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Abstract
Elimination of random noise is crucial in seismic data processing. Especially in desert 
area, field record generally has problems of weak effective reflection wave and strong 
noise due to its special surface factors. Besides, desert noise has characteristics of low-
frequency, non-stationary and non-Gaussian. Thus, it is difficult to separate the effective 
signal from desert noise in low-frequency band. In order to solve these problems, this paper 
proposes an iterative low-rank denoising method based on synchrosqueezed wavelet trans-
form (SWT). The algorithm first transforms seismic signal into time–frequency domain by 
SWT, then the signal is decomposed by iterative low-rank decomposition. Different from 
a traditional low-rank algorithm, this paper performs an adaptive iterative convergence on 
low-rank decomposition algorithm. When the error of decomposition reaches the prede-
termined range, the effective low-rank component is extracted. In the end, the low-rank 
matrix is converted back to time domain by inverse SWT to achieve the denoising. The 
results of the synthetic and field records verify the effectiveness of the proposed method so 
that it can be applied to the denoising of desert seismic data. In addition, the surface waves 
in real desert seismic record have obvious suppression effects and the advantages of the 
algorithm are shown in the comparison experiments.

Keywords Desert low-frequency noise · Low-rank decomposition · Seismic signal 
denoising · Synchrosqueezed wavelet transform

1 Introduction

Seismic exploration (Crummett 1986) is one of the most important methods for oil and 
gas exploration. The field acquisition data contains significant interference noise, covering 
the effective seismic signal in the procession of exploration due to the complex geological 
structures and the surface environment. Especially in desert area, desert seismic signal con-
tains significant low-frequency noise, so the effective signal in low-frequency band will be 
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overwhelmed by the noise with large amplitude, which leads to a reduction in the signal-
to-noise ratio (SNR). To solve these problems, processing methods should be adopted to 
improve the SNR to effectively facilitate the extraction of effective signal from seismic 
data.

In recent years, denoising methods in transform domain (Ma and Zhai 2018; Khajouei 
and Goudarzi 2018; Gómez and Velis 2018) have gradually failed to meet the needs of 
high-quality exploration. Some of their threshold methods are not suitable for the complex 
and uneven noisy signal because there is no suitable single threshold for processing, and 
some of them are lack of precision in the selection of parameters. In addition, the noise 
and the effective signal are probably misclassified by a single threshold. Empirical mode 
decomposition (EMD) (Shang et al. 2018; Gómez and Velis 2016) can adaptively decom-
pose non-stationary signal on one-dimension first, and then select and retain the effective 
part. Its decomposition effect is affected by the modal component decomposition process. 
Moreover, modal aliasing often occurs during its decomposition process. If VMD (Li et al. 
2018) decomposes too many modes, it will cause signal discontinuity, which is likely to 
distort the decomposition rules. Low-rank decomposition methods (Anvari et  al. 2019; 
Liang et al. 2018; Zhou et al. 2018) extract low-rank components by shrinking the singular 
values, but in the case of large noise level, this method will produce more serious artifact, 
which affects the effectiveness of denoising. As a machine learning method, convolutional 
neural network (CNN) (Yuan et al. 2018; Zhao et al. 2019; Wang et al. 2019) has become 
common in research. Especially in the field of classification, the original data can be 
directly imported into the network for training without pre-processing. However, the train-
ing of CNN requires a larger sample size, which adds complexity to the denoising process. 
In addition, some methods that deal with non-stationary and non-Gaussian seismic signal 
played an important role in transform domain as well as low-rank decomposition have been 
widely used in practice. But the low-frequency, non-stationary and other complex charac-
teristics of desert noise make those methods not suitable for desert seismic signal process-
ing (Li et al. 2017; Zhong et al. 2015). To solve these problems, a denoising framework 
based on iterative low-rank convergence decomposition in transform domain is proposed.

In this paper, the noisy desert seismic signal in time domain is first transformed into 
time–frequency domain by using SWT (Anvari et  al. 2017; Daubechies et  al. 2011; 
Holighaus et al. 2016). SSGoDec (Zhou and Tao 2011) is then performed to decompose 
the noisy signal in time–frequency domain, and the cyclic condition of iterative conver-
gence is added in the process of decomposition to get the best convergence. Finally, the 
converged low-rank matrix is converted back to time domain by inverse SWT. This method 
not only makes up for the shortcomings of the traditional threshold methods but also elimi-
nates the need of a large number of data samples. It only needs adaptive iteration to make 
the low-rank matrix gradually converge to a given interval. The method effectively com-
bines the accuracy of SWT as well as SSGoDec. The experimental results show that it is 
suitable for desert seismic signal denoising, especially in the area of surface wave removal.

