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Abstract A robust Kalman filter based on Chi square test with sequential measurement

update is proposed. This approach can not only handle outliers in part or even individual

measurement channel, but can also further improve the accuracy especially when a novel

ordering strategy in processing the measurement elements is adopted. The accuracy

improvement can be attributed to the higher statistical efficiency, i.e., an increased prob-

ability of correctly resisting the outlying measurement elements and retaining the good

ones. The accuracy improvement of the proposed method is illustrated by a simulating

example.

Keywords Robust Kalman filter � Chi square test � Sequential measurement update �
Statistical efficiency

1 Introduction

Kalman filter (KF) is widely used in processing kinematic geodetic measurements (Bogatin

and Kogoj 2008). For linear systems with Gaussian noises, KF is optimal in almost every

conceivable sense (Simon 2006). Gaussianity is often adopted due to its tractability and its

good asymptotic performances, but exact Gaussianity seems to be an idealistic assumption

in many practical cases. In fact Gaussianity is only approximate for cases with small

sample data, especially when outliers/biases are not negligible. As a 2-norm-of-error

minimizer, KF is rather sensible to deviations from the assumed Gaussianity which is well

known as the lack-of-robustness or lack-of-reliability. While robustness/reliability can be
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rather general concepts, only the robustness against uncertainties in noise probability

distribution is considered, i.e., the distributional robustness to be more specific (Huber and

Ronchetti 2009).

In the geodetic literature, there are two kinds of approaches to address the non-Gaus-

sianity and/or outliers/biases (Lehmann 2013a), one is the test-based outlier detection

methods and the other is robust statistics based method.

For the test-based outlier detection method, in his pioneer work, (Baarda 1968) pro-

posed to use hypothesis test to detect outliers in geodetic measurement. While the a priori

variance is used in (Baarda 1968), the test using estimated variance is introduced in (Pope

1976). Trying to extend the the theory of Baarda (1968) and Pope (1976), Teunissen

developed the recursive detection, identification, and adaptation (DIA) theory (Teunissen

1990a, b; Teunissen and Salzmann 1989). In DIA, the detection process aims to decide by

using a overall test whether some kind of bias or outlier is present; the identification

process serves to decide in which channel of the measurement and/or process vector and at

which epoch the bias/outlier occurred; in the adaptation process, the detected bias/outlier

are corrected or discarded. The DIA methods have found widely applications in the

geodetic community, e.g., to detect GNSS pseudorange outliers, phase cycle slips or

ionospheric disturbances (Teunissen 1998; Teunissen and De Bakker 2013), station

coordinate discontinuities (Perfetti 2006), etc. Also, by inversing the power function of the

test, a concept called minimal detectable bias/outlier, some kind of reliability measure, can

be derived which can be used to evaluate the strength of the measurement model (De Jong

2000; Koch 2015; Teunissen 1998), and hence further to conduct the design of the mea-

surement model (Salzmann 1991). Some possible difficulties in using DIA include the

following. First, appropriate alternative hypotheses should be carefully chosen, this may be

the most non-trivial task in DIA (Teunissen 1990a). The alternative hypotheses con-

struction in the identification process depends heavily on the specific problem to be solved

and determines directly how to adapt the detected unusual measurement in the adaptation

process (Lehmann 2013b). Second, the critical values of the test statistics in the detection

and/or identification process are often hard to determine because the complex distribution

pattern of the test statistics, sometimes, some kind of numerical method, e.g., the Monte

Carlo method, can be used instead of the analytical methods (Lehmann 2012). Third, the

application of DIA in the multiple-outlier case needs further investigation.

For the robust statistics based method, the well-developed discipline called robust

statistics, aiming to robustify the conventional statistical inference methods such as esti-

mation (Huber and Ronchetti 2009), has been successfully used in geodesy (Guo 2013;

Hekimoğlu et al. 2011; Třasák and Štroner 2014). The starting point, which make it

different from the test-based method, is to only make the method insensitive to outliers or

other statistical uncertainties. In other words, it does not try to detect/identify/correct the

uncertainties but only to resist them. It seems also natural to borrow concepts and methods

from robust statistics to analyze and improve the robustness of KF. It is indeed so, e.g., the

Bayesian estimator, of which KF can be seen a special case, was robustified using the

celebrated M-estimator in (Yang 1991). Robust KF for rank-deficient measurement models

was studied in (Koch and Yang 1998) focusing on getting the initial estimates at the start of

the filtering. Rank-deficient model together with process model uncertainties was

addressed recently in (Chang and Liu 2015) focusing on getting more suitable initial

estimate in iteratively solving the M-estimation problem, also in (Chang and Liu 2015), the

influence function of KF is introduced and derived to evaluate the robustness of a KF-

based approach. An adaptively robust KF is proposed in (Yang et al. 2001) to address
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uncertainties in both process and measurement models. M-estimator based robust KF is

also developed in the framework of nonlinear KF, e.g., the unscented KF (Karlgaard 2015).

