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Abstract In this contribution, non-typical errors-in-variables (EIV) model is introduced

as a more general form of the so-called EIV model which is highly relevant for geodetic

data processing. Total least-squares (TLS) algorithms within a typical EIV model cannot

deal with the non-typical EIV models since the first order moment/mean of the random

design matrix in a non-typical EIV model is not linear. In this paper, we propose a new

algorithm besides a standard solution to deal with this model. To achieve this goal, first we

review a classic algorithm in order to solve this problem using traditional non-linear least-

squares method within a non-linear mixed model. Then by comparison, weighted TLS

algorithm within the typical EIV model can be replaced by the proposed approach after

some slight modifications which results in an excellent approximate solution. This foun-

dation is important because there is no need for linearization in the TLS algorithms. The

proposed way is not sensitive to the approximate initial values of the unknown parameters

and it is applicable to curve fitting, surface reconstruction or other non-typical EIV models.

Here we employ it to the curve fitting. Also two examples convincingly demonstrate that

the standard TLS solution of the non-typical EIV model is not admissible when it is

incorrectly considered as a typical EIV model; i.e., the non-linear relationships of the

elements of the random design matrix are neglected.

Keywords Typical EIV model � Non-typical EIV model � Weighted total least-squares

algorithm � Curve fitting
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1 Introduction

The concept of typical/classic errors-in-variables (EIV) models has been already intro-

duced by several authors in the last years. A typical EIV model is similar to a Gauss–

Markov (GM) model but all the variables are subject to random errors. For further reading,

see e.g., Van Huffel and Vandewalle (1991), Schaffrin and Wieser (2008), Felus (2004),

Schaffrin et al. (2012a, b), Mahboub et al. (2012), Fang (2013, 2014), Snow and Schaffrin

(2012), Snow (2012) and Mahboub (2014), etc. Meanwhile, some other researchers in-

vestigated this problem traditionally; see e.g., Neitzel (2010) and Shen et al. (2011). The

term ‘‘total least-squares (TLS)’’ was coined in the field of numerical analysis by Golub

and Van Loan (1980) as one of the standard solutions of this model. Also in several

contributions particularly in geodetic literature, its applications have been investigated.

Linear regression (Schaffrin and Wieser 2008; Fang 2011), geodetic resection (Schaffrin

and Felus 2008), transformation (Mahboub 2012) and rapid satellite positioning (Mahboub

and Sharifi 2013) are some examples. Nevertheless, there are some other problems such as

curve fitting which all the variables are subject to errors but the model is not similar to GM

model. In other words, the design matrix in these kinds of models is a non-linear function

of random variables. Some examples are as follows (both y and x coordinates are subject to

random errors and underlining indicates random variables):

y ¼ a sin t þ b cos t þ c ¼ ½ sin t cos t 1 �
a

b

c

2
4

3
5 ¼ AðtÞ

a

b

c

2
4

3
5;

y ¼ a0 þ a1t þ a2t
2 þ a3t

3 ¼ 1 t t2 t3
� �

a0

a1

a2

a3

2
664

3
775 ¼ AðtÞ

a0

a1

a2

a3

2
664

3
775:

In fact, in the non-typical EIV model, the first order moment/mean of the non-linear

random design matrix A(t) is not known. We only know the mean of the random variables

(t). In other words, in the non-typical EIV model, the functional dependence of A on t is

considered through A ¼ AðtÞ: Mathematically, one encounters the following functional

models for the typical and non-typical EIV models:

y ¼ AðtÞn with
EðAðtÞÞ ¼ AðEðtÞÞ for typical EIV model ðIÞ;
EðAðtÞÞ 6¼ AðEðtÞÞ for non-typical EIV model ðIIÞ;

�

is the vector of unknown parameters, where E(�) denotes expectation operator. In geodesy,

the non-typical EIV models appear in some problems. Clearly curve fitting is one of them

due to the above formulas and it will be discussed in Sect. 4 (numerical results and

discussions). The other example is surface reconstruction. ‘‘One well established technique

to construct a surface that best fits to an observed scattered point cloud is based on the

Kriging methodology that uses semi-variograms. As this semi-variogram regularly turns

out to have a steep slope near the origin—where it matters most—, a better idea seems to

be seeking a best fit on the basis of the Total Least-Squares (TLS) principle’’ (Schaffrin

and Uzun 2008). Although they correctly mentioned that considering the errors for both

ordinate and abscissa provides an estimated semi-variogram that is ‘‘nearest’’ to the em-

pirical values in the geometric sense, namely measured along perpendicular projections

onto the graph of the semi-variogram, they should have considered the empirical semi-
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variogram as a non-typical EIV model since the observed quantities in its linearized

versions have non-linear relationships. The examples of this paper numerically indicate the

significance of this problem. In other words, the standard TLS solution of the model (II) is

not admissible when it is incorrectly considered as the model (I).