2  Theory

2.1  Low‑rank decomposition

Go Decomposition (GoDec) (Zhou and Tao 2011) decomposes a matrix as follows:
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where L represents a low-rank matrix, S is a sparse matrix and G is the approximation 
error.

GoDec imposes strict constraints on the level of L and the cardinality of S. The noise 
decomposition and the controllable level of L are accelerated with the help of bilateral 
random projection (BRP) based on lower order approximation. It is time-consuming that 
the hard threshold processing of S requires sorting the size of all its entries. Semi-Soft 
Go Decomposition (SSGoDec) (Zhou and Tao 2013) improves this method by trans-
forming the matrix decomposition into a series of alternative optimizations (Eq. 2).

The above equation can update Lt by the singular value hard threshold of X − St−1 and 
St by the soft threshold of X − Lt.

where x is the representation of the soft threshold.
According to the low-rank approximation based on BRP (Zhou and Tao 2012), the 

independent Gauss random matrix is approximated by the fast rank P of X:

where Y1 ∈ Rn×r and Y2 ∈ Rp×r are left and right random projections, A2 is the left random 
mapping matrix. Based on Eq. 4, we can get the final low-rank matrix. The key difference 
between SSGoDec and GoDec is that the soft threshold processing of S only needs NP sub-
traction, while the hard threshold processing of the largest item in ordinary GoDec needs 
to sort NP values. On the basis of accelerating the modeling calculation, this improvement 
also guarantees that L still has linear convergence.

2.2  Transform domain conversion

Synchrosqueezed wavelet transform (SWT) is a time–frequency representation method 
improved by Daubechies et al. (2011). Its main idea is to calculate the analyzed speech 
signal through wavelet transform, and then refocus the calculated divergent ambigu-
ity value. In this paper, SWT is used to map desert seismic data from time domain to 
time–frequency domain. Comparing with wavelet transform, S transform and short-time 
Fourier transform, SWT can extract features better in frequency dimension (Bonar and 
Sacchi 2012).

A detailed theoretical derivation of SWT is given by Daubechies et al. (2011). The 
signal after SWT can be expressed as:

(1)X = L + S + G, rank(L) ≤ r, card(S) ≤ s

(2)
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where the value of ak satisfies the interval |||w
(
ak, b

)
− wl

||| ≤ Δw∕2 , wl is the lth discrete 
angular frequency, ak is the kth discrete scale. Ws

(
ak, b

)
 is the continuous wavelet trans-

form, ws(a, b) is the instantaneous frequency after energy concentration.

2.3  Proposed method

In this paper, the desert seismic signal in time domain is first transformed into SWT 
domain by SWT. In the process of conversion, the desert seismic signal is divided into 36 
layers. Then SSGoDec algorithm is performed to decompose the signal on each layer. After 
the decomposition, the corresponding low-rank matrix, sparse matrix, mean square error 
and decomposition error (RMSE = error, error = | |X-L-S|/|X|) are obtained. Zhou and Tao 
(2011) pointed out that the objective value (decomposition error) ∥X-L-S∥2F monotonously 
decreases and converges to the local minimum. Based on this theory, SSGoDec algorithm 
is iterated adaptively. In each iteration, the parameter rank is set to different values. When 
the predetermined condition is reached, the iteration is completed and the final optimal 
convergence value can be obtained.

In order to verify the effectiveness of the denoising method in this paper, the signal-to-
noise ratio (SNR) is used to measure it:

where x(t) is the denoising signal and s(t) is the original signal.
Experiments with different iterations in Table  1 show that the optimal convergence 

effect can be obtained when the maximum iteration number is set to three. Figure 1 shows 
the training frame of the proposed method. The main steps of the algorithm are listed as 
follows:

1. The noisy signal in time domain is transformed into time–frequency domain by SWT, 
the signal is divided into 36 layers.

2. SSGoDec decomposition is applied to each layer in time–frequency domain. Then the 
corresponding low-rank matrix, sparse matrix, mean square error matrix and decomposi-
tion error are obtained.

3. After completing the first low-rank decomposition, the decomposition error is compared 
with the iteration condition range error < 0.0100 . If the threshold is not reached, the 
second iteration is carried out, in which the rank parameter is reduced by one compared 

(5)Ts
(
wl, b

)
=

1

Δw

∑
|ws(a,b)−wl|≤Δw∕2

Ws

(
ak, b

)
a−3∕2Δak

(6)SNR = 10 log10

∑
t �s(t)�2∑

t �x(t) − s(t)�2

Table 1  Comparison of denoising results under different iterations

Original 1 2 3 4 5 6

SNR (dB) − 6.1293 3.4438 4.0100 4.4263 4.3464 4.0135 4.1995
SNR (dB) − 8.0675 3.4281 3.6637 3.7260 3.1628 2.9560 2.5064
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with the previous one, and so on. When the threshold is reached, the iteration is stopped 
and the final low-rank matrix is obtained.

