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Abstract Factor analysis of well logging data can be effectively applied to calculate shale

volume in hydrocarbon formations. A global optimization approach is developed to

improve the result of traditional factor analysis by reducing the misfit between the

observed well logs and theoretical data calculated by the factor model. Formation shaliness

is directly calculated from the factor scores by a nonlinear regression relation, which is

consistent in the studied area in Alaska, USA. The added advantage of the implementation

of the Simulated Annealing method is the estimation of the theoretical values of nuclear,

sonic, electrical as well as caliper well-logging data. The results of globally optimized

factor analysis are compared and verified by independent estimates of self-potential log-

based deterministic modeling. The suggested method is tested in two different shaly-sand

formations in the North Aleutian Basin of Alaska and the comparative study shows that the

assumed nonlinear connection between the factor scores and shale volume is applicable

with the same regression constants in different burial depths. The study shows that factor

analysis solved by the random search technique provides an independent in situ estimate to

shale content along arbitrary depth intervals of a borehole, which may improve the geo-

logical model of the hydrocarbon structure in the investigated area.
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1 Introduction

Multivariate statistical methods act as a powerful tool of lithology determination in

hydrocarbon exploration. Factor analysis is capable of extracting unobserved, latent

petrophysical information from well log data. By correlating the calculated factors to

petrophysical parameters, new approaches are being developed for the better modeling of

hydrocarbon reserves. Bücker et al. (2000) suggested the use of factor analysis for a fast

and objective evaluation of lithology from logging while drilling data. Odokuma-Alonge

and Adekoya (2013) applied the same statistical method for the interpretation of stream

sediments using geochemical data. Coimbra et al. (2017) used Principal Component

Analysis as a related method to calibrate and contrast stratigraphic patterns in bulk ele-

mental abundances. Szabó (2011) used factor analysis for shale volume calculation in

unconsolidated shaly-sand hydrocarbon formations. Based on this study, Szabó and

Dobróka (2013) found a strong exponential relation between a statistical factor explaining

the most part of variance of the input well-logging data and the shale content for different

North-American and Hungarian wells. The applicability of factor analysis was also indi-

cated by Asfahani (2014) for the classification of Syrian basaltic formations. Szabó et al.

(2014) confirmed for the results of shale volume estimation by core data.

The traditional method of factor analysis normally solves a maximum likelihood problem

to extract the statistical factors (Beauducel et al. 2016). In this study, we offer an alternative

approach, which treats the factor analysis as an inverse problem. In the frame of the inversion-

based factor analysis, the observed well logs are approximated by calculated data directly

computed from the factors, and the misfit between them is continuously optimized in an

iterative process. For the computer-based minimization process, one of the most favorable

methods are the global optimization methods. Sen and Stoffa (1995) provided a detailed

description on the applicability of global optimization techniques used in geophysics

including Simulated Annealing (SA). Soupiosa et al. (2011) utilized the Genetic Algorithms

as a similar method to SA for seismic travel time inversion. Shaw and Srivastava (2007)

successfully applied Particle Swarm Optimization as a third group of global optimization

methods for inverting direct current, induced polarization and magnetotelluric data. The

Simulated Annealing algorithm is an adaptation of the Metropolis algorithm (Metropolis

et al. 1953) that is based on the annealing of solids in a heat bath. Analogously to the

metallurgical process, SA is often used to solve multivariate optimization problems. Yin and

Hodges (2007) suggested the use of SA for the inversion of electromagnetic data to eliminate

the strongly start model dependent nature of traditional linearized inversion algorithms, e.g.

the Marquardt–Levenberg method (Marquardt 1963). Sz}ucs et al. (2006) proved that in the

characterization of groundwater formations, the geophysical inverse problem could be

effectively solved by the Very Fast Simulated Annealing method. In this study, factor analysis

is combined with SA to calculate the statistical factors more accurately and improve the fit

between the measured and calculated well logs. By choosing suitable control parameters, SA

allows the estimation of the factor variables in a convergent iterative procedure.

2 Simulated Annealing assisted factor analysis

SA is a random search technique used for approximating the global optimum of an

objective function. The SA algorithm is based on the analogy between the simulation of the

annealing of solids and the problem of solving multivariate optimization problems (van
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Laarhoven and Aarts 1987). Annealing denotes a physical process in which a solid is

heated up by increasing the temperature to a maximum value. At this stage, all particles of

the solid randomly arrange themselves in the liquid phase. Then, a slow cooling is carried

out by slowly lowering the temperature. In this way, all particles organize themselves in

the low energy ground state of a corresponding lattice, provided the maximum temperature

is sufficiently high and the cooling is sufficiently slow. If the cooling schedule is too rapid,

then the solid is not allowed to reach thermal equilibrium at a given temperature, and

defects can be frozen into the solid and a metastable amorphous structure is reached (in our

point of view a local minimum) rather than the lowest possible energy crystalline lattice

structure (global minimum). Since the number of atoms are in the order of 1023, there are

many possibilities for reaching an imperfect structure, in other words, a local minimum,

but there is only one global minimum (perfect crystalline lattice structure). The analogy

with geophysical inversion problems is obvious as we have a great number of measured

and calculated data and we look for the absolute minimum of an objective function related

to the data misfit with many local minima.

