise
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Equation (6) reflects that the minimum of objective function occurs when the calculated is 
close to observed SP data. The objective function is used to handle multiple anomalies of SP 
data (Monteiro Santos 2010).

In geophysics, the inversion process is for estimating the model parameter with the mini-
mum objective function. Another function is providing uncertainty solutions of model param-
eters. The uncertainty of model parameters is to handle a non-unique solution in the inversion 
process. Both of this can be achieved by using a posterior distribution model (PDM) (Fernán-
dez-Martínez et  al. 2010b, 2013, 2019). This PDM can be estimated using Markov Chain 
Monte Carlo (MCMC) (Sungkono and Santosa 2015) and trade-off objective function from 
GO (Sungkono 2020a; Sungkono and Warnana 2018).

3.4 � ICSA compared to other GO for SP inversion

Several GO methods are successfully applied to multiple SP sources inversion including PSO 
(Monteiro Santos 2010), very fast simulated annealing (VFSA) (Sharma and Biswas 2013), 
whale optimization algorithm (WOA) (Abdelazeem et al. 2019), BHA (Sungkono and War-
nana 2018), GPA (Di Maio et al. 2019), FPA (Sungkono 2020a), and micro-adaptive differen-
tial evolution ( � JADE) (Sungkono 2020b). FPA uses Lévy flight and uniforms distribution, 
VFSA applies Cauchy distribution, while the others utilize uniforms distribution for individual 
moving. It indicates the FPA algorithm has similarities and differences with ICSA.

ICSA needs a parameter tunning ( fl ) and uses Lévy distribution, while CSA involves two 
tuning parameters ( fl and AP ) and uses uniform random number. Two parameters as unknown 
are generally more challanging to be adjusted than tuning only one parameter, which is an 
advantage of ICSA compared with CSA. Furthermore, ICSA is like FPA, which is applied 
Lévy distribution for movement, and the performances are influenced by a parameter (Sung-
kono 2020a; Yang 2012). In addition, movement parameter in Eq. (5) if rj < AP(movement 
using Lévy distribution) is a similar equation with global pollination in FPA. However, ICSA 
with rj ≥ AP conditions is different from local pollination in FPA. The difference includes 
ICSA uses memory parameter, adaptive probability ( AP ), and scaling parameter ( fli ). Mem-
ory in GO can help speed up global minimum search (Sree Ranjini and Murugan 2017).

Both BHA and � JADE are free tuning parameters for the inversion process, while the 
other algorithms involve it. The performance of ICSA and WOA is mainly influenced by a 
parameter, while GPA and VFSA are controlled by two parameters, and PSO is affected by 
three parameters. Consequently, ICSA and WOA are easier than GPA, VFSA, and PSO for 
determining parameter tunes. However, WOA sets explorative in the first half iteration, while 
the others are exploitation, and BHA has more explorative than ICSA. It means that WOA and 
BHA probably require high iteration than ICSA.

4 � Synthetic study

In this section, the CSA and ICSA algorithm is utilized to provide the best model 
parameter and uncertainty analysis based on SP data. In order to CSA and ICSA algo-
rithm can be used to provide the posterior distribution model, CSA and ICSA parameter 
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is set to have balance characteristic between exploitative and explorative. The exploita-
tive characteristic will tend to make an algorithm to be faster in reaching convergent and 
have a possibility to be trapped in a local minimum, while explorative characteristic can 
maintain the algorithm to avoid the local minimum trap. The measurement characteris-
tic of CSA and ICSA is utilizing the dimension-wise diversity approach (Hussain et al. 
2019). This characteristic test will be made in synthetic data inversion with a tuning 
parameter from both CSA and ICSA algorithm.

