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Abstract
Benford’s law (BL), also known as the first-digit or significant-digit law, is an intriguing 
pattern in data sets, considers the frequency of occurrence of the first digits, which are not 
uniformly distributed as might be expected, conversely follow a specified theoretical distri-
bution. According to BL, the occurrence of first non-zero digit in a numerical data, which 
is generated or found in nature, depends on a logarithmic distribution. Least square estima-
tion (LSE) method is mostly preferred for the estimation of the unknown parameters from 
different types of geodetic data. The residuals and the normalized residuals of the LSE 
method, which follow normal distribution and expected values of them are zero are used in 
outlier detection problem. In this study, BL is investigated for residuals and the normalized 
residuals estimated from LSE method. Three types of geodetic data are used: (1) simulated 
regression models, (2) global positioning system (GPS) data, (3) leveling network. The first 
group data sets are simulated based on linear regression and univariate models and each 
simulated group is generated for a number of 100, 1000, and 10,000 samples. To gener-
ate second group, an international global navigation satellite system (GNSS) service (IGS) 
station data (ISTA) is processed by kinematic PPP approach using GIPSY OASIS II v6.4 
software. Here, the observation duration of GPS data is 4 days. For the last data, a leveling 
network with 55 points involving 110 observations of height differences is simulated. BL 
has been applied to the residuals (v) and normalized residuals (w) estimated from LSE 
method. Goodness-of-fit test has been implemented to determine whether a population has 
a specified BL distribution or not. This test is based on how good a fit we have between the 
frequency of occurrence of residuals and normalized residuals in an observed sample and 
the expected frequencies obtained from the hypothesized distribution. The results depend-
ing on the statistical test show that each data set (residuals and normalized residuals) used 
in this study follows BL.
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1  Introduction

Benford’s law (BL), also known as the first-digit or significant-digit law, was first found 
in 1881 by Simon Newcomb. Newcomb asserts that the ten digits do not occur with an 
equal frequency that must be evident to anyone making much use of logarithmic tables, 
and noticing how much faster the first pages wear out than the last ones (Newcomb 1881). 
BL states that many naturally occurring sets of observations follow a specified theoretical 
distribution and follow a monotonically decreasing logarithmic distribution, which is not 
uniformly distributed as might be expected (Berger and Hill 2015). In BL, the first leading 
(i.e., first non-zero) decimal digit is not equally likely to be any one of the nine possible 
digits. Instead of that, the occurrence of numbers starting with 1 and 2 is close to 30% and 
18%, respectively, whereas the numbers starting with 8 or 9 are close to 5%.

In general, it is hard to say that there is a relation between the huge numerical data sets 
found in nature or produced by a human (Mir 2012). Benford (1938) tested the law on a 
wide range field such as the heights of the mountains, the lengths of the rivers, the sur-
face areas of the rivers, physical constants, molecular weights, death rates or cost data, and 
figured out to follow the BL. In literature, there have been wide range of implementations 
of BL from social to numerical application fields. Mir (2014) referred to “Benford Online 
Bibliography (Berger et al. 2009)” for a comprehensive information on the numerous data 
sets, which obey BL and its applications across multiple disciplines. Moreover, some appli-
cations for figuring out the presence of BL in different fields may be given as follows. The 
early study was conducted by Becker (1982), who found that there was a logarithmic dis-
tribution when failure rates and mean time to failure (MTTF) values were read from left to 
right for the first non-zero digit. Nagasaka (1984) reviewed various sampling procedures by 
examining for the resulting sampled integers whether BL holds or not. It was proved that 
randomly sampled integers do not necessarily obey BL but their Banach limit does for pol-
ynomial sampling procedures. Hence, it was proved on BL for geometrical sampling pro-
cedures and for linear recurrence sampling procedures. Hill (1995) stated that many tables 
of numerical data do not follow logarithmic distribution such as lists of telephone numbers 
in a given region typically begin with the same few digits-and even “neutral” data such as 
square-root tables of integers are not good fits. However, a surprisingly diverse collection 
of empirical data does seem to obey the significant-digit law. The details of more empiri-
cal evidence may also be found in (Hill 1995). In the field of demographic data for world 
religion distribution, Mir (2012) investigated numerical data on the country-wise adherent 
distribution of seven major world religions i.e., Christianity, Islam, Buddhism, Hinduism, 
Sikhism, Judaism and Baha’ism to see if the proportion of the leading digits occurring 
in the distribution that conforms to BL. Mir (2012) exposed that the adherent data of all 
the religions, except Christianity, excellently does conform to BL. Ausloos et  al. (2015) 
reviewed the long birth time series for Romania from BL point of view, distinguishing 
between families with a religious (Orthodox and Non-Orthodox) affiliation and figured out 
that there is a drastic breakdown of BL on results.

