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Abstract In this paper we investigate the roles of the spatial regularization in seismic

deconvolution. The spatial regularization is described as a L2 norm of the lateral reflectivity

difference imposed on multi-trace data misfit term. In essence, the spatial regularization acts

as a band-pass filter along the spatial direction. Therefore, it can suppress the high-

wavenumber components of the estimated reflectivity, for example, noisy trails like noodles

which usually caused by temporal regularized deconvolution. As well, the spatial regular-

ization can help recovering the reflectivity of discarding traces by repeatedly and linearly

weighting its neighboring reflectivity, thereby exploring the spatial continuities among tra-

ces. Moreover, the spatial regularization can help stabilizing inversion, just like the temporal

regularization. Both synthetic and field data examples are used to demonstrate the three roles

of the spatial regularization by comparing spatial regularized deconvolution with conven-

tional temporal deconvolution implemented by minimizing a data misfit and a L2 norm or a

L1 norm of reflectivity. Furthermore, the synthetic examples also clearly illustrate that the

spatial regularization can help yielding a high resolution and meanwhile high signal-to-noise

ratio deconvolution result, which matches best with the reference reflectivity.

Keywords Spatial regularization � Deconvolution � Seismic resolution � Structures

1 Introduction

Generally, the post-stack seismic signal can be assumed as the convolution of seismic

wavelet and reflectivity. Since the wavelet is always band-limited, the seismic signal is
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band-limited and some important geology details are lost. Therefore, seismic deconvolu-

tion to remove the wavelet effect from seismic data is an important step in seismic data

processing (e.g. Robinson 1984; Yuan and Wang 2011). However, because of the band-

limitation of wavelet and noise, the seismic deconvolution is commonly an ill-posed

inverse problem. Many deconvolution and reflectivity inversion methods (e.g. Taylor et al.

1979; Levy and Fullagar 1981; Debeye and van Riel 1990; Sacchi 1997; Herrmann 2005;

Baziw and Ulrych 2006; Wu et al. 2007; Yuan and Wang 2013a) had been introduced to

address the issue by adding a regularization or a constraint along the temporal direction and

successfully applied on various seismic data sets and have the advantages that they are very

fast and favor parallel computation. However, these techniques are realized trace by trace.

Besides ignoring the spatial connection among traces, trace-by-trace processing often

suffer from the lateral instability of the estimated reflectivity or impedance (e.g. Zhang

et al. 2013; Yuan et al. 2015), probably mainly due to the influence of high-wavenumber

components in model error or the inconsistency of the energy and waveforms among

seismic traces.

Several multi-trace deconvolution or reflectivity inversion methods had been proposed

to explore spatial dependencies among traces. For example, Lavielle (1991) proposed a

multi-trace non-blind deconvolution method, which makes use of Gibbs distributions and

Markov random fields to integrate a priori information to model the lateral coherency of

the reflectors. For this multi-trace reflectivity inverse problem, the simulated annealing

algorithm is used to locate the global minimum multi-trace reflectivity with a high degree

of accuracy. Kaaresen and Taxt (1998) proposed a multi-trace blind deconvolution method

to simultaneously invert for a short wavelet with known duration and multi-trace reflec-

tivity with local continuities among neighboring traces by alternatively implementing a

least-square algorithm and an iterated window maximization algorithm. Wang et al. (2006)

proposed a structure-preserving multi-trace deconvolution method by using adaptive FX

filtering to enhance the coherence of seismic events across midpoints. Heimer and Cohen

(2008) introduced a multi-trace deconvolution method by using a Markov-Bernoulli ran-

dom-field modeling combined with the Viterbi algorithm to further explore layer discon-

tinuities. Kumar (2009) proposed a multi-trace non-spiky deconvolution method by using

multiscale and multidirectional curvelet transform to exploit the continuities along re-

flectors for cases in which the assumption of spiky reflectivity may not hold. Zhang et al.

(2013) extended the single-trace Basis pursuit reflectivity inversion (2011) to a multi-trace

case by adopting a ‘Z’ shape spatial derivative as a regularization term. Gholami and

Sacchi (2013) proposed a fast 3D blind seismic deconvolution method to simultaneously

invert for a wavelet with sparseness in a wavelet transform domain and 3D reflectivity

along 3D singularities in the time–space domain via a split Bregman iteration algorithm.