Before applying both CSA and ICSA in real field data, both algorithms need to be 
assessed in synthetic data with two anomalies of the inclined sheet of SP data (Table 1). 
The synthetic data is generated using forward modeling as in Eq.  (1) with input “true 
parameter” in Table  1. This CSA algorithm then compared with the ICSA algorithm. 
This comparison has an arrangement portion of explorative and objective value from the 
best individual as the iteration function. Value from objective function as iteration from 
CSA and ICSA algorithm is displayed as in Fig. 2a, while the percentage of explora-
tive in both algorithms shown in Fig. 2b. However, Fig. 2b shows that the CSA algo-
rithm tends more explorative than the ICSA algorithm (this can be shown from itera-
tion number 50 to end of iteration) with objective function value is identical to each 
other (Fig. 2a). The percentages of exploration show fluctuations (decrement and incre-
ment) and systematically reach to a very low value. It does not always decrease, which 
means that both CSA and ICSA algorithms can achieve optimum global and may not 
be trapped in a local minimum. The argument is supported by good fitting curves of 
observed (synthetic) and calculated from CSA and ICSA of SP data (Fig. 3).

Figures 4 and 5 in the arrangement indicated the result of the posterior distribution 
model, which has been inverted by ICSA and CSA algorithm with the objective function 
threshold is 0.1. These figures show that median from PDM within the ICSA and CSA 
is approaching the true parameter, except for x2 on the first anomaly in CSA. Albeit, 
the correct value of the model parameter of SP data is still in ranges of PDM statistics 
(interquartile ± median) that have been resulted by both algorithms (Table 1).

Table 1   Comparison between real model and inversed model using CSA and ICSA

Parameters Anomalies K (mV) X1 (m) Z1 (m) X2 (m) Z2 (m)

True Model Anomaly 1 5 20 6 -20 30
Anomaly 2 10 100 10 150 50

Ranges Anomaly 1 0.1:20 − 40:40 0.01:50 -40:50 0.01:100
Anomaly 2 0.1:20 40:200 0.01:50 50:200 0.01:100

CSA Anomaly 1 5.63 ± 0.91 19.79 ± 0.94 7.39 ± 1.80 − 16.72 ± 5.88 30.11 ± 0.91
Anomaly 2 10.01 ± 0.43 100.08 ± 0.25 9.98 ± 0.91 149.72 ± 1.37 49.65 ± 0.56

ICSA Anomaly 1 5.00 ± 0.22 20.01 ± 0.57 6.02 ± 0.42 − 19.99 ± 1.57 30.33 ± 0.91
Anomaly 2 10.28 ± 1.71 100.12 ± 0.88 10.50 ± 1.81 148.33 ± 9.49 49.76 ± 2.38
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Fig. 2   Comparison performances of CSA and ICSA in the SP inversion. a The best objective functions of 
CSA and ICSA for each iteration; b explorative measurement of CSA and ICSA for each iteration

Fig. 3   Comparison synthetic and inverted SP data using CSA and ICSA, where dots represent the syn-
thetic data, while the solid and dashed line into a curve shows the inverted SP anomaly via CSA and ICSA, 
respectively
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5 � Field studies

Several data from the region have been analyzed by previous researchers and interpreted to 
investigate the performance of the ICSA algorithm in providing low objective value PDM. 
Last but not least, the ICSA algorithm is also utilized in interpreting the Grindulu Fault 
located in Pacitan Region, East Java, Indonesia.

5.1 � Pinggirsari SP anomaly, indonesia

Pinggirsari anomaly of Self-Potential is measured for identifying and characterizing fault 
structure and acquisition in Pinggirsari village, Bandung Regency, West Java, Indonesia 
(Fajriani et al. 2017). The measurement design of SP data has crossed the fault in the geo-
logical map of the area (Fig.  6 upper panel), while cross-section in S–N direction from 
geological map (Fig. 6 lower panel) is through the fault. SP anomaly is presented in Fig. 7, 
which is shown that the potential difference of anomaly around 500 m in distances. The 

Fig. 4   Histograms of PDM resulted by CSA inversion. The first anomaly is presented in the upper panel, 
while the second anomaly is demonstrated in the lower panel. True parameters presented with red dots, 
while the median of PDM is shown by crosses. True parameters are correctly estimated by the highest fre-
quency of PDM. Furthermore, median of PDM is close to true parameters
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Fig. 5   Histograms of PDM resulted by ICSA inversion. Other pieces of information are the same in Fig. 4

Fig. 6   Geological map of SP measurement in the Pinggirsari area (Pinggirsari anomaly) (Alzwar et  al. 
1992) and position of observed SP data (upper panel); cross-section from geological map crossed the fault 
(lower panel)
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observed SP anomaly has been analyzed using two methods namely, Levenberg–Marquardt 
(LM) (Fajriani et  al. 2017), WOA (Gobashy et  al. 2019) with the assumption that the 
anomaly is triggered by fault structure in the subsurface.