In this study, it is aimed to investigate the applicability of BL in residuals and nor-
malized residuals estimated from Least Square Estimation (LSE) method. Moreover, 
BL is applied to the geodetic data set, which contain normal distribution to demon-
strate the consistency of the law. In geodesy, the data observed at field contains random 
errors that are from a normal distribution (N(0, σ)) and the most probable values of 
the unknown parameters are generally estimated by LSE. To find out the residuals of 
observed values, differences between estimated value and each observation are taken. 
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Also, the normalized residuals of them are taken into consideration for the outlier detec-
tion problem. Here, three different data sets are studied as; (1) simulated data, (2) real 
data observed by global positioning system (GPS), (3) Leveling network data pertaining 
to the random error. According to the results, it is found that the residuals and normal-
ized residuals of these data estimated from LSE follow BL.

2 � Benford’s law

Like Newcomb before him, Benford (1938) observed that the first pages in logarithmic 
tables were more referred to than the last pages, which presented an empirical law that 
shows the distribution of the leading digits are not equal among the naturally occur-
ring phenomena such as area of the river, population of cities, addresses, death rate etc. 
(Jamain 2001). Although its’ basic form introduced by Benford (1938) was based on 
empirical observations, several mathematical series i.e., binomial coefficients and facto-
rial (Sarkar 1973), Fibonacci and Lucas numbers (Wlodarski 1971) are related with this 
law. The BL states that the smaller digits are found more frequently than larger digits, 
which can be expressed as an expected frequency distribution of the first digits for many 
numerical data sets (Chandra Das et al. 2017). In its most common formulation, the spe-
cial case of the first significant (i.e., first non-zero) decimal digit, Benford’s law asserts 
that the leading digit is not equally likely to be any one of the nine possible digits 1, 
2,…, 9. The first digit of the number is the leftmost digit and differs from 0. According 
to this law, the frequency of the first significant digit (i.e., nonzero digit, k) can be com-
puted as (Benford 1938):

where P is the probability of the number k, and k is the any number in the set {1, 2, 3,… , 9}.
Considering the BL distribution on the smaller digits for 1 and 2, respectively, if the 

first leading digit is 1, the probability of occurrence is P(k = 1) = log10 (2) = 0.3010 , 
which is more than 30% of the time and if the first leading digit is 2, the probability of 
the occurrence is P(k = 2) = log10

(
3

2

)
= 0.1760 , which is more than 18% of the time. 

However, if the larger two digits are computed according to the BL, i.e., 
P(k = 8) = log10 (9∕8) = 0.0512 , which is about 5% of the time and for 9, the probability 
is P(k = 9) = log10 (10∕9) = 0.0458 , which is less than 5%. Table 1 shows the distribu-
tions of first digits as derived from BL.

(1)P(k) = log10 (k + 1) − log10 (k) = log10

(
1 +

1

k

)

Table 1   The first digit distribution of Benford’s law

First digit (k) 0 1 2 3 4 5 6 7 8 9
Proportion – 0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0458
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3 � Data

Surveying is an important field of application of geodesy. In a general manner, surveying is 
the measuring horizontal and vertical distances between objects, angles between lines, deter-
mining the direction of lines, and establishing points by predetermined angular and linear 
measurements. Apart from classical surveys, satellite-based positioning is the determination 
of positions of observing sites on land or at sea, in the air and in space by means of artificial 
satellites (Hofmann-Wellenhof et al. 2001). Either classical surveying or satellite-based sur-
veying generates measurements for certain physical quantities. However, in both cases due 
to some kind of influences, measurements conducted from the same quantity will differ in 
general. An error is a difference between a measured value and its true value of a quantity. 
The sources of the errors in measurements can be listed as humans, instruments and circum-
stances. These errors raise uncertainty in measurements. In order to eliminate the uncertainty, 
to improve instruments used during the measure, to train the person or to provide better cir-
cumstance will help, however, do not provide error-free measurements and all measurements 
contain errors. Typically, errors can be classified into three groups: systematical errors, ran-
dom errors and gross errors. Among them, gross errors can be detected by repeated meas-
urements. Systematical errors that generally pertain to survey instruments or external influ-
ences (circumstance) occur in the same direction and magnitude on measurements. They can 
be eliminated by calibration of instruments and implementation of the proper corrections on 
measurements for circumstances influences (Berber 2008; Teunissen 2003). However, random 
errors cannot be eliminated in such a procedure explained for the others and follow normal 
distribution on measurements. At the stage of the LSE, these errors reflect on the residuals.