These works mainly focus on developing different (fast) deconvolution or reflectivity

inversion methods with a spatial regularization or a constraint about spatial connection

among traces to process 2D or 3D stationary data.

In this paper, we also explore spatial (local) continuities of the reflectivity by adopting a

spatial regularization. Furthermore, we focus on clarifying the physical roles of the spatial

regularization. Besides preserving spatial continuities of structures, we also believe that the

spatial regularization can help stabilizing reflectivity inversion, preventing trails like

noodles, and recovering the reflectivity of the missing traces, as explained by the theory

and verified by the synthetic and field data examples. In fact, the recovery of the reflec-

tivity for the missing traces implicitly reveals that the spatial regularization can evidently

and truly explore lateral continuity of the estimated reflectivity. Moreover, the spatial

regularization has an ability to help yielding a high resolution and meanwhile high fidelity
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reflectivity result, or achieving a good tradeoff between reflectivity fidelity and resolution

improvement, which is obviously observed in our synthetic data example.

2 Theory

According to Robinson and Treitel (1980), a single trace signal in the post-stack seismic

data set is widely considered as the convolution of a seismic wavelet with a reflectivity

series and can be mathematically written in a matrix–vector form as

Sj ¼ WRj; ð1Þ

where column vectors Sj and Rj represent the j-th trace seismic signal and reflectivity series

respectively, the wavelet convolution matrix W ¼
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is a Toeplitz

matrix, vector w = [w1,w2,…,wL] denotes the seismic wavelet and L is the length of the

wavelet.

Based on the assumption that the wavelet is spatiotemporal stationary, the multi-trace

seismic reflection signal can be described as the following matrix–matrix system according

to Eq. (1)

S ¼ WR; ð2Þ

where matrices S = [S1, S2,…, SM] and R = [R1, R2,…, RM] with M the number of traces.

Mathematically, Eq. (2) also can be rewritten in a matrix–vector system as follows

d ¼ Gm; ð3Þ

where vector d = vec(S), matrix G = kron(I,W), I is the identity matrix, vector

m = vec(R), vec means arranging the columns of a matrix into a long concatenated vector,

and kron defines a Kronecker product that reformulates matrix–matrix multiplication into

matrix–vector product. Note G is a blocky diagonal matrix and exceedingly sparse with

most entries zero.

Assuming that the wavelet w is known, the multi-trace reflectivity series can be si-

multaneously estimated by minimizing the following objective function

O1ðm̂Þ ¼ jjdobs �Gmjj22; ð4Þ

where column vector m̂ ¼ R̂1; R̂2; � � � ; R̂M

� �T
, and R̂j represents the j-th trace estimated

reflectivity. From the viewpoint of inversion, dobs = vec(Dobs) and Gm represent the

observed multi-trace data and the calculated multi-trace data respectively, where

Dobs = [D1
obs, D2

obs,…, DM
obs] and Dj

obs represents the j-th trace observed data. Because the

length of the seismic wavelet is always limited, the above objective function is a strict

convex function at the absence of noise. Therefore, Eq. (4) has a unique minimum
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extreme, which can be obtained by taking the derivatives of O1ðm̂Þ with respect to vari-

ables m to be 0. Then a normal equation can be derived as follows

GTGm ¼ GTdobs; ð5Þ

where GTG = kron(I,WTW) is a non-negative definite square symmetric matrix, and su-

perscript T represents the transpose.

If we perform singular value decomposition (SVD) for matrix W, the solution of Eq. (5)

can be given as

m̂ ¼ kron I;
XK
k¼1

1

dk
VkU

T
k

 !
dobs; ð6Þ

where d1 C d2 C ��� C dK C 0 are singular values of W, column vector Uk (k = 1,…,K) is

the left singular vector, and column vector Vk (k = 1,2,…,K) is the right singular vector.