Note that there are some kind of overlapping of these two categories. First of all, both

aim to robustify the methods, though through different approaches. In the robust statistics

method, e.g., the M-estimator, some kind of detection and adaptation (down weighting) can

be safely considered existing (Lehmann 2013a). Some kinds of combinations of the two are

also possible, e.g., in (Lehmann 2013a), it is stated that ‘‘Robust estimation procedures can

also be considered as preparatory tools for improved outlier testing’’.

A robust KF using Chi square test to detect outliers in the measurement is studied in

(Chang 2014), in this approach, the Mahalanobis distance of the measurement under

assumed Gaussian distribution is constructed as the test statistic. This approach bears some

features of both the above two methods. Outliers, raised due to statistical uncertainties, is

detected using a Chi square test, this is the same to the detection process of the DIA in its

local test form. However, for the detected outlier, the corresponding measurement is down

weighted to make the estimate insensitive to it, this follows the lines of robust statistics, of

course one can also consider it is following one kind of the adaptation of DIA. In (Chang

2014) Only one total Mahalanobis distance of all measurement elements is calculated and

only one scaling factor is introduced to inflate the overall covariance matrix of the inno-

vation vector, so in its original form, the approach cannot efficiently address uncertainties

in only part of the measurement channels (Chang 2014). It was mentioned in (Chang 2014)

that this problem can be fixed through implementing sequential measurement update, i.e.,

processing the vectorial measurement element by element. This idea is detailed and further

explored in the current work. In addition to addressing uncertainties in part or even

individual measurement channel, there are some by-products of this idea, e.g., superior

numerical stability can be expected because no matrix inversion is involved. More

importantly, accuracy can be further improved especially through elaborately choosing the

order of processing the elements of the measurement vector. We attribute this improve-

ment to the higher statistical efficiency gained. More specifically, after part of the elements

are processed, better estimation (better than the prediction) can be obtained which serves as

better reference to detect outliers in processing the remaining part of the elements. Better

reference will increase the probability of correctly resisting the outlying ones and retaining

the good ones in the measurement elements, which means a higher statistical efficiency.

The remaining part of the paper is organized as follows. The method is presented in

Sect. 2. Accuracy improvement is illustrated with a simulating example in Sect. 3. Some

concluding remarks is given in Sect. 4.

2 Method

In the first subsection, after presenting the basic formulae of the KF, the approach of

detecting and resisting outliers in the measurement is introduced. In the second subsection,

sequentially implementing the measurement update with the previously introduced outlier

handling method is derived emphasizing a novel ordering strategy in processing the ele-

ments of the measurement vector.

2.1 Kalman filter and the resistance of outliers

The problem studied is represented as the following discrete-time state space model,
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xk ¼ Fxk�1 þ wk�1 ð1Þ

yk ¼ Hxk þ vk ð2Þ

where xk and yk are n- and m-dimensional state and measurement vectors at the kth epoch,

F and H are transition and design matrices with appropriate dimensions, wk and vk are

process and measurement noises which are assumed zero-mean Gaussianly distributed with

nominal covariance matrix Q and R respectively. Note that in this study the real distri-

bution of vk can deviate from this assumption. Assume the initial estimate at 0 epoch is bx0 0j
with associate covariance estimate being P

bx0 0j ;bx0 0j
. At any epoch, say k, we have the

following KF formulae.

bxk k�1j ¼ Fbxk�1 k�1j ð3Þ

P
bxk k�1j ;bxk k�1j

¼ FP
bxk�1 k�1j ;bxk�1 k�1j

FT þ Q ð4Þ

byk k�1j ¼ Hbxk k�1j ð5Þ

P
byk k�1j ;byk k�1j

¼ HP
bxk k�1j ;bxk k�1j

HT þ R ð6Þ

Kk ¼ P
bxk k�1j ;bxk k�1j

HT P
byk k�1j ;byk k�1j

� ��1

ð7Þ

bxk kj ¼ bxk k�1j þ Kk ~yk � byk k�1j

� �

ð8Þ

P
bxk kj ;bxk kj

¼ P
bxk k�1j ;bxk k�1j

� KkP
byk k�1j ;byk k�1j

KT
k ð9Þ

where bxi jj represents an estimate of the state vector at the ith epoch using measurements up