BL proportions are compared with the proportions of residuals and normalized residuals. 
The data used in this study has normal distribution and equations given below for LSE are 
used to compute the residual and normalized residuals. It is supposed that there are n inde-
pendent equally weighted measurements, denoted as vector l. The differences between the 
most probable value of measurements and measured values are the residuals, denoted as v. 
Accordingly, to compute the normalized residual (w), which is the specific form of residuals, 
Eq. 9 is implemented.

(2a)� =
[
1 1 ⋯ 1

]T
n×1

(for univariate model)

(2b)� =

[
1 … 1

x1 … xn

]T

n×1

(for linear regression model)

(3)x̂ =
(
����

)−1(
����

)

(4)� = ��̂ − �

(5)��� =
(
����

)−1

(6)��� = �����
�

(7)��� = �−1 −���
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Here l is the observation vector, �̂ is the unknown vector, A is the coefficient matrix, 
P is the weight matrix that is identity matrix, � is the residual vector, � is the normalized 
residuals, 𝜎̂2

0
 is the variance of unit weight, n is the number of data and u is the number of 

unknown parameters.

4 � Regression models

BL has been applied to two geodetic survey data sets simulated depending on regression 
models with normal distribution explained below that whether or not follow a specific BL 
distribution due to residuals and normalized residuals estimated from LSE. For generating 
the data based on regression models, the standard deviation of the models is taken 0.02 m 
with expected value 0. Formann (2010) reviewed some common distributions to explore 
their relations with BL. One of the experienced distribution examined by Formann (2010) 
is the normal distribution, N(�, �) . In Formann (2010), the simulated random data is gen-
erated with normal distribution (� = 1.1, � = 0.25) and results are concluded that normal 
distribution does not follow BL distribution. However, the first digit of the expected value 
dominates the results, thus the majority of the data will be involved into the first digit, in 
which the expected value starts. This case can be seen in Formann (2010). Then, in this 
study, we chose the expected value as 0 to eliminate the effect of first digit of the expected 
value on results. Moreover, the expected values of the residuals and normalized residuals 
estimated from LSE will be 0 that will not affect the results.

4.1 � Univariate model

The first model is the univariate model. The random errors ei are generated by a random 
generator, and y (the measurement) is obtained with y = a + ei. The random errors follow 
normal distribution (N(0;0.02 m)). Three different cases have been simulated for different 
numbers of observations (100, 1000 and 10,000). For the simulation a was chosen 5 m and 
observation was obtained by adding the random errors to the 5 m. LSE is applied to data to 
estimate unknown parameter, residuals and normalized residuals.

4.2 � Linear regression model

The second simulation model is the linear regression model, that was obtained with 
y = a + bx + ei. For the simulation, a and b were chosen as 1 m and the random errors e 
follow normal distribution (N(0;0.02  m)). For the analysis, LSE is applied to estimate 
unknown parameters, residuals and normalized residuals.

(8)�o =

√
����

n − u

(9)wi =
��vi��

�o
√
Qvivi
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4.3 � GPS data

To generate the second group, an IGS station data (ISTA) is processed by kinematic Pre-
cise Point Positioning (PPP) approach using GIPSY OASIS II v6.4 software. Here, the 
observation duration of GPS data is 4 days (on 1st, 2nd, 3rd, 4th of January 2016) (Fig. 1). 
LSE is applied to estimate mean values of coordinates for the 4 days. Also, the residuals 
and normalized residuals of the three-dimensional coordinates was estimated for the BL 
analysis.

4.4 � Leveling network

The third data group is simulated for a leveling network, which involves 55 points and 110 
observations. For the leveling network, the height differences Δhk are computed from the 
fixed points. They are free of random errors, and then the random errors are generated from 
a normal distribution. They are added to the height differences. The precision is taken as 
�h = �0

√
S

�
�0 = 1

mm
√
1 km

�
 for the leveling network where S is the total length of the leve-

ling lines in km. The height differences were considered as observations and unknown 
parameters (heights of the points) were estimated by the LSE method (Koch 1999). The 
residuals and normalized residuals for height differences were used for BL analysis.