Although the method of least-squares is one of the oldest methods of estimation, it is

still the automobile of modern statistical analysis (Stigler 1999); therefore, in this paper,

first we review an algorithm in order to solve the non-typical EIV model which is a novel

model using the traditional least-squares method with the linearization of a nonlinear

mixed model and iterative improvement of the solution. We employ the traditional La-

grange approach to optimize the target function of this problem. Then by comparison, a

modified weighted TLS (WTLS) algorithm is proposed in order to treat the non-typical

EIV model (II) as a typical EIV model (I) overseeing the dependence of A on t through

A ¼ AðtÞ:
The TLS algorithms modify the elements of the design matrix in the typical and non-

typical EIV models, see e.g., matrix A(t) in models (I) and (II). This modification is

desirable for the typical EIV models since the design matrix is a linear function of the

random variables; however, it is not necessarily correct for the non-typical EIV models

[model (II)] which have nonlinear design matrix. Therefore, the proposed way based on the

modified WTLS algorithm is not necessarily equivalent to the former way but as it is

shown by numerical examples it results in an excellent approximate solution. This foun-

dation is important because there is no need for linearization in the TLS algorithms.

Moreover, their rate of convergence is usually better than the traditional approach.

This paper is organized as follows. In the next section, the concepts of the non-typical

EIV model are introduced. An algorithm in order to solve this problem is reviewed using

the traditional non-linear least-squares method within a non-linear mixed model. We then

propose the modified WTLS algorithm to deal with this problem. In a later section, two

simulation studies give insight into the efficiency of the algorithms proposed. Finally we

conclude the paper.

2 Non-typical EIV model and a review of its classic solution based
on the traditional least-squares method with linearization of a non-
linear mixed model: algorithm 1

The typical/classic EIV model has been introduced by several contributions. In this model

the first order moment/mean of design matrix is linear, however, it is not true for non-

typical EIV model in which the design matrix is a non-linear function of random variables.

The mathematical definitions of these two types of models clarify our discussion. The

typical EIV model is given as follows:

y ¼ A� EAð Þnþ ey; rank A ¼ m\n; ð1Þ

ey
eA

� �
:=

ey
vec(EAÞ

� �
� 0

0

� �
jr2

0

Qy 0

0 QA

� �� �
; Py ¼ Q�1

y ; PA ¼ Q�1
A : ð2Þ

Here y is the n 9 1 observation vector, ey is the respective n 9 1 vector of observa-

tional noise, A is the n 9 m coefficient matrix of input variables (observed), EA is the

corresponding n 9 m matrix of random noise, n is the m 9 1 parameters vector
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(unknown), DðeyÞ ¼ r2
0Qy and DðeAÞ ¼ r2

0QA are the corresponding dispersion matrices of

size n 9 n and mn 9 mn (partly known), r2
0 is the variance component (unknown).

We define the non-typical EIV model as follows:

y ¼ A t � etð Þnþ ey; rank A t � etð Þ ¼ m\n; ð3Þ

or

EðyÞ ¼ EðAðtÞÞn with EðAðtÞÞ 6¼ AðEðtÞÞ; ð4Þ

ey
et

� �
� 0

0

� �
jr2

0

Qy 0

0 Qt

� �� �
; Py ¼ Q�1

y ; Pt ¼ Q�1
t ; ð5Þ

where y is the n 9 1 observation vector, ey is the respective n 9 1 vector of observational

noise, the coefficient matrix A() is the n 9 m non-linear function of input random variables

t of size l 9 1 (observed), et is the corresponding l 9 1 vector of random noise n is the

m 9 1 parameters vector (unknown), DðeyÞ ¼ r2
0Qy and DðetÞ ¼ r2

0Qt are the corre-

sponding dispersion matrices of size n 9 n and l 9 l (known), r2
0 is the variance com-

ponent (unknown).