Equation (6) means that R̂j can be considered as the linear weighted superposition of K

eigen-signals VkUk
TDj

obs (k = 1,2,…,K) with weights 1/dk. Further, R̂j can be regarded as

the linear weighted superposition of the K right singular vectors Vk (k = 1,…,K) with

weights Uk
TDj

obs/dk. Since the amplitude of high-frequency components of seismic wavelet

is always very small even close to zero mainly due to the absorption of media, matrix W
has many small singular values. In general, the left singular vector Uk and the right singular

vector Vk corresponding to small singular values commonly act as high-frequency signals,

whereas those associated with large singular values own plentiful low-frequency compo-

nents but very little high-frequency components. When Dj
obs does not include high-fre-

quency noise (or model error) outside the frequency band of wavelet, the dependency of

the left singular vector Uk corresponding to small singular values on Dj
obs (j = 1,2,…,M) is

poor. Therefore, Uk
TDj

obs/dk will not be too large to cause the estimated R̂j strongly

oscillating. In this case, the reflectivity inversion is stable. However, when Dj
obs includes

high-frequency noise (or model error), Uk
TDj

obs/dk corresponding to most small singular

values will be probably large, thus bringing in strong high-frequency components, further

blurring the other frequency components of the estimated R̂j. In a word, it will give rise to

the instability of the inversion.

In this paper, we impose a spatial regularization (Yuan et al. 2012) on Eq. (4) to reduce

even overcome this issue. The improved objective function can be given as

O2ðm̂Þ ¼ jjdobs �Gmjj22 þ
X
l

cljjClmjj22; ð7Þ

where Cl is a first-order difference operator, which can be taken as the spatial difference

along the interpreted horizon(s), dipping spatial direction(s) and/or horizontal spatial di-

rection, and cl is regularization parameter(s) determining the balance between the data

residual and the smoothness degree or length of Clm. We do not take Cl as a conventional

frequency-wavenumber (FK) operator or a scale-position-angle (Curvelet) operator, since

minimizing the energy of FK-domain or Curvelet-domain coefficients does not realize the

spatial regularization role. Here, we only consider Cl to be a first-order difference operator

along the horizontal direction in order to conveniently clarify the roles of the spatial

regularization. Therefore, Eq. (7) can be simplified as
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O3ðm̂Þ ¼ jjdobs �Gmjj22 þ cjjCmjj22: ð8Þ

The function is a typical convex function, since both the data misfit term and the

regularization term are convex. The optimum solution of Eq. (8) can be obtained by taking

the derivatives of O3ðm̂Þ with respect to variables m being 0, hence we get

m̂ ¼ GTGþ cCTC
� ��1

GTdobs ¼ GTGþ 2cIþ cA
� ��1

GTdobs; ð9Þ

where CTC = 2I ? A. If the term cA is ignored, we have

m̂ ¼
XK
k¼1

UT
kD

obs
1

dk þ 2c=dk
Vk;
XK
k¼1

UT
kD

obs
2

dk þ 2c=dk
Vk; . . .;

XK
k¼1

UT
kD

obs
N

dk þ 2c=dk
Vk

" #T
: ð10Þ

It is obvious that dk þ 2c=dk � 2
ffiffiffiffiffi
2c

p
, thus

UT
kD

obs
j

dkþ2c=dk
will not be so large even for small dk

if c is not too small. In other words, the term 2c/dk plays a key role in reducing the

amplification of noise. It demonstrates that the term cCTC only derived from the

regularization term includes a stabilization factor. If the term cA is taken into account, the

computation of the inverse of matrix GTG ? cCTC is usually stable so long as c is not too

small, as denoted in Fig. 1 and also demonstrated by the synthetic and field examples in the

following Examples section.