4.5 � Data analysis

The Null-Hypothesis (Ho) is written to test for compliance with BL between the observed 
and expected first digit distributions. According to the Ho hypothesis that the frequen-
cies obtained from observations are the same as expected frequencies basis of BL. If the 
observed frequencies are close to corresponding expected frequencies, the �2 value will 
be small, indicating a good fit. If the observed frequencies differ considerably from the 
expected frequencies, the �2 value will be large and the fit will be poor. A good fit leads to 
acceptance of Ho, whereas a poor fit leads to its rejection. To test whether Ho hypothesis is 
accepted or not, the Chi-square goodness-of-fit statistic is calculated using (Walpole et al. 
1998);

Fig. 1   X, Y, Z coordinates of 
real data
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where �2 is a value of a random variable whose sampling distribution is approximated 
very closely by the Chi-squared distribution with v = 9 − 1 degrees of freedom. N is the 
sum of the frequencies, and P(k) is the proportion from the data and B(k) is the proportion 
from the BL. The test is based on how good a fit we have between the frequency of occur-
rence of observations in an observed sample and the expected frequencies obtained from 
the hypothesized distribution (Walpole et al. 1998).

In addition to this, the numerical range of the data set in terms of order of magnitude 
(OOM) may be used as a strong indicator for compliance with BL (Brown 2005; Kosso-
vsky 2014). Brown (2005) emphasized that the data sets which vary with a large numerical 
range can have an expectation to show a good correlation with BL. The OOM value equal 
or bigger than 4 would be suitable. Kossovsky (2014) and Whyman et al. (2016) state that 
requirement for data configuration with regards to compliance with BL should be suffi-
cient, also Kossovsky (2014) declares that the value of the OOM of the data set should be 
approximately over 3. The numerical range of the data set used to commit conformity or 
non-conformity of the BL can be estimated by OOM:

where xmin and xmax are the minimum and maximum values of the data set, respectively. 
Here, the OOM is computed from the absolute values of max and min values of data set 
excluding zeroes.

5 � Results

To test the compliance with BL, goodness-of-fit test were applied to the proportions. As 
we have 9 first digits, the degrees of freedom is taken 9 − 1 = 8. Considering the 95% con-
fidence level, the decision value ( �2 ) is computed 15.507. If this value is exceeded in any 
case, the compliance with BL will be rejected, otherwise, it will be accepted.

5.1 � Regression models

The distribution of residuals and normalized residuals calculated from the univariate 
model for the number of 100, 1000 and 10,000 data are shown in Fig. 2 and the statistical 
considerations are given in Tables 2 and 3. For each data group simulated by the univariate 
model, v and w proportions approximate BL proportions. According to the first digits from 
1 to 9, BL proposes the occurrence of first digits from 30.10 to 4.58%, respectively. When 
we consider the data for 100 measurements, the proportions of v and w are obtained from 
37 to 3% and from 34 to 7%, respectively. The similar results are also obtained for 1.000 
and 10.000 measurements (See, column 5 and 7 of Tables 2, 3).

In the same manner, when we compare the residuals and normalized residuals’ first 
digit occurrence estimated by linear regression model and BL (Fig. 3), it can be seen 
that the graphical representations resemble the expected BL proportions. Tables 4 and 5 

(10)�2 = N

9∑

k=1

(P(k) − B(k))2

B(k)

(11)OOM = log

(
xmax

xmin

)
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(a) (b)

Fig. 2   Comparisons of residuals (a) and normalized residuals (b) first digit frequency estimated by univari-
ate model and expected frequencies according to BL

Table 2   Frequencies and proportions for univariate model using residuals

First digit k Frequency f Proportion Frequency f Proportion Frequency f Proportion BL proportion

1 37 0.3700 328 0.3280 3398 0.3398 0.3010
2 23 0.2300 242 0.2420 2333 0.2333 0.1761
3 9 0.0900 133 0.1330 1307 0.1307 0.1249
4 7 0.0700 79 0.0790 769 0.0769 0.0969
5 4 0.0400 51 0.0510 536 0.0536 0.0792
6 7 0.0700 39 0.0390 437 0.0437 0.0669
7 7 0.0700 40 0.0400 428 0.0428 0.0580
8 3 0.0300 44 0.0440 400 0.0400 0.0512
9 3 0.0300 44 0.0440 392 0.0392 0.0458
Sum 100 1.0000 1000 1.0000 10,000 1.0000 1.0000
�2 8.5736 5.9261 5.1665 15.507

Table 3   Frequencies and proportions for univariate model using normalized residuals

First digit k Frequency f Proportion Frequency f Proportion Frequency f Proportion BL proportion

1 34 0.3400 375 0.3750 3618 0.3618 0.3010
2 11 0.1100 129 0.1290 1293 0.1293 0.1761
3 11 0.1100 79 0.0790 869 0.0869 0.1249
4 9 0.0900 88 0.0880 791 0.0791 0.0969
5 7 0.0700 75 0.0750 755 0.0755 0.0792
6 6 0.0600 76 0.0760 727 0.0727 0.0669
7 6 0.0600 62 0.0620 702 0.0702 0.0580
8 9 0.0900 58 0.0580 667 0.0667 0.0512
9 7 0.0700 58 0.0580 578 0.0578 0.0458
Sum 100 1.0000 1000 1.0000 10,000 1.0000 1.0000
�2 7.6331 5.4394 5.0686 15.507
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(a) (b)