Equation (4) can be easily converted into a non-linear mixed model which we define as

follows (see e.g., Leick 2004, Chap. 4):

f ðy; t; nÞ ¼ 0; ð6Þ

where f() indicates an implicit non-linear relationship with two groups of random observed

vectors y and t and one deterministic unknown vector n. Snow (2012) denoted all the

observed quantities (here y and t) by a vector Y and the unknown vector n by the vector N
and introduced this model as the non linear Gauss–Helmert model.

In fact the old works by Deming (1931) treat very special cases which we might now

classify as non-linear type of EIV models, but he does not treat what we call non-typical

EIV model in all his generality. The suggested paper by Xu et al. (2012) offers a pre-

sentation of preceding work plus two new results in Sects. 2.2 and 2.3. The first (2.2) is a

WTLS algorithm treating the classical EIV model where he assumes that all elements of

A are independent random variables in the sense that QA is invertible (x-1 in their nota-

tion). This is hardly the case because we almost never observe all the elements of A but

only a much smaller number of variables t on which A(t) depends. As a consequence QA is

singular and one has to use Rao’s unified theory for getting a proper weight matrix out of

infinitely many. In this respect our approach is much more general and closer to the reality

of actual applications.

Also we can say that the non-typical EIV model (3) or even its linearized version will be

given by Eq. (7) differ from the partial EIV model proposed in Xu et al. (2012) because

they merely partitioned the matrix A into a stochastic and a deterministic parts while in our

case the observed vector t in A(t) [Eq. (4)] cannot be separated from design matrix before

linearization since its elements are arbitrary non-linear functions. In other words, the

deterministic matrix B in Eq. (25-a) (Xu et al. 2012) cannot be extracted from our non-

typical EIV model. In fact, the approach of Xu et al. (2012) can solves only the typical EIV

model. Their approach is useful for statistical analysis.

In order to adjust the non-typical EIV model defined by Eqs. (3)–(6) using traditional

non-linear LS within a mixed model, first one must linearize it respect to the two random
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unknowns which refer to observable quantities y and t and one deterministic unknown n as

follows:

y0 � A t0ð Þn0 þ Iney � nT � In
	 
 oAðtÞ

ot t ¼ t0
n ¼ n0

����
et � A t0ð Þdn ¼ 0;

wþ ey � Bet � Adn ¼ 0; ð7Þ

with

w ¼ y0 � A t0ð Þn0; B ¼ nT � In
	 
 oAðtÞ

ot t ¼ t0
n ¼ n0

����
; A ¼ A t0ð Þ:

The Lagrange target function can be set up as follows:

U ey; et; k; dn
	 


:¼ eT
y Pyey þ eT

t Ptet þ 2kT wþ ey � Bet � Adn
	 


; ð8Þ

where k is the n 9 1 (unknown) Lagrange multiplier vector.

Since the derivation of this problem is well-known, we only present the following

algorithm for the non-typical EIV:

First step: input y(0) = y(observed), t(0) = t(observed) and

n̂ð0Þ ¼ A tð0Þ
� T

PyA tð0Þ
� � ��1

A tð0Þ
� T

Pyy
ð0Þ:

Second step: for i [ N compute:

wðiÞ ¼ y� AðtÞn̂ði�1Þ; BðiÞ ¼ nT � In
	 
 oAðtÞ

ot t ¼ tði�1Þ

n ¼ n̂ði�1Þ

����
; AðiÞ ¼ A tði�1Þ

� 
; ð9Þ

RðiÞ ¼ Qy þ BðiÞQtB
ðiÞT

h i�1

; ð10Þ

dn̂ðiÞ ¼ AðiÞTRðiÞAðiÞ
� �1

AðiÞTRðiÞwðiÞ; ð11Þ

k̂ðiÞ ¼ RðiÞ wðiÞ � AðiÞdn̂ðiÞ
� 

; ð12Þ

~eðiÞy ¼ �Qyk̂
ðiÞ; ð13Þ

~e
ðiÞ
t ¼ QtB

ðiÞT k̂ðiÞ; ð14Þ

n̂ðiÞ ¼ n̂ði�1Þ þ dn̂ðiÞ; ð15Þ

yðiÞ ¼ yþ ~eðiÞy ; ð16Þ

tðiÞ ¼ t þ ~e
ðiÞ
t : ð17Þ

Third step: repeat 2nd step until one sees convergence.
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The variance component r̂2
0 can be estimated based on the proposed algorithm by