ICSA inversion process of Pinggirsari anomaly uses 200 generations and 100 popula-
tions, as shown in Fig. 7. ICSA inversion result shows that calculated SP data is very close 
to observed SP data, while the LM method also good fitting with observed data except 
around the 510 meters in distance. Furthermore, in order to obtain the subsurface model, 
the PDM is revealed by ICSA (0.3 as a threshold of objective functions). The result is 
presented in Fig. 8. The model parameter and its uncertainty are estimated from median 
and interquartile of PDM, respectively, which is shown by Table 2 together with that inter-
pretation by several other authors. The other authors generally analyze using Eq. (2), con-
sequently, the results need to convert in Eq. (1) parameters. Table 2 shows that the model 
parameters revealed by WOA are not relevant. The ICSA and LM approaches are satisfac-
tory with an association of the geological map (Fig.  6), where SP data can identify the 
near-surface fault (Fig. 6 lower panel).

5.2 � Vilarelho da Raia SP anomaly, Portugal

Data of SP anomaly measured in Vilarelho da Raia, Portugal has been successfully 
analyzed by several researchers by using inclined sheet approach or simple polarized 
structures (Biswas and Sharma 2014a; Di Maio et al. 2019; Monteiro Santos 2010; Roy 
2019). This anomaly (marked with dots in Fig. 9a) shows that SP data is produced by 

Fig. 7   ICSA inversion results for tracing fault in the Pinggirsari area (Fajriani et al. 2017). A comparison of 
measured and calculated data is demonstrated in the upper panel, where dots indicate the measured SP data, 
while the solid and dashed lines represent the calculated SP data; the subsurface model derived by ICSA 
(median of PDM) (red) and LM (black) methods are shown in the lower panel
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two or more anomalies. This SP anomaly, caused by the geological structure (fault or 
fracture) which controls the flow of water in the hot spring (Monteiro Santos et al. 2002; 
Roy 2019). Consequently, this anomaly is analyzed using the inclined sheet approach 
(Biswas and Sharma 2014a; Di Maio et al. 2019).

According to Biswas and Sharma (2014a, b), this SP anomaly contains five desig-
nated sources of anomalies in which the measurement data is incomplete (particularly 
the beginning of data set). So, this SP data is analyzed using four sources of anomaly 
instead of five. For simultaneous inversion, GO is accurate for SP data which contains 
multiple anomalies instead of using the optimum local approach. The main reason is 

Fig. 8   Histogram of PDM derived by ICSA inversion from Pinggirsari SP anomaly. Crosses indicate 
median of model parameters

Table 2   Model parameter and its uncertainty from anomaly inversion result of Pinggirsari by using ICSA 
algorithm that compared to previous research (Fajriani et al. 2017; Gobashy et al. 2019)

Methods K (mV) X1 (m) Z1 (m) X2 (m) Z2 (m)

Search Space 0.2:100 300:700 0:150 300:700 0:150
LM (Fajriani et al. 2017) 41.50 447.52 29.18 508.97 0
WOA (Gobashy et al. 2019) 47.38 461.72 33.58 497.53 − 2.22
ICSA 48.14 ± 1.84 450.93 ± 1.34 32.79 ± 0.67 509.98 ± 0.92 7.15 ± 0.81
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the optimum local wills not capable of interpreting the multiple anomalies of SP data 
simultaneously.