Factor analysis is generally used to describe several measured quantities with poten-

tially fewer unobserved variables. In well log analysis, the measured well logs represent

the input variables, which are simultaneously processed to extract the statistical factors.

The scores of a given factor plotted against depth called a factor log can be associated with

petrophysical parameters by regression analysis. In this study, we derive the shale volume

from the factor logs in different sedimentary formations deposited along the Alaska

Peninsula, USA.

In the first step, open-hole wireline logging data are standardized and put into the data

matrix D, in such a way that each column contains data of different logging tools

D ¼

D11 D12 � � � D1K

D21 D22 � � � D2K

..

. ..
. ..

. ..
.

Di1 Di2 � � � DiK

..

. ..
. ..

. ..
.

DN1 DN2 � � � DNK

0
BBBBBBB@

1
CCCCCCCA
; ð1Þ

where K is the number of different types of well logs and N is the total number of observed

depths. The basis of factor analysis is the following decomposition of matrix D

D ¼ FLT þ E; ð2Þ

where F denotes the N-by-M matrix of factor scores, L represents the K-by-M matrix of

factor loadings and E denotes the N-by-K residual matrix. Based on Eq. (2), the observed

variables are derived as the linear combination of the factors. The factor loadings quantify

the correlation relation between the observed variables and the extracted factors. The

largest part of the total data variance is represented by the first column of the matrix F,

which is called the first factor log. The factor loadings can be estimated by the non-iterative

approach of Jöreskog (2007)

L ¼ diagS�1
� ��1=2

X C� hIð Þ1=2U; ð3Þ

where C denotes the diagonal matrix of the first M number of sorted eigenvalues of the

sample covariance matrix S, X is the matrix of the first M number of eigenvectors and U is

an arbitrarily chosen M-by-M orthogonal matrix.
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We alter the traditional method (Bartlett 1937) of factor analysis by using the SA

algorithm to calculate the factor scores. The combined method has been chosen to call as

FA-SA. In the first step of this optimization problem, the model of factor analysis defined

in Eq. (2) is rearranged

d ¼ eLf þ e; ð4Þ

where d denotes the KN length vector of observed (standardized) data, eL is the NK-by-NM

matrix of factor loadings, f is the MN length vector of factor scores and e is the KN length

vector of residuals. At first, all data are put into a column vector, from where the matrix eL
is estimated by Eq. (3) and then rotated with the varimax algorithm developed by Kaiser

(1958). This orthogonal rotation simplifies the interpretation of factors by giving to each

factor a few large loadings and many small loadings. Then the vector of factor scores f is

estimated by the FA-SA algorithm. To solve the inverse problem and estimate the factor

scores, an objective function needs to be defined, the minimization of which finds the

optimal solution. We choose the objective function, named energy function in the termi-

nology of optimization theory, based on the L2 norm as

E ¼ 1

NK

XNK
i¼1

d
ðmÞ
i � d

ðcÞ
i

� �2

¼ min; ð5Þ

where dðmÞ and dðcÞ denote the measured and calculated (standardized) well-logging data

vectors, respectively. In the modified model of factor analysis, the term of eLf represents

the calculated data and D denotes the measured data. The former multiplication allows the

estimation of the theoretical values of well logs, which can be considered as the solution of

the forward problem. During the iterative procedure, we keep the values of factor loadings

fixed to minimize the CPU time, and only the factor scores are updated. In each iteration, a

randomly generated number (b) is added to any of the factor scores in vector f

f
ðnewÞ
j ¼ f

ðoldÞ
j þ b ðj ¼ 1; . . .;NMÞ; ð6Þ

where parameter b is smaller than the maximal perturbation (bmax) that has to be defined in

the initialization of the FA-SA algorithm. In the current procedure, we select the initial

values of factor scores as zero. If the energy difference of factor models—estimated in two

subsequent iterations (DE) according to Eq. (5)—is negative (i.e. better fit between the

observed and calculated data), the new model is accepted and the process is continued with

the new energy state. However, in the reverse case (if DE[ 0), the probability of

acceptance is given by the formula Pa = exp(- DE/T), where T is the current temperature

of the artificial system with no physical meaning. The new factor model is accepted only

when a randomly generated number from the range of 0 and 1 is smaller than Pa. This

acceptance rule for new energy states is referred to as the Metropolis criterion (Metropolis

et al. 1953). This is a fundamental part of the FA-SA algorithm as it prevents the search

from being stuck in a local minimum of function E in Eq. (5). During the annealing

process, the temperature of the system is reduced iteratively according to Geman and