Fig. 3   Comparisons of residuals (a) and normalized residuals (b) first digit frequency estimated by linear 
regression model and expected frequencies according to BL

Table 4   Frequencies and proportions for linear regression model using residuals

First digit k Frequency f Proportion Frequency f Proportion Frequency f Proportion BL proportion

1 32 0.3200 328 0.3280 3398 0.3398 0.3010
2 23 0.2300 241 0.2410 2334 0.2334 0.1761
3 12 0.1200 134 0.1340 1306 0.1306 0.1249
4 7 0.0700 78 0.0780 769 0.0769 0.0969
5 4 0.0400 52 0.0520 536 0.0536 0.0792
6 7 0.0700 40 0.0400 437 0.0437 0.0669
7 6 0.0600 37 0.0370 429 0.0429 0.0580
8 5 0.0500 47 0.0470 402 0.0402 0.0512
9 4 0.0400 43 0.0430 389 0.0389 0.0458
Sum 100 1.0000 1000 1.0000 10,000 1.0000 1.0000
�2 4.5714 5.8968 5.1670 15.507

Table 5   Frequencies and proportions for linear regression model using normalized residuals

First digit k Frequency f Proportion Frequency f Proportion Frequency f Proportion BL proportion

1 35 0.3500 375 0.3750 3617 0.3617 0.3010
2 11 0.1100 129 0.1290 1294 0.1294 0.1761
3 13 0.1300 79 0.0790 868 0.0868 0.1249
4 8 0.0800 88 0.0880 792 0.0792 0.0969
5 6 0.0600 74 0.0740 754 0.0754 0.0792
6 6 0.0600 76 0.0760 727 0.0727 0.0669
7 9 0.0900 64 0.0640 704 0.0704 0.0580
8 7 0.0700 55 0.0550 664 0.0664 0.0512
9 5 0.0500 60 0.0600 580 0.0580 0.0458
Sum: 100 1.0000 1000 1.0000 10,000 1.0000 1.0000
�2 6.6299 5.5388 5.0637 15.507
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show the proportions of the observation number 100, 1000 and 10,000 in columns 3, 5 
and 7, which approximate the BL proportions.

Since the computed �2 values are less than �2
0.05

= 15.507 for 1 degrees of freedom, 
we can conclude that if the LSE method is applied to the data used in this study as 
specified geodetic data that have normal distribution with expected value 0 and stand-
ard deviation of 0.02 provide a good fit for the distribution of BL in terms of computed 
residuals and normalized residuals that their expected values are 0.

Moreover, we changed the standard deviations for simulated data to explore its effect 
on the results. To simulate the data, the standard deviation is altered from 0.001 to 1 
with taking the expected value 0. Tables 6 and 7 represent the expected and observed 
proportions provided by the univariate model with calculated �2 , respectively. Since 
the calculated �2 values (the last column of Tables 6, 7) are compared with the decision 
value (�2

0.05
= 15.507) , it is seen that the calculated �2 values are smaller than the deci-

sion value in all cases. Changing the standard deviations does not bring any meaningful 
results on the outcomes. The similar results are also obtained for normalized residuals 
(see, Tables 8, 9). However, in all cases of changing the standard deviation, it may be 

Table 6   Frequencies of univariate model for residuals

Univariate model First digit frequencies

1 2 3 4 5 6 7 8 9 �2

Residual
Normal distribution (μ = 0, σ = 0.001)
 n = 100 32 11 14 6 8 8 8 7 6 6.4158
 n = 1000 375 130 79 88 72 77 64 57 58 5.4678
 n = 10,000 3640 1305 865 792 742 731 689 673 563 5.0496

Normal distribution (μ = 0, σ = 0.01)
 n = 100 32 11 14 6 8 8 8 7 6 6.4158
 n = 1000 375 130 79 88 72 77 64 57 58 5.4678
 n = 10,000 3640 1305 865 792 742 731 689 673 563 5.0496

Normal distribution (μ = 0, σ = 0.05)
 n = 100 25 14 16 13 9 10 7 4 2 7.4400
 n = 1000 209 160 141 115 106 95 77 61 36 6.6093
 n = 10,000 2170 1534 1420 1236 1091 869 694 568 418 5.6523