Figure 9 shows the inversion result of SP Data for Vilarelho da Raia anomaly using the 
ICSA algorithm with a population of 150 and 1000 iterations for resulting in the PDM that 
correlated with the low objective function. Figure 9 upper panel shows that a comparison 
between synthetic and observed SP data are matched, while Fig. 9 lower panel indicates 
structure, polarization, the orientation of SP sources anomaly, where both figures derived 
from PDM with 0.1 as a threshold in the objective function. The interpreted results provide 
a model parameter and its uncertainty (interquartile) as in Table 3. The table also compares 
interpretation using ISCA results with results of VFSA (Biswas and Sharma 2014a) and 
GPA (Di Maio et al. 2019). The central of second and third anomalies are close to previ-
ous researchers (Biswas and Sharma 2014a; Di Maio et al. 2019; Monteiro Santos 2010), 
where the third anomaly is deeper than the second anomaly. Furthermore, for first and the 
last structures are revealed by ICSA has close central to VFSA result.

5.3 � KTB‑Borehole anomaly, Germany

SP data, which is called KTB-Borehole anomaly, was measured around the KTB bore-
hole, in NE Bavaria, Germany. The KTB anomaly contains two high negative peak 
anomalies (Fig.  10a) which are correlated with the position of the subsurface model 
parameters. It means that the anomaly generally easy in spontaneous analysis and 
interpretation using a WOA as the inversion method and Eq. (2) for forward modeling 
(Gobashy et  al. 2019). Moreover, the anomaly also separates interpretation using the 

Fig. 9   Inversion results of Vilarelho da Raia field SP anomaly using ICSA for structures identification. 
Measured and calculated of SP data are compared in the upper panel, while the subsurface model estimated 
by median of PDM in the lower panel
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inversion process individually for the two anomalies using VFSA (Biswas 2017) and 
Gauss–Newton (GN) (Mehanee 2015).

In this paper, ICSA uses a simultaneous interpretation of the KTB anomaly with 
150 populations and 600 iterations. Figure  10 upper panel shows the curve fitting of 
observed and calculated from median of PDM. The PDM is collected with a threshold 
of 0.1 for the objective function. The calculated model is a very good agreement with 
observed SP data.

The inversion results using ICSA are shown in Table 4 and Fig. 10 lower panel. Table 4 
shows that ICSA is comparable with VFSA results, especially for electric dipole moment 
and the position of the top edge of sheet. The distances depth of the top of the sheet for both 
first and second anomalies is 615 meters, where several authors interpret using different 
approaches that the distances anomalies around 600 meters (Biswas 2017; Mehanee 2015; 
Stoll et al. 1995). The condition is slightly different from WOA results, i.e. 518.21 m. Fur-
thermore, several authors have a different interpretation in depth of the top of the sheet for 
first and second anomalies, for instance, 50 m and 30 m (Stoll et al. 1995), 27 m and 26 m 
(Mehanee 2015), 22.5 m and 17.2 m (Biswas 2017), − 7.02 m and 18.82 m (Gobashy et al. 
2019), correspondingly. In this study, ISCA results for the depth of the top of the sheet 
model for both anomalies are 22.21 m and 10.80 m. Again, the results are comparable with 
resulted by inversion of VFSA (Biswas 2017) and GN (Mehanee 2015).

Cross-section determined from several approaches including trial-and-error modeling 
(Stoll et  al. 1995), GN (Mehanee 2015), VFSA (Biswas 2017), and ICSA are shown in 
Fig. 11. Note that the WOA result does not sketch because the result is not reliable. The 
figure indicates that the ICSA and GN approaches are good agreement with inclined 
shear planes (F1 and F2). The F1 and F2 are sheet models for anomaly 1 and anomaly 2, 

Fig. 10   Subsurface structures in the KTB anomaly, Bavaria, Germany via ICSA inversion. Comparison of 
calculated and observed of SP data in the upper panel and subsurface model obtained by median of PDM in 
the lower panel
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respectively. The anomaly results are confirmed using other geophysical research and drill-
ing, which graphitization has occurred (Fig. 11a).

WOA inversion using Eq.  (2) converted to parameters in Eq.  (1). Therefore, the rele-
vance of the geology model must be checked. Model geology is relevant when h ≥ asin(�) . 
Thus, the WOA result for the first body is not a relevant model, so the depth of the top edge 
is negative (Table 4). Consequently, the WOA inversion result does not sketch in Fig. 11.