to the jth epoch, specifically, bxk k�1j and bxk kj are also called the a priori and the a posteriori

estimates; Pa;b represents the (cross) covariance matrix between a and b; ~yk, a non-random

constant, is the actual measurement, or a realization of yk; Kk is gain matrix which

combines bxk k�1j and ~yk � byk k�1j linearly to get bxk kj . Note that ek = ~yk � byk k�1j is often

called the innovation vector (Kailath et al. 2000) whose covariance is equal to P
byk k�1j ;byk k�1j

because ~yk is non-random.

Under the Gaussian assumption, yk should be Gaussian with mean byk k�1j and covariance

P
byk k�1j ;byk k�1j

, and the squared Mahalanobis distance of yk should be Chi square distributed

with m freedoms, i.e.,

c ykð Þ ¼ d2 ¼ yk � byk k�1j

� �T

P
byk k�1j ;byk k�1j

� ��1

yk � byk k�1j

� �

� v2
m ð10Þ

So we can do a Chi square test to judge whether an actual measurement is a realization

of yk under the Gaussian assumption. Let the null hypothesis be that vk is Gaussianly

distributed. For a given significance level, say 1 - a, and the corresponding upper a-

quantile v2
m;a, we have

Pr c ykð Þ[ v2
m;a

h i

\a ð11Þ
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if the null hypothesis holds, where Pr[�] denotes the probability of an event. Given a a

rather small value, if c ~ykð Þ[ v2
m;a, we can say with a rather high probability, i.e., 1 - a,

that the null hypothesis should be rejected, and in this case, ~yk is deemed to be outlier. This

shows how the outliers are detected. For a detected outlier, its contribution in the mea-

surement update should be decreased, and this is achieved by inflating the covariance of

the innovation vector. The inflating factor can be calculated as

j ¼ c ~ykð Þ
v2
m;a

ð12Þ

This shows how the detected outlier is resisted.

As in Eq. (10), only one statistic is calculated to judge whether the overall measurement

vector is an outlier, and as in Eq. (12), only one scaling factor is introduced to inflate the

whole covariance matrix. If only part or even a single element of the measurement is

outlying, the overall measurement vector may be deemed as being outlying. This means that

some good measurement elements may be mistaken as outliers. Also an outlying element

may fail to be detected because it may be masked by other good elements. This means that

some outlying measurement elements may be mistaken as good ones. To summarize, either

mistaking good measurement elements as outlying ones or mistaking outlying ones as good

ones will result in loss of statistical efficiency and hence in lower accuracy of the estimates.

2.2 Implementing sequential measurement update in robust Kalman filter

As mentioned in (Chang 2014), outliers in individual measurement channel can be effi-

ciently addressed by implementing sequential measurement update of the KF, i.e., only a

single measurement element is processed once in a measurement update and hence there

will be m measurement updates in one recursion at any epoch. In every measurement

update, the previous outlier detection and resistance will be performed.

If the measurement elements are cross correlated, we first de-correlate them through the

Cholesky decomposition. One reviewer insisted on putting douts on this decorrelation

approach, as it would spread outliers over different observations. Unfortunately, the authors

have no sounder solutions for now and will work in depth on one this issue in the future. Let

R ¼ LLT ð13Þ

From Eq. (2), we have

L�1yk ¼ L�1Hxk þ L�1vk ð14Þ

Let �yk ¼ L�1yk, �H ¼ L�1H, and �vk ¼ L�1vk, we have de-correlated measurement

equation

�yk ¼ �Hxk þ �vk ð15Þ

cov �vk½ � ¼ L�1RL�T ¼ L�1LLTL�T ¼ I ð16Þ

Note that for this measurement equation, the actual measurement should be ~�yk ¼ L�1~yk
accordingly.