Normal distribution (μ = 0, σ = 0.25)
 n = 100 30 22 17 6 6 5 4 3 7 7.7371
 n = 1000 301 221 172 97 66 49 33 27 34 6.1381
 n = 10,000 2954 2327 1563 986 648 454 382 338 348 5.1017

Normal distribution (μ = 0, σ = 0.50)
 n = 100 25 14 16 13 9 10 7 4 2 7.4400
 n = 1000 209 160 141 115 106 95 77 61 36 6.6093
 n = 10,000 2170 1534 1420 1236 1091 869 694 568 418 5.6523

Normal distribution (μ = 0, σ = 1.00)
 n = 100 32 11 14 6 8 8 8 7 6 6.4158
 n = 1000 375 130 79 88 72 77 64 57 58 5.4678
 n = 10,000 3640 1305 865 792 742 731 689 673 563 5.0496
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concluded that the larger data size gives the lower �2 values for v and w values of both 
models simulated.

5.2 � GPS data

Apart from simulated data, the residuals and normalized residuals of GPS data were used 
as the real data set. The epoch number of GPS measurements is 11.036. LSE is applied to 
estimate the mean values of the coordinates for 4 days. Also, the residuals and normalized 
residuals are separately estimated for three coordinate components (denoted in tables and 
figures as X, Y, Z). The graphical representations of comparisons of residuals and normal-
ized residuals for X, Y, Z coordinates with BL proportions are shown in Fig. 4 and the 
statistical considerations are given in Tables 10 and 11. The proportions of v and w for X 
coordinate component are obtained from 36.29 to 5.62% and from 33.65 to 6.14%, respec-
tively. The similar results are also obtained for Y and Z coordinates (see, columns 5 and 7 
of Tables 10, 11).

Table 7   Frequencies of univariate model for normalized residuals

Univariate model First digit frequencies

1 2 3 4 5 6 7 8 9 �2

Normalized residual
Normal distribution (μ = 0, σ = 0.001)
 n = 100 34 11 11 9 7 6 6 9 7 7.6331
 n = 1000 375 129 79 88 75 76 62 58 58 5.4394
 n = 10,000 3618 1293 869 791 755 727 702 667 578 5.0686

Normal distribution (μ = 0, σ = 0.01)
 n = 100 34 11 11 9 7 6 6 9 7 7.6331
 n = 1000 375 129 79 88 75 76 62 58 58 5.4394
 n = 10,000 3618 1293 869 791 755 727 702 667 578 5.0686

Normal distribution (μ = 0, σ = 0.05)
 n = 100 34 11 11 9 7 6 6 9 7 7.6331
 n = 1000 375 129 79 88 75 76 62 58 58 5.4394
 n = 10,000 3618 1293 869 791 755 727 702 667 578 5.0686

Normal distribution (μ = 0, σ = 0.25)
 n = 100 34 11 11 9 7 6 6 9 7 7.6331
 n = 1000 375 129 79 88 75 76 62 58 58 5.4394
 n = 10,000 3618 1293 869 791 755 727 702 667 578 5.0686

Normal distribution (μ = 0, σ = 0.50)
 n = 100 34 11 11 9 7 6 6 9 7 7.6331
 n = 1000 375 129 79 88 75 76 62 58 58 5.4394
 n = 10,000 3618 1293 869 791 755 727 702 667 578 5.0686

Normal distribution (μ = 0, σ = 1.00)
 n = 100 34 11 11 9 7 6 6 9 7 7.6331
 n = 1000 375 129 79 88 75 76 62 58 58 5.4394
 n = 10,000 3618 1293 869 791 755 727 702 667 578 5.0686
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5.3 � Leveling network

As a simulated data, we generate leveling network contains 55 points and LSE is applied 
to height differences of 110 observations. The residuals and normalized residuals are 
obtained using LSE. Here, the height differences were considered as observations and the 
coefficient matrix was formed due to the network configuration. Figure  5 represents the 
graphical forms of BL proportions for residuals and normalized residuals, respectively. The 
statistical results are given in Table 12. According to the results, the proportions of v and w 
are obtained from 33.64 to 4.55% and from 30 to 6.76%, respectively. These findings fit the 
BL proportions.