Geman (1984)

T ðnewÞ ¼ T ðoldÞ= lnð1 þ qÞ; ð7Þ

where q denotes the number of iterations already computed. The maximal perturbation

term (bmax) is also reduced according to bmax = bmax � e, where e is an arbitrary chosen
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constant from the interval of 0 and 1. These steps are repeated in each iteration until the

pre-defined maximal number of iteration steps is reached and then the values of factor

scores in the last iteration step are accepted as the solution. The factors estimated by the

FA-SA algorithm are directly used to reveal hidden petrophysical information from the

well-logging data set. Szabó and Dobróka (2013) showed that the shale volume (in percent)

correlates strongly to the first factor log (F1) scaled into the range of 0 and 100

Vsh ¼ 2:76e0:037F1 ; ð8Þ

the validity of which is verified in Alaska coastal sediments in Sect. 3. According to

Eq. (8), the first factor has been identified as a lithologic indicator. Shale volume can also

be independently calculated by a series expansion based inversion method (Dobróka et al.

2016). Szabó and Dobróka (2017) confirmed the validity of Eq. (8) by a series expansion

based interval inversion procedure.

3 Field examples

3.1 Milky River Formation

The FA-SA method is tested in two hydrocarbon exploratory wells drilled in Alaska, USA

shown in Fig. 1. First, we investigate Well-1 that penetrated the Milky River Formation,

which is mainly built up of conglomerates, sandstone and mudstone and was formed in a

shallow marine environment in the Pliocene age. It has high porosity and high perme-

ability. As the input of factor analysis, we utilized the natural gamma-ray intensity (GR),

density (RHOB), caliper (CAL), deep induction resistivity (ILD), spontaneous potential

(SP) and neutron-porosity (NPHIS) logs. At the beginning of the statistical procedure, the

factor loadings are calculated by Jöreskog’s non-iterative approach using Eq. (3). Table 1

contains the resultant factor loadings representing the impact of the different well logs on

the extracted factors for Well-1.

As Table 1 shows, the deep resistivity and the spontaneous potential logs have the

highest loads on the first factor and unusually the load of the natural gamma-ray intensity is

only - 0.5213. From the first factor considered as lithological indicator, we would expect

the natural gamma-ray intensity to have higher load, but in this formation, the abundance

of lithic detritus causes a mineralogical overlap between sandstones and mudstones.

Therefore, the natural gamma-ray tool which response is mainly due to some aspect of

mineralogy recorded only little or no difference between sandstone and mudstone and this

causes the relatively low factor loading of the natural gamma-ray intensity on the first

factor.

Then the factor scores are estimated by the FA-SA algorithm. In the step of initial-

ization, we define the objective function, also called the energy function according to

Eq. (5) and set the initial temperature (T0) to 0.00015, cooling schedule according to

Eq. (7), maximal parameter perturbation (bmax) to 0.5, perturbation reduction parameter (e)
to 0.98 and the maximal number of iteration steps. Figure 2a shows the decrease of the

difference between the measured and calculated well logs by the iterations steps and

Fig. 2b presents the temperature decrease of the system. The difference between the

measured and calculated reached a minimum at about eighty thousand iterations, which

took approximately 5 min on a quad-core based workstation. The continuous decrease of

the value of the objective function indicates the highly stable nature of the FA-SA method.
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Figure 3 presents the relation between the first factor and the shale volume estimated by

the FA-SA method utilizing Eq. (8). The regression coefficients of the suggested expo-

nential relation agree well with earlier studies (Szabó and Dobróka 2013). The same

coefficients in different formations shows consistent results and confirm the applicability of

the method.

Shale volume derived from the FA-SA method is shown in Fig. 4. On tracks 1–6, the

standardized (input) well logs (black solid line) and the calculated logs (red dotted line)

can be seen. Track 7 is the scaled first factor log, while next to it on the right the shale

volume calculated from the first factor log (red solid line) is compared to that of calculated

by deterministic modeling using the SP log (purple dotted line).