4. The final low-rank matrix is converted back to time domain by the inverse SWT.

3  Experiment results

3.1  Implementations

In the above we proposed a new framework, which is an adaptive iteration of low-
rank algorithm. When discussing the selection of the number of iterations, we get the 
final result through experiments. Only when the maximum number of iterations is set 
to three, the decomposition error can be minimized (Table 1). To confirm this infer-
ence, we simulated a noisy seismic signal (Fig. 2) with main frequencies of 25 Hz and 
30 Hz.

Table 2 shows the results of SSGoDec algorithm in transform domain and the results 
of adaptive iterative method in transform domain. It can be observed that the experi-
mental results in this paper are superior to the traditional SSGoDec algorithm without 
iteration when the SNRs are − 3.6305 dB, − 6.1293 dB and − 8.0675 dB, respectively. 
A more obvious contrast can be seen in Fig. 2. The pure signal and the noisy signal 
are shown, which is further compared with the results of SSGoDec algorithm and the 
method in this paper. From the red dotted circles, the valid signal can be seen clearly. 
The proposed method shows a better noise reduction effect, and the filtered signal is 
similar to the original one. In the result of SSGoDec after SWT, the amplitude of the 
signal is greatly attenuated and the noise is not totally removed. Therefore, the denois-
ing method proposed in this paper is more effective.

Fig. 1  Training frame of the proposed algorithm
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3.2  Synthetic desert seismic record

In order to verify the denoising effect of the proposed method, we synthesized desert seis-
mic signal which has 50 traces (Fig. 3) and each trace contains 450 points with dominant 
frequencies of 25 Hz and 30 Hz. The sampling frequency is 512 Hz with an amplitude of 5. 
The method is applied to the synthetic record for denoising.

The above noisy signal is transformed into time–frequency domain by SWT, each 
record is divided into 36 layers. Each layer is decomposed by SSGoDec, and then self-
adaptive iteration is carried out. The parameter is set to 10 in the first iteration, 9 in the 

Fig. 2  Denoising results. Original pure signal, original noisy signal (SNR = − 8.0675 dB), SSGoDec after 
synchrosqueezed wavelet transform (SNR = 3.0031 dB), Proposed (SNR = 3.5698 dB)

Table 2  Comparison of 
traditional SSGoDec in SWT 
domain and the proposed method

SNR (dB) − 3.6305 − 6.1293 − 8.0675
SWT + SSGoDec 2.2588 3.1879 3.0031
Proposed 3.7801 4.0745 3.5698

Fig. 3  Synthetic desert seismic record. a Clean synthetic desert seismic record. b Synthetic desert seismic 
record with SNR = − 8.0675 dB
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second iteration and 8 in the third iteration. When the error is less than 0.0100, the iteration 
stops. Otherwise, the next iteration decomposition continues.

For intuitively verifying the effectiveness of the proposed method, a single trace com-
parison of the denoising method is given in Fig.  4, which is further compared with the 
pure signal (8th trace in Fig. 3a) and the noisy signal (8th trace in Fig. 3b). The blue line 
(pure signal) and the red line (denoised signal) are almost overlapped with the signal. The 
noise is also suppressed more thoroughly, which is basically floating slightly around 0. It 
is concluded that the proposed method has a good effect on both signal recovery and noise 
reduction.

Three more comparisons of synthetic record processing are added to verify the superior-
ity of the proposed method (Fig. 5). The result of wavelet transform in Fig. 5c has an obvi-
ous attenuation on the amplitude of signal with remaining noises. The result of SSGoDec 
low-rank decomposition in time domain as shown in Fig. 5d is better than wavelet trans-
form. Both the recovery of signal and the suppression of noise are much more effective, but 
the loss of signal is still evident in some places. The denoising result of F-x deconvolution 
method (Fig. 5e) shows that the signal can basically be recovered, but it also has a large 
degree of distortion. Figure 5f is the result generated using the proposed method. Both sig-
nal recovery and noise suppression are superior to the first three methods. In addition, the 
SNR of the final result is greatly improved. It can be seen that the proposed algorithm can 
achieve better denoising effect of desert seismic signal than other methods.

Figure  6 shows the residual results of synthetic desert seismic record by using four 
methods in Fig. 5. Figure 6a is the synthetic noise. The residual result of wavelet transform 
(Fig. 5b) remains a large part of effective signal, which destroys the amplitude preservation 
of the signal. Figure 6c is the residual result of SSGoDec low-rank method, whose effec-
tive signal remains, but the overall denoising effect is better than wavelet transform. The 
residual result of F-x deconvolution has residue at every effective signal position. In con-
trast, the proposed algorithm in Fig. 6e just has a minor valid signal being lost. By compar-
ing with Fig. 6a, the residual result of the proposed algorithm and the synthetic noise are 
very similar. Obviously, the noise in other methods is not completely suppressed. In the 
following figures (Fig. 6), we also give the f-k spectrum of the residual results (Fig. 6g), 
which are further compared with the f-k spectrum of synthetic noise (Fig. 6f). In summary, 
the proposed method not only retains the signal energy better, but also removes the noise 
effectively.