According to the results given in Table 13, the �2 values of each data set were computed 
and it is seen that the decision value is greater than them in all cases, which figure out the 
compliance with BL. Moreover, the larger data size gives the lower �2 values for v and w 
values of both models simulated and varying standard deviation on generating the random 
data does not change the distribution significantly. When we compare the decision value 
of �2 of the real data (see Table 13), the �2 values of the data are under the decision value 

Table 8   Frequencies of linear regression model for residuals

Linear regression model First digit frequencies

1 2 3 4 5 6 7 8 9 �2

Residual
Normal distribution (μ = 0, σ = 0.001)
 n = 100 35 11 13 9 6 7 8 9 2 9.0609
 n = 1000 375 130 77 90 74 75 65 54 60 5.5873
 n = 10,000 3640 1305 866 791 743 730 690 672 563 5.0415

Normal distribution (μ = 0, σ = 0.01)
 n = 100 35 11 13 9 6 7 8 9 2 9.0609
 n = 1000 375 130 77 90 74 75 65 54 60 5.5873
 n = 10,000 3640 1305 866 791 743 730 690 672 563 5.0415

Normal distribution (μ = 0, σ = 0.05)
 n = 100 24 15 15 11 6 12 9 5 3 9.2843
 n = 1000 207 164 140 114 106 94 78 61 36 6.5926
 n = 10,000 2171 1534 1420 1235 1092 867 696 568 417 5.6466

Normal distribution (μ = 0, σ = 0.25) 
 n = 100 30 17 21 8 6 5 4 5 4 7.6345
 n = 1000 304 220 172 97 66 49 34 28 30 6.1542
 n = 10,000 2954 2327 1563 985 647 456 383 337 348 5.0922

Normal distribution (μ = 0, σ = 0.50)
 n = 100 24 15 15 11 6 12 9 5 3 9.2843
 n = 1000 207 164 140 114 106 94 78 61 36 6.5926
 n = 10,000 2171 1534 1420 1235 1092 867 696 568 417 5.6466

Normal distribution (μ = 0, σ = 1.00)
 n = 100 35 11 13 9 6 7 8 9 2 9.0609
 n = 1000 375 130 77 90 74 75 65 54 60 5.5873
 n = 10,000 3640 1305 866 791 743 730 690 672 563 5.0415
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Table 9   Frequencies of linear regression model for normalized residuals

Linear regression model First digit frequencies

1 2 3 4 5 6 7 8 9 �2

Normalized residual
Normal distribution (μ = 0, σ = 0.001)
 n = 100 35 11 13 8 6 6 9 7 5 6.6299
 n = 1000 375 129 79 88 74 76 64 55 60 5.5388
 n = 10,000 3617 1294 868 792 754 727 704 664 580 5.0637

Normal distribution (μ = 0, σ = 0.01)
 n = 100 35 11 13 8 6 6 9 7 5 6.6299
 n = 1000 375 129 79 88 74 76 64 55 60 5.5388
 n = 10,000 3617 1294 868 792 754 727 704 664 580 5.0637

Normal distribution (μ = 0, σ = 0.05)
 n = 100 35 11 13 8 6 6 9 7 5 6.6299
 n = 1000 375 129 79 88 74 76 64 55 60 5.5388
 n = 10,000 3617 1294 868 792 754 727 704 664 580 5.0637

Normal distribution (μ = 0, σ = 0.25)
 n = 100 35 11 13 8 6 6 9 7 5 6.6299
 n = 1000 375 129 79 88 74 76 64 55 60 5.5388
 n = 10,000 3617 1294 868 792 754 727 704 664 580 5.0637

Normal distribution (μ = 0, σ = 0.50)
 n = 100 35 11 13 8 6 6 9 7 5 6.6299
 n = 1000 375 129 79 88 74 76 64 55 60 5.5388
 n = 10,000 3617 1294 868 792 754 727 704 664 580 5.0637

Normal distribution (μ = 0, σ = 1.00)
 n = 100 35 11 13 8 6 6 9 7 5 6.6299
 n = 1000 375 129 79 88 74 76 64 55 60 5.5388
 n = 10,000 3617 1294 868 792 754 727 704 664 580 5.0637

(a) (b)

Fig. 4   Comparisons of residuals (a) and normalized residuals (b) first digit frequency computed for X, Y, Z 
and expected frequencies according to BL
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(15.507) in all cases that is satisfied the compliance with BL. The �2 values computed for 
real data are lower than the simulated models and the larger data size provides lower �2.

Table 14 shows the OOM values of the data sets computed from the absolute values of 
residuals and normalized residuals by Eq. (11). For all data sets, the OOM values are larger 
than 3 (or 4). For the simulated data set depending on the linear regression model, the 
OOM values increase, while the numerical range of the data sets increase. Although there 
is a slightly decrease between the number of data 100–1000, the OOM values are still over 
3 (or 4).