Let

H ¼ h
T

1 h
T

2 � � � h
T

m

h i

ð17Þ
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In the jth measurement update at the kth epoch, we have

�̂yk;j¼�hjx̂k;j�1 ð18Þ

r2

ŷk;j
¼ �hjP

bxk;j�1;bxk;j�1
h
T

j þ 1 ð19Þ

where x̂k;j�1 is the estimate after processing the (j - 1)th measurement element and

x̂k;0 ¼ x̂k k�1j , �̂yk;j is the prediction of the jth element of �yk. One-freedom Chi square test, is

carried out to judge whether ~yk;j is an outlier. The statistic is calculated as

c ~yk;j
� �

¼
~yk;j � ŷk;j

� �2

r2

ŷk;j

ð20Þ

For a given significance level, say also 1 - a, and the corresponding upper a-quantile

v2
1;a, we check if

c ~�yk;j
� �

[ v2
1;a ð21Þ

If Eq. (21) holds, ~�yk;j is deemed as an outlier, then the following scaling factor is

calculated to inflate the variance in Eq. (19), i.e.,

j ¼
c ~�yk;j
� �

v2
1;a

ð22Þ

jr2
�̂yk;j

! r2
�̂yk;j

ð23Þ

And then update the estimate as

K ¼
Px̂k;j�1;x̂k;j�1

h
T

j

r2
�̂yk;j

ð24Þ

x̂k;j ¼ x̂k;j�1 þ K ~�yk;j � �̂yk;j
� �

ð25Þ

P
bxk;j;bxk;j

¼ P
bxk;j�1;bxk;j�1

� r2
�̂yk;j
KKT ð26Þ

It is well known that x̂k;j is a more accurate estimate than x̂k;j�1, because

Px̂k;j;x̂k;j �Px̂k;j�1;x̂k;j�1
, i.e., Px̂k;j�1;x̂k;j�1

� Px̂k;j;x̂k;j is positive semi-definite, which is explicitly

shown in Eq. (26). So in checking the (j ? 1)th measurement elements, the reference

information used, i.e., x̂k;j, is better than x̂k;j�1, of course even better than x̂k k�1j . Better

reference information implies an increased probability of detecting outliers, so it is more

probable to correctly resist the outlying elements and to retain the good ones.

In implementing the above robust sequential measurement update, it should be apparent

that the more reliable a measurement element is, the more accurate the estimate will

become. So the more reliable elements should be firstly processed in order to get a even

better reference information to check the remaining dubious elements. The Mahalanobis

distances or their squares of individual elements can represent to some extent the relative

qualities of these elements, i.e., the smaller one’s Mahalanobis distance is, the more

reliable the elements should be. So for given reference information, Mahalanobis distances
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of all the remaining elements are calculated, and the element with the smallest Maha-

lanobis distance is processed in the next measurement update. Of course this sorting

process will increase the computation, but the accuracy improvement may reward in some

cases.

The algorithm is depicted in Table 1 in the form of pseudo code.

3 An illustrating example

Assume an object is moving forward without side slip in the horizon, the forward distance

and velocity are of interest and the north and east position is measured.

A constant velocity model is assumed, so we have

_p
_v

� �

¼ 0 1

0 0

� �

p

v

� �

þ 0

a

� �

ð27Þ

where, p and v are the forward position and velocity which should be estimated, a is the

forward acceleration which is assumed white Gaussian noise with variance r2
a. Given the

integration interval s, Eq. (27) is discretized to get the process equation

pk
vk

� �

¼ 1 s
0 1

� �

pk�1

vk�1

� �

þ wk�1 ð28Þ

with

Q = cov wk�1½ � ¼ r2
a

s3

3

s2

2

s2

2
s

2

6

6

4

3

7

7

5

ð29Þ

The measurement equation is

pN;k
pE;k

� �

¼ cos h 0

sin h 0

� �

pk
vk

� �

þ ek
nk

� �

ð30Þ

where h is the heading angle. The measurement noises ek and nk are assumed to be

distributed as gross error model, which is proposed in (Huber 1964) to formulate the full

kind of the ‘‘neighborhood’’ of an assumed parametric model, the probability density

function is

f ¼ 1 � lð Þf0 þ lfc ð31Þ

where f, f0, and fc represent the real, the nominal, and the contaminating distribution

respectively, l is called the contaminating ratio. When l = 0, the nominal distribution

represent the real distribution exactly. In this study both f0 and fc are assumed to be zero-

mean Gaussian but with different variance, in this case, the gross error model in Eq. (31) is

also called a Gauss mix model.

The following three cases are studied.

Case 1 NoUn: uncertainty exists in neither of the two channels, i.e., the nominal dis-

tributions of both ek and nk represent their real distributions;
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Table 1 Outlier detection and resistance in sequential measurement update
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Case 2 UnOn: uncertainty exists in only one channel, say the north channel;

Case 3 UnBo: uncertainties exist in both channels.

Let f0 * N(0,1) and fc * N(0,10), if uncertainty exists, let l = 0.1, otherwise l = 0.

Three approaches are checked in all three cases,

Approach 1 KF, the standard KF;

Approach 2 RKF, the robust KF proposed in (Chang 2014), also introduced in Sect. 2.1.