The fit between the observed and calculated well logs is quite good. Theoretical well

logs represented by red dashed lines were directly calculated as the multiplication of the

rotated factor loadings and factor scores. The shale volume calculated by the FA-SA

Fig. 1 The location of the investigated wells

Table 1 Rotated factor loadings
estimated in Well-1

Well logs Factor 1 Factor 2 Factor 3

CAL - 0.3892 - 0.1484 - 0.5221

GR - 0.5213 - 0.0205 0.4602

SP 0.9538 -0.0707 0.0320

RHOB - 0.0883 0.7609 0.0144

ILD 0.9386 - 0.0780 0.0134

NPHIS 0.0969 - 0.7397 - 0.0612
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method also agrees well with the results of deterministic analysis. These results indicate

the applicability of the FA-SA method for shale volume estimation in shallow marine

sedimentary formations.

3.2 Bear Lake Formation

In case of Well-2, the penetrated horizon is the Bear Lake Formation, which is of Miocene

age, and consists mainly of sandstones, conglomerates and thin mudstones. It formed in

neritic to tidal flat environments and it can be characterized by high porosity and moderate

permeability. The inputs of the factor analysis were the caliper (CAL), interval transit time

(DT), natural gamma-ray intensity (GR), deep induction resistivity (ILD), neutron-porosity

Fig. 2 a Development of convergence of the FA-SA procedure for Well-1, b temperature of the system
during the procedure

Fig. 3 Regression relation between the scaled first factor and the shale volume for Well-1
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(NPHIS), density (RHOB) and spontaneous potential (SP) logs. The FA-SA procedure run

by the same control parameters as in Well-1. Table 2 contains the factor loadings related to

three factors in case of Well-2.

In this case, not just the deep resistivity and the spontaneous potential logs have high

loads on the first factor, but both the gamma-ray intensity and the caliper logs, too. We

implemented the caliper log into the procedure, because washouts and the thickening of the

mudcake might have strong relation in some cases to lithology. As we can see in this

example, the caliper log affects highly the lithology-sensitive first factor. Figure 5 shows

the decrease of the value of energy function by the iteration steps. It reached a minimum at

about ninety thousand iterations in approximately 4 min. In this case, the FA-SA method

again proves to be very stable in the iteration process. The cooling schedule was identical

as in Fig. 2b which indicates the highly adaptive nature of this approach.

The regression function of the first factor and the shale volume estimated by the FA-SA

method is illustrated in Fig. 6, which refers to a strong relation also for Well-2.

The interpretation results of the FA-SA method applied to Well-2 is shown in Fig. 7.

The first seven columns from the left represents the input well logs (black solid line) and

the calculated logs (red dotted line), the next is the scaled first factor log (blue solid line),

Fig. 4 The results of FA-SA for Well-1. (Color figure online)

Table 2 Rotated factor loadings
calculated in Well-2

Well logs Factor 1 Factor 2 Factor 3

CAL - 0.6222 - 0.6081 - 0.1344

GR 0.6529 0.5218 0.2648

SP 0.9338 - 0.0429 0.0081

RHOB - 0.1935 0.5788 0.4545

ILD 0.8967 - 0.0588 - 0.1758

NPHIS 0.2424 - 0.8167 - 0.1616

DT - 0.2733 -0.7565 0.0344
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and on the very right the shale volume calculated from the first factor log (red solid line)

can be compared to the shale volume calculated by deterministic modeling (purple dotted

line). Here the calculated logs again fit the measured data acceptably well. In conclusion,

the shale volume calculated by the FA-SA method is consistent with the shale volume

calculated by deterministic modeling.

Fig. 5 The decrease of the
model energy by the iteration
steps for Well-2

Fig. 6 Regression relation between the first factor and the shale volume for Well-2
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4 Discussion and conclusions

The study presents the results of the newly developed method (FA-SA) of factor analysis

assisted by the Simulated Annealing technique. With a global optimization approach, this

method transforms the measured well logs into factor logs in a reliable way. One finds that

the first factor log calculated by the FA-SA method strongly correlates with the inde-

pendently calculated shale volume of different coastal formations. However, it should be

noted, that as it is a general method, it should work in most lithologies. Based on the factor

loadings, in both examples the second factor log is influenced by porosity sensitive logs

such as RHOB, NPHIS and DT, two of which, RHOB and DT, are also sensitive to elastic

properties, which might be the basis of further studies. The implementation of the FA-SA

allows also for the estimation of the theoretical values of well logs, which neglects the

preliminary knowledge of zone parameters and other petrophysical information. It also

proves to be very stable in the iteration process and delivers the results within some

minutes for sections of few hundred meters. Therefore, the statistical method can serve as

an alternative tool for calculating shale volume in the oilfield. With the further improve-

ment of the mathematical algorithm of the FA-SA method, we intend to give a robust

solution, so that it can also be utilized for highly noisy data sets with arbitrary (e.g. not

normally distributed) statistical distributions.
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