Table 10   Frequencies and proportions for real data using residuals (X, Y, Z)

First digit k X Y Z BL proportion

Frequency f Proportion Frequency f Proportion Frequency f Proportion

1 4005 0.3629 3003 0.2721 3378 0.3061 0.3010
2 1533 0.1389 1454 0.1318 1511 0.1369 0.1761
3 974 0.0883 1263 0.1144 1103 0.0999 0.1249
4 858 0.0777 1248 0.1131 1037 0.0940 0.0969
5 860 0.0779 1039 0.0941 973 0.0882 0.0792
6 748 0.0678 920 0.0834 847 0.0767 0.0669
7 752 0.0681 771 0.0699 811 0.0735 0.0580
8 686 0.0622 726 0.0658 748 0.0678 0.0512
9 620 0.0562 612 0.0555 628 0.0569 0.0458
Sum 11,036 1.0000 11,036 1.0000 11,036 1.0000 1.0000
�2 4.1677 3.3049 2.8604 15.507

Table 11   Frequencies and proportions for real data using normalized residuals (X, Y, Z)

First digit k X Y Z BL proportion

Frequency f Proportion Frequency f Proportion Frequency f Proportion

1 3714 0.3365 3628 0.3287 3488 0.3161 0.3010
2 1414 0.1281 1390 0.1260 1522 0.1379 0.1761
3 1027 0.0931 1068 0.0968 1079 0.0978 0.1249
4 978 0.0886 1012 0.0917 967 0.0876 0.0969
5 883 0.0800 970 0.0879 930 0.0843 0.0792
6 858 0.0777 899 0.0815 879 0.0796 0.0669
7 789 0.0715 750 0.0680 771 0.0699 0.0580
8 695 0.0630 712 0.0645 724 0.0656 0.0512
9 678 0.0614 607 0.0550 676 0.0613 0.0458
Sum 11,036 1.0000 11,036 1.0000 11,036 1.0000 1.0000
�2 3.9095 3.4634 3.0323 15.507
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6 � Conclusion

In this study, we have shown, for the first time that the residuals and normalized residu-
als of geodetic data set estimated from LSE follow BL. The first data set was simu-
lated according to the regression models and randomly distributed errors were added. 
Without giving outliers, the data, which we assume that it should involve these types of 
errors that come from the nature of the survey, conform to this law with high statistical 
accuracy. To prove it with real data applications, we have chosen GPS data and leveling 
network. In the same manner, the statistical results support the same outcomes with 
higher accuracy. One point common in the data set is that the larger number of data pro-
vides the lower �2 . This situation is also provided by the OOM values. The numerical 

(a) (b)

Fig. 5   Comparisons of residuals (a) and normalized residuals (b) first digit frequency estimated by leveling 
network and expected frequencies according to BL

Table 12   Frequencies and proportions for leveling network

First digit k v w BL proportion

Frequency f Proportion Frequency f Proportion

1 37 0.3364 33 0.3000 0.3010
2 17 0.1545 13 0.1182 0.1761
3 18 0.1636 8 0.0727 0.1249
4 11 0.1000 10 0.0909 0.0969
5 5 0.0455 14 0.1273 0.0792
6 4 0.0364 11 0.1000 0.0669
7 7 0.0636 5 0.0455 0.0580
8 6 0.0545 9 0.0818 0.0512
9 5 0.0455 7 0.0636 0.0458
Sum 110 1.0000 110 1.0000 1.0000
�2 4.7981 11.4846 15.507
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range of the data sets increase when the number of data sets are increased. Meanwhile, 
the OOM values computed are over 3 (or 4) that they can be suggested as showing a 
good correlation with BL. BL applied as a useful tool for fraud detection in financial 
fields. Accordingly, this paper presents the first outcomes of BL implementation in 
residuals and normalized residuals estimated from the LSE method in geodetic studies.

Table 13   �2 values of data sets for residuals and normalized residuals

�2 �2 �2 �2

n = 100 n = 1000 n = 10,000 (95%)

Regression models
 Univariate model
  v 8.5736 5.9261 5.1665 15.507
  w 7.6331 5.4394 5.0686 15.507

 Linear regression model
  v 4.5714 5.8968 5.1670 15.507
  w 6.6299 5.5388 5.0637 15.507

X Y Z

GPS data
 v 4.1677 3.3049 2.8604 15.507
 w 3.9095 3.4634 3.0323 15.507

Leveling network
 v 4.7981 15.507
 w 11.4846 15.507

Table 14   OOM values of data sets for residuals and normalized residuals

n = 100 n = 1000 n = 10,000

Regression models
 Univariate model
  v 7.7 6.8 9.4
  w 7.7 6.8 9.4

 Linear regression model
  v 5.0 7.0 9.4
  w 5.0 7.0 9.4

X Y Z

GPS data
 v 11.3 10.6 10.9
 w 11.3 10.6 10.9

Leveling network
 v 4.9
 w 4.4
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