exploring Eqs. (13)–(15) in the following quadratic forms:

r̂2
0 ¼

~eT
y Py~ey þ ~eT

t Pt~et

n � m
¼ k̂TR�1k̂

n � m
: ð18Þ

Important note since Qy and Qt are usually invertible and the matrix B is full row rank,

the normal equation of this algorithm has an excellent stability and consequently the

algorithm is usually stable. The iterative method based on the GHM is also not sensitive to

initial values, because the estimates in the first iteration can be a very good approximated

solution, see Shen et al. (2011).

3 A total least-squares (TLS) algorithm to deal with non-typical EIV
model: algorithm 2

Although there is only one least squares criterion, there are several techniques by which

least squares may be applied. Regardless of which technique is applied, the results of an

adjustment of a given set of measurements must be the same. The choice of a technique,

therefore, is mostly a matter of convenience and/or computational economy (Mikhail

1976). In fact, both the TLS and traditional non-linear LS methods are based on the L2

norm estimator; however, some theoretical properties have the former be more interesting

than the latter. For instance, the TLS algorithms do not need linearization and they are less

sensitive to the approximate initial values of the unknown parameters than the traditional

approaches. As a result, one is right to seek a TLS algorithm to deal with the non-typical

EIV model although in this case, the first order moment/mean of the random design matrix

is not linear and we cannot employ a TLS algorithm to solve it directly.

A comparison between the algorithm of previous section and the WTLS algorithm

within the typical EIV model [given by Eqs. (1) and (2)] in Mahboub (2012) shows that

this WTLS algorithm has potential to deal with the non-typical EIV model after some

slight modifications. In other words, treat the non-typical EIV model as a typical EIV

model. Its actual computation can be based on Monte-Carlo methods. However, a first

order approximation can be obtained by applying the law of covariance propagation to the

noisy design matrix A tð Þ:
Approximately the converted typical EIV model is: y - ey ¼ AðtÞ � oAðtÞ

ot et

� 
n; i.e.,

EA ¼ oAðtÞ
ot et and the dispersion matrix QA is easily derived by the law of error propagation

as QA ¼ oAðtÞ
ot Qt

oAðtÞ
ot

� T

: The converted typical EIV model can be solved with WTLS.

Summarizing the following WTLS algorithm for the non-typical EIV is proposed:

First step: [N, c] = ATPy[A, y], n(0) = N-1c.

Second step: QA ¼ ovecðAðtÞÞ
ot t¼tð0Þj Qt

ovecðAðtÞÞ
ot t¼tð0Þj

� T

:

Third step: for i [ N compute:

R
ðiÞ
1 ¼ Qy þ n̂ði�1ÞT � In

� 
QA n̂ði�1Þ � In

� h i�1

;
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k̂ðiÞ ¼ R
ðiÞ
1 y� An̂ði�1Þ
� 

;

R
ðiÞ
2 ¼ Im � k̂ðiÞT

� 
QA n̂ði�1Þ � In

� 
R
ðiÞ
1 ;

n̂ðiÞ ¼ ATR
ðiÞ
1 Aþ R

ðiÞ
2 A

� �1

ATR
ðiÞ
1 þ R

ðiÞ
2

� 
y:

Fourth step: repeat third step until one sees convergence

n̂ðiÞ � n̂ði�1Þ
���

���\d:

4 Numerical results and discussions

The determination of the initial position and constant velocity from redundant position

measurements is an example of curve fitting. Let g(x) be an unknown function and we

measure m points of it which both coordinates (x, g(x)) are falsified by random noise (see

Fig. 1)

yi � g xið Þ; i ¼ 1; . . .;m: ð19Þ

Clearly, one is not able to reconstruct an arbitrary function g(x) from a finite set of its

samples and we require additional information about it. The additional information can be

expressed by a linear combination of n known base functions br(x), r = 1,…, n,

gðxÞ ¼
Xn
r¼1

arbrðxÞ; ð20Þ

with the n unknown coefficients ar. Equations (19) and (20) give the following system of

equations:

y1

..

.

ym

2
64

3
75 �

b1ðx1Þ . . . bnðx1Þ
..
. ..