Table 3 gives the comparison of the denoising effect of four methods under different 
SNRs ranging from − 3.6305 to − 12.1499 dB. The table shows that the SNR of method 

Fig. 4  Result of single-trace 
processing
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in this paper is much higher than the other three methods. It can be seen from Fig. 7 
that the proposed algorithm fold line is significantly higher than the other three algo-
rithms (especially in the range from − 10 to − 5 dB). In summary, the proposed denois-
ing method can achieve good results both in feasibility and effectiveness in processing 
synthetic records. 

Fig. 5  Processing results of synthetic desert seismic record. a Clean synthetic desert seismic record. b Syn-
thetic desert seismic record with SNR = − 8.0675 dB. c Wavelet transform result with SNR = 0.3506 dB. 
d SSGoDec result with SNR = 2.1174 dB. e F-x deconvolution result with SNR = 2.1081 dB. f Proposed 
method result with SNR = 3.5698 dB
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Fig. 6  Residual comparison of synthetic desert seismic record. a Synthetic noise. b Removed noise using wavelet 
transform. c Removed noise using SSGoDec. d Removed noise using F-x deconvolution. e Removed noise using 
proposed method. f F-k spectrum of synthetic noise. g F-k spectrum of the removed noise using proposed method
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3.3  Real desert seismic record

The real desert seismic record with a total of 200 traces is used to analyze the practical 
application ability of the proposed framework, as shown in Fig. 8a. SWT divides them into 
44 layers. In this case, our maximum iteration number is still set to 3. The parameter RANK 
in three iterations are set to 16, 15 and 14, respectively. Figure  8 shows the denoising 

Table 3  Comparison of denoising results under different SNRs

Original record 
SNR (dB)

Wavelet transform 
SNR (dB)

SSGoDec SNR(dB) x SNR (dB) Proposed SNR (dB)

− 3.6305 0.6077 1.9477 3.4587 3.7801
− 6.1293 0.4569 2.5007 2.8177 4.0745
− 8.0675 0.3506 2.1174 2.1081 3.5698
− 10.9900 0.2192 0.2810 0.6414 0.9109
− 12.1499 0.1785 − 0.6013 − 0.0717 0.1970

Fig. 7  Line chart comparison. 
The blue line represents wavelet 
transform, the black line repre-
sents SSGoDec, the green line 
represents F-x deconvolution 
and the red line represents the 
proposed method. (Color figure 
online)

Fig. 8  Processing results of real desert seismic record. a Real desert seismic record. b Wavelet transform 
result. c SSGoDec result. d F-x deconvolution result. e Proposed method result
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results of the four methods mentioned above. The part of surface wave in Fig. 8b has not 
been removed and the effect of the signal–noise mixing part is not satisfied. SSGoDec low-
rank decomposition method in Fig. 8c cannot achieve acceptable denoising effect, which 
mainly results from the lack of the effectiveness of surface wave removal. Although the F-x 
deconvolution method (Fig. 8d) can effectively remove a large area of surface wave, some 
signal-to-noise aliasing parts show signal distortion. The denoising effect is also not ideal. 
Figure  8e illustrates the denoising method in this paper. By observing the red boxes, it 
can be seen that this method can effectively remove surface wave, and recover most of the 
effective signal without obvious attenuation.

4  Conclusion

In this paper, a framework of adaptive iteration low-rank decomposition in transform 
domain is proposed to be used in processing desert seismic signal. Comparing with tradi-
tional methods, the proposed algorithm not only layers the noisy signal in time–frequency 
domain, but also performs adaptive iterative low-rank decomposition for each layer of the 
signal in each trace. The experiments show that this iteration method can effectively con-
verge the decomposition error to a minimum value. The corresponding low-rank matrix can 
be converted back to time domain by inverse transformation, which effectively removes the 
low frequency noise and preserves the signal integrity. Comparing with the wavelet trans-
form, SSGoDec and F-x deconvolution, the proposed method successfully demonstrates its 
advantages in denoising, especially in removing the surface wave in the real desert seismic 
record. The results have shown that this method can be effectively applied to desert seismic 
signal denoising, yet very few research has applied similar methods. In future works, more 
improvements and experiments of different low-rank decomposition methods in transform 
domain which do not depend on the selection of iteration times will be proposed.
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