In this approach let a = 0.05, so v2
2; 0:05 ¼ 5:99.

Approach 3 RKFs, the robust KF with sequential measurement update proposed in this

work, illustrated in Table 1. In this approach let a = 0.05, so v2
1; 0:05 ¼ 3:84.

Monte Carlo experiments with 10,000 independent runs are conducted. The mean

squared (over different Monte Carlo runs) errors of the estimates at any epoch by all three

approaches in all three cases are calculated and depicted in the figures. The overall mean

squared errors (over both different Monte Carlo runs and different epochs) of the estimates

by three approaches in three cases are also calculated and summarized in Table 2.

In Figs. 1 and 2, it is found that all three approaches perform well in the first case. As

the KF is optimal in this case, the comparative performance of the two robust approaches

validates their statistical efficiency in this case. More specifically, there exists inevitably

probability that the good measurement may be mistaken as outliers, but this probability is

rather low. The high efficiency is achieved by deliberately selecting a rather high signif-

icance level, i.e., 1 - a.

From Figs. 3 and 4, we see that the performance of the KF degrades significantly which

clearly shows its lack of robustness. However, two robust approaches can still provide

relatively good estimates in this case. The higher accuracy of the two robust approaches

compared to that of the KF is due to the robustness of two. Note that in spite of the

robustness, the root mean squared errors of the two robust approaches still increase

compared to the first case, this has nothing to do with robustness, rather this is because the

equivalent accuracy of the measurement decrease compared to the first case. In the first

case, the standard deviation of the measurement noise (north channel) is 1 m, while the

equivalent standard deviation (north channel) in the second case is

�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � lð Þr2
f0
þ lr2

fc

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:9 � 1 þ 0:1 � 100
p

� 3:3[ 1 ð32Þ

Table 2 Root mean squared errors in position and velocity estimations by three approaches, i.e., Kalman
filter (KF), robust Kalman filter (RKF), and robust Kalman filter with sequential measurement update
(RKFs), in three cases, i.e., with no uncertainty (NoUn), with uncertainties in one channel (UnOn), and with
uncertainties in both channels (UnBo)

Error terms Approaches NoUn UnOn UnBo

Position (m) KF 0.3903 0.9192 1.2393

RKF 0.5199 0.5497 0.5723

RKFs 0.3933 0.4098 0.4300

Velocity (m/s) KF 1.0809 1.8103 2.3350

RKF 1.0829 1.1067 1.1407

RKFs 1.0799 1.0927 1.1173
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Fig. 1 Mean squared errors in the position estimates in Case 1 (NoUn)
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Fig. 2 Mean squared errors in the velocity estimates in Case 1 (NoUn)
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Fig. 3 Mean squared errors in the position estimates in Case 2 (UnOn)
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From Figs. 3 and 4, we can also find that the RKFs approach performs slightly better

than the RKF approach. The superiority of RKFs can be clearly seen in Table 2. As

explained previously, this is due to the higher statistical efficiency of RKFs than RKF.

From Figs. 5 and 6, we observe that again in this case, the two robust approaches

outperform the standard KF which is due to the robustness. Again in this case, the per-

formances of the two robust approaches decrease compared to the second case which is

caused by the increased standard deviation of measurement noise in east channel. The

RKFs performs slightly better than RKF as is clearly demonstrated in Table 2, again, this is

due to the relatively higher statistical efficiency of the former compared to the latter.

4 Concluding remarks

The distributional uncertainty in the measurement noise, or more specifically the non-

Gaussianity of the measurement noise’s distribution, is addressed through employing a

robust KF based on Chi square test to detect outliers and innovation vector covariance

inflation to resist the detected outliers. Through implementing the so called sequential
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Fig. 4 Mean squared errors in the velocity estimates in Case 2 (UnOn)
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Fig. 5 Mean squared errors in the position estimates in Case 3 (UnBo)
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measurement update of the robust KF, we achieved manifold merits: the ability to address

outliers in part of or even individual measurement channel; higher numerical stability

because matrix inverse is no longer needed; and most importantly higher accuracy because

of a higher statistical efficiency in detecting outliers. The higher statistical efficiency is

brought about by a higher probability of correctly detecting the outlying measurement

elements and retaining the good ones.

It must be admitted that there is inevitably computation increase in the proposed

method, mainly because hypothesis test should be done for every measurement element

and a sorting process should be carried out to select the measurement element for the next

processing, but we believe that in some case, the higher accuracy gained may reward the

increased computation paid.
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