.

b1ðxmÞ � � � bnðxmÞ

2
64

3
75

a1

..

.

am

2
64

3
75: ð21Þ

This system is non-linear because of the randomness of the coordinates xi which appear

in the base functions br. Therefore one is not allowed to solve this system using linear LS

method within a GM model. Also as it has been discussed in the previous sections, the TLS

Fig. 1 The sampling of an
unknown function g(x) for xi,
i = 1,…, m
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algorithms within a typical EIV model are not admissible theoretically. We should employ

one of the two proposed ways in this research.

Due to the nature of the function g(x), different base functions br(x) can be used. Here

we examine two sets of the useful base functions namely trigonometric and polynomial

series.

4.1 Curve fitting using trigonometric base functions

Suppose that we measure the coordinates of 10 points of the function g(x) which is given as

follows:

y ¼ a sin xþ b cos xþ c ¼ ½ sin x cos x 1 �
a

b

c

2
4

3
5 ¼ AðxÞ

a

b

c

2
4

3
5; ð22Þ

where a, b and c are the unknown coefficients and ðx; yÞ denotes the noisy coordinates

which have been observed with different precision. The coordinate of these samples with

their weights are given in Table 1 and Fig. 2.

We adjust the system of Eq. (22) using four ways: 1, the linear LS method; 2, the

standard TLS method on the assumption that the non-typical EIV is a typical EIV model; 3,

algorithm 1 in Sect. 2 based on the traditional non-linear LS method within a mixed model;

4, algorithm 2 in Sect. 3 based on modified WTLS method within a typical EIV model.

The estimated unknown parameters using five methods and the true value of the unknown

parameters are given in Table 2.

From Table 2, one can clearly see that the linear LS method gives a bias estimation of

non-typical EIV model (22) which in fact is a non-linear system of equations. Also one is

not permitted to adjust this problem using the standard TLS method on the assumption that

the non-typical EIV is a typical EIV model since as it has been proven theoretically, in

such a case, the non-linear relationships of the elements of the random design matrix are

neglected. The results of Linear Ls and TLS (third column) are incorrect. The correct

solutions can be obtained by the two developed algorithms of this paper. Also algorithm 2

is more stable than algorithm 1 due to the number of iterations since the former converges

after two iterations, while, starting by the same initial unknown parameters more than five

iterations are required for the algorithm 2 to meet the same threshold; furthermore, it needs

linearization while algorithm 2 does not require any linearization. Algorithm 2 is not

Table 1 Observed points and
their weights

Point nos. x y wx wy

1 1.0388 0.10393 1-2 4-2

2 1.774 4.9693 2-2 2-2

3 2.9718 7.2256 1-2 3-2

4 4.1803 4.5939 4-2 4-2

5 5.0395 -0.26773 2-2 4-2

6 6.0017 -3.0729 7-2 1-2

7 7.0218 -1.1306 1-2 1-2

8 8.5085 3.7199 9-2 1-2

9 9.0231 7.0219 3-2 5-2

10 9.8862 5.4416 3-2 3-2
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sensitive to approximate initial values of the parameters which is the bottleneck problem

that restricts the application of the nonlinear techniques and the solution of such methods is

somewhat critical to handle due to the many pitfalls described by Pope (1972).

4.2 Curve fitting using polynomial base functions

Let g(x) be an unknown function of which we measure the coordinates of 10 points:

�y ¼ a0 þ a1xþ a2x
2 þ a3x

3 ¼ 1 x x2 x3
� �

a0

a1

a2

a3

2
664

3
775 ¼ AðxÞ

a0

a1

a2

a3

2
664

3
775; ð23Þ

where a, b and c are the unknown coefficients and ðx; yÞ denotes the noisy coordinates

which have been observed with different precision. The coordinate of these samples with

their weights are given in Table 3 and Fig. 3.

Similarly we adjust the system of Eq. (23) using four ways: 1, the linear LS method; 2,

the standard TLS method on the assumption that the non-typical EIV is a typical EIV

Fig. 2 The trigonometric curve and the noisy coordinates of 10 points as its samples

Table 2 The estimated unknown parameters using three methods and the true value of the unknown
parameters

Methods Linear
LS

TLS (on the assumption that the non-typical
EIV is a typical EIV model)

Algorithm
1

Algorithm
2

Exact
solution

a 0.5884 -0.3462 0.9769 0.9769 1

b -4.2861 -0.39835 -5.0649 -5.0649 -5

c 1.4642 1.62191 2.0316 2.0316 2

The results of Linear Ls and TLS (third column) are incorrect
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model; 3, algorithm 1 in Sect. 2 based on the traditional non-linear LS method within a

mixed model; 4, algorithm 2 in Sect. 3 based on modified WTLS method within a typical

EIV model. The estimated unknown parameters using four methods and the true value of

the unknown parameters are given in Table 4.