5.4 � Tambakrejo SP anomaly, Indonesia

Tambakrejo Village, Pacitan Regency, East Java is crossed by Grindulu Fault (Samodra 
et al. 1992). The Grindulu Fault forms left normal oblique strike − slip fault (sinistral) with 
NE − SW lineaments. SP data is acquired by crossing this fault, as shown in Fig. 12. Meas-
urement length for this anomaly is more than 1 km with porous pot space is configured to 
10 meters, so the SP data is clarified by the anomaly and reducing the heterogeneity from 
the ground itself.

Because the SP data generally noisy sourced by telluric and heterogeneity of resistivity 
in near-surface, and also affected by drift (Revil and Jardani 2013), the SP data needs to 
be filtered and detrended. In addition, the separation between local and regional anomaly 
also needed in SP data (Chengliang et  al. 2020). The problems can be done simultane-
ously using a variant of empirical mode decomposition (Rilling et al. 2005; Sungkono et al. 
2014a, 2017). Improved complete ensemble empirical mode decomposition (ICEEMD) 
(Colominas et al. 2014) is utilized to decompose SP data into several Intrinsic Mode Func-
tions (IMF). The next step is, several IMF is chosen for best-filtered data (Sungkono et al. 

Fig. 11   a The geologic cross-section is around the KTB-HB borehole (Mehanee 2015). Note that the leg-
ends for various rock types can be shown from Fig. 6 from Stoll et al. (1995). Subsurface structure deter-
mined from the KTB anomaly, Bavaria, Germany for vrioues approaches including, b Stoll et al. (1995), c 
Mehanee (2015), d Biswas (2017), and e ICSA
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2014a). In this selection, only IMF1 is eliminated with several considerations, which are: 
(1) IMF1 has a short wavelength which caused by ground heterogeneity; (2) Grindulu Fault 
formed by fault reactivation in the basement (Gultaf et al. 2015), so this fault is presented 
by SP data that has long wavelength; (3) regional anomaly of SP Data generally has con-
stant value or linear with distance (Li and Yin 2012; Mehanee 2014).

Figure 13 upper panel shows SP data after filtered uses ICEEMD. Qualitatively (based 
on a different wavelength) and SP anomaly type (Saribudak and Hawkins 2019), this figure 
shows that the SP formed by several anomalies in the near surfaces and one anomaly in the 
far surface which is allegedly located at a distance of 700 − 900 meters from the beginning 
of the measurement point. When Fig. 13 upper panel correlated with Fig. 12 show that the 
anomaly is caused by Grindulu Fault.

Inversion of SP data uses the ICSA method has been done with search space, as shown 
in Table  5. The inversion process is terminated after 1500 iterations with 200 popula-
tions. The inversion is repeated until five times to evaluate consistency result and to pro-
vide PDM, where PDM is collected using 0.3 as a threshold in the objective function. The 
small search space in the third anomaly is caused by the presence of fault that approaches 
the surface and causing several walls and buildings are cracked (located 400 meters from 
measurement points). The determination of search space is according to SP Data “char-
acteristic” which used to “decrease” the uncertainty of the model parameter in inversion 
result. The inversion result shows in Table 5 and Fig. 13. Figure 13 shows that inversion 
uses nine inclined sheets (lower panel) and resulting in excellent fitting (upper panel) 

Fig. 12   The geological map of SP study in Tambakrejo Village, Pacitan District, East Java, Indonesia 
(Samodra et al. 1992)
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Fig. 13   Inversion of filtered SP data via ICSA using a multi inclined sheet model. Comparison between fil-
tered and calculated of SP data in the upper panel, while the subsurface model revealed by median of PDM 
in the lower panel

Table 5   Model parameter of inclined sheet and their uncertainty from SP anomaly measured on the Tam-
bakrejo village, Pacitan District, East Java, Indonesia using ICSA

Parameters Anomalies K (mV) X1 (m) z1 (m) x2 (m) z2 (m)