Similar to trigonometric curve, the linear LS method gives a bias estimation in

polynomial curve. By comparison, this bias is bigger than the bias of previous example.

It can refer to different non-linear property of trigonometric and polynomial functions.

The similar reasoning can be given for the standard TLS method on the assumption that

the non-typical EIV is a typical EIV model. Also the reasonable solutions are obtained

by the stable algorithms 1 and 2, although there is a negligible difference between the

results.

Table 3 Observed points and
their weights

Point nos. X Y wx wy

1 1.004 -1.007 1-2 4-2

2 2.007 -8.024 2-2 2-2

3 3.003 -13.01 1-2 3-2

4 3.971 -10.13 4-2 4-2

5 5.007 6.957 2-2 4-2

6 5.964 43.99 7-2 1-2

7 6.991 107 1-2 1-2

8 7.892 202 9-2 1-2

9 9.031 335 3-2 5-2

10 9.975 512.1 3-2 3-2

Fig. 3 The polynomial curve and the noisy coordinates of 10 points as its samples
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5 Conclusions

In this paper, non-typical EIV model was introduced where the elements of the design

matrix are non-linear functions of observed noisy quantities. As a result, the first order

moment/mean of the design matrix is not directly known, consequently TLS algorithms

within a typical/classic EIV model are not applicable to it.

The non-typical EIV model appears in some applications such as curve fitting and

surface reconstruction. Two algorithms were presented to deal with it. Algorithm 1 is based

on traditional non-linear LS method within a mixed model and algorithm 2 is a modified

WTLS algorithm. Although the classic former way produces the optimal LS solution to this

problem, traditional non-linear techniques usually have their own difficulties (see e.g.,

Pope 1972), while, algorithm 2 does not need linearization and its initial values can be

easily computed by a linear LS estimation which is the bottleneck problem that restricts the

application of the nonlinear techniques. Therefore a simple use of the linear LS method can

produce these initial values.

As the numerical examples show, the linear LS method gives a bias estimation of the

non-typical EIV model. The amount of this bias depends on non-linear property of the

system of equations. This conclusion had been already obtained for the typical EIV model

by several contributions.

Both examples convincingly demonstrate that the standard TLS solution of the non-

typical EIV model is not admissible when it is incorrectly considered as a typical EIV

model; i.e., the non-linear relationships of the elements of the random design matrix are

neglected.

Although we do not claim that our results based on algorithm 2 are better than algorithm 1,

algorithm 2 is a proper TLS approach which is more accurate than exiting TLS algorithms in

dealing with the non-typical EIV model and also is simpler than the traditional non-linear LS

method within a GH model (algorithm 1) since if we formulate the non-typical EIV model in

terms of the non linear GH model, one has to solve a complicate model while in our method

(algorithm 2) we can directly work with the design/coefficient matrix. We only need to

compute the dispersion matrix QA. Furthermore, the examples demonstrated that algorithm 2

is converged in fewer numbers of iterations than algorithm 1.

Finally we emphasize that both the nonlinear LS and our algorithm (algorithms 1 and 2)

are not unbiased estimators both for the typical and non-typical TLS problem even though

the nonlinear function in the coefficient matrix is properly considered. One may design a

bias corrected estimator for nontypical EIV model, see e.g., Box (1971) and Xu et al.

(2012).

Table 4 The estimated unknown parameters using three methods and the true value of the unknown
parameters

Methods Linear LS TLS (on the assumption that
the non-typical EIV is a
typical EIV model)

Algorithm 1 Algorithm 2 Exact solution

a0 17.6866 117.1073 1.9971 1.9971 2

a1 -11.8162 -8.45142 1.04638 1.04638 1

a2 -2.4512 0.031834 -5.0293 -5.0293 -5

a3 0.8662 0.00063 1.0046 1.0046 1

The results of Linear Ls and TLS (third column) are incorrect
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