Ranges Anomaly 1 0.2 − 20 0 − 120 0 − 50 0 − 120 0 − 50
Anomaly 2 0.2 − 20 130 − 220 0 − 50 130 − 220 0 − 50
Anomaly 3 0.2 − 20 210 − 300 0 − 50 210 − 300 0 − 50
Anomaly 4 0.2 − 20 250 − 320 0 − 50 250 − 320 0 − 50
Anomaly 5 0.2 − 20 370 − 470 0 − 0.5 370 − 470 0 − 50
Anomaly 6 0.2 − 21 440 − 560 0 − 50 440 − 560 0 − 50
Anomaly 7 0.2 − 22 570 − 700 0 − 50 570 − 700 0 − 50
Anomaly 8 0.2 − 23 700 − 850 0 − 50 700 − 850 0 − 150
Anomaly 9 0.2 − 24 840 − 1000 0 − 150 840 − 1000 0 − 50

ICSA Anomaly 1 9.07 ± 1.08 38.12 ± 3.70 29.79 ± 3.93 53.40 ± 0.24 14.80 ± 1.05
Anomaly 2 11.26 ± 0.15 156.38 ± 2.90 34.79 ± 2.91 180.11 ± 0.85 35.41 ± 6.69
Anomaly 3 4.03 ± 0.53 227.38 ± 4.10 21.32 ± 3.25 256.02 ± 2.96 45.54 ± 2.03
Anomaly 4 7.81 ± 0.65 312.52 ± 0.71 24.04 ± 5.39 313.36 ± 1.27 38.44 ± 5.88
Anomaly 5 3.54 ± 0.24 393.92 ± 0.61 0.22 ± 0.14 429.04 ± 8.56 21.16 ± 3.15
Anomaly 6 6.53 ± 0.71 504.79 ± 0.33 19.61 ± 0.51 510.61 ± 0.98 44.60 ± 0.76
Anomaly 7 5.83 ± 0.34 640.87 ± 4.15 48.04 ± 2.94 682.91 ± 1.53 20.76 ± 0.42
Anomaly 8 4.64 ± 0.08 803.80 ± 0.44 11.06 ± 1.27 780.24 ± 0.46 102.74 ± 3.37
Anomaly 9 3.20 ± 0.91 931.99 ± 9.21 21.05 ± 0.62 905.75 ± 16.89 37.44 ± 0.56
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between measured data and the inverted one from ICSA. Furthermore, the inclined sheet 
that guessed as Grindulu Fault is located in 800 meters of measurement track (as shown 
in Fig. 12) and the closest surface of fault (minor fault) is located in 400 meters, where in 
order to validate the results, other geophysical methods are needed. This minor fault is the 
main reason for the cracked walls and floors of houses in the surrounding area (Fig. 14). 
Besides those two faults, the inversion data result also produce four other minor faults with 
different position (Fig. 13 lower panel). Figure 13 and Table 5 reflects how effective the 
ICSA method in estimating the multiple anomalies of SP parameter and their uncertainty.

6 � Conclusion

Both CSA and ICSA algorithms need correct tuning parameters, where ICSA just requires 
flight length parameters instead of CSA that involves flight length and awareness prob-
ability parameters. Both algorithms have tested to estimate PDM for synthetic data of mul-
tiple SP anomalies that modeled by inclined sheets. The results indicate that both algo-
rithms are able to provide PDM and their statistically (median and interquartile) to handle 
non-unique solutions of SP inversion. Based on median and interquartile of PDM, ICSA 
shows better than CSA for estimating PDM. The ICSA method is also used to analyze sev-
eral field SP anomalies containing single and multiple anomalies for identifying fault and 
shear zones from several different areas including Pinggirsari SP anomaly (Indonesia), 
Vilarelho da Raia SP anomaly (Portugal), KTB SP anomaly (Germany), and Tambakrejo 
SP anomaly (Indonesia). SP anomaly inversion using ICSA shows good results with dif-
ferent approaches, and the outcome is accurate in geological conditions of the survey area.

Acknowledgements  Authors would like to thank students on the Geophysics Laboratory, Department of 
Physics, Institut Teknologi Sepuluh Nopember (ITS), for their help in the data acquisition. This work is 
supported by the Institute for Research and Community Services of ITS (Grant No: 1060/PKS/ITS/2019).

Fig. 14   The cracked wall and floor of houses located around 400 m from the measurement starting point
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Appendix A: Pseudo‑code of ICSA or CSA
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