If we take the derivatives of O3ðm̂Þ with respect to variable Ri,j, we have

oO3ðm̂Þ
oRi;j

¼ WT
i WRj � Dobs

j

� �
þ c 2Robs

i;j � Robs
i;j�1 � Robs

i;jþ1

� �

¼ WT
i WRj � Dobs

j

� �
þ c �1; 2;�1½ � Robs

i;j�1;R
obs
i;j ;R

obs
i;jþ1

h iT ; ð11Þ

where vector Wi represents the i-th column of matrix W, Ri,j-1
obs , Ri,j

obs and Ri,j?1
obs represent

the i-th elements at (j - 1)-th column, j-th column and (j ? 1)-th column of matrix

R respectively. Matrix W plays a temporal band-pass filtering role, eliminating the high-

and low-frequency components of the reflectivity series Rj outside the frequency band of

the wavelet. In other words, the data misfit term is not sensitivity to high- and low-

frequency components of reflectivity. Vector [-1, 2, -1] plays a spatial band-pass filtering

role, which can mainly filter out the high-wavenumber components of the reflectivity

series. Further, it can help overcoming lateral instability of the estimated reflectivity,

Fig. 1 Singular values of matrix
GTG ? cCTC with different
parameters c. Matrix G is
constructed by a 30-Hz Ricker
wavelet. When c = 0, many
singular values of matrix
GTG ? cCTC are very small and
close to zero
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probably mainly caused by the influence of high-wavenumber noise and/or the inconsis-

tency of the energy and waveforms among seismic traces. Although a conventional spatial

filter such as a smoothing filter can also be applied on the conventional deconvolution

result to reduce the influence of the high-wavenumber noise, its operation works inde-

pendently from the deconvolution. The smoothing filter can attenuate high-wavenumber

noise, but meanwhile, they will deteriorate or destroy the match between the calculated

data and the observed data. The spatial regularized deconvolution method, as an inversion

technique, can simultaneously suppress high-wavenumber noise and keep the consistence

with the data.

For the post-stack data, some seismic traces are sometimes missing, and/or some traces

are probably relative poor-quality, such as low signal-to-noise ratio and arc phenomenon at

the position of missing traces or faults caused by conventional migration. Generally, the

robust inversion (e.g. Crase et al. 1990; Yuan et al. 2015) is a choice to deal with the under-

sampled data set or low quality migration data set to obtain an acceptable inversion result.

In this paper, we illustrate that the spatial regularization can help recovering the reflectivity

of the missing and/or poor-quality traces by slightly rewriting Eq. (8) as

O4ðm̂Þ ¼ jjP dobs �Gm
� �

jj22 þ cjjCmjj22; ð12Þ

where matrix P is a restriction operator discarding missing and/or poor-quality traces. Note

that the row of matrix P is not larger than its column, thereby essentially playing a

dimensionality-reduction role for the data misfit term. However, P leads to an underde-

termined linear equation. It is obvious that the reflectivity corresponding to the discarding

traces cannot be recovered if there is no spatial constraint. In fact, Eq. (8) is a special case

of Eq. (12), when P = I. To solve Eq. (12) can be broken up into two parts: live traces part

and discarding traces part. For live traces case, the derivatives of O4ðm̂Þ with respect to

variable Ri,j are in the same form as Eq. (11). For discarding traces case,

oO4ðm̂Þ
oRi;j

¼ c 2Robs
i;j � Robs

i;j�1 � Robs
i;jþ1

� �
: ð13Þ

Let
oO4ðm̂Þ
oRi;j

¼ 0, we get

Robs
i;j ¼ Robs

i;j�1 þ Robs
i;jþ1

� �
=2: ð14Þ

Rj
obs could be estimated by averaging its two neighboring estimated reflectivity traces. By

repeatedly updating the reflectivity of the living traces and discarding traces, the frequency

components of the reflectivity for the whole section or volume including discarding traces

can be recovered. In essence, Eq. (14) reveals that the spatial regularization indeed can

help exploring spatial continuities of the inverted model.

3 Examples

In this section, a 2D synthetic data example and a 2D field data example are used to

illustrate the effectiveness of the spatial regularization in seismic deconvolution. We also

compare spatial regularized deconvolution with conventional temporal deconvolution

implemented by minimizing a data misfit and a L2 norm or a L1 norm of reflectivity to

reveal the benefits of spatial regularized deconvolution.
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We adopt different regularization schemes in the two examples, but use the same

conjugate gradient (CG) algorithm (Trefethen and Bau 1997; Yuan and Wang 2013b) to

iteratively solve the objective functions. Moreover, all deconvolution methods utilize all

traces with the same initial model 0 and the maximum iteration number 30 to simulta-

neously invert for the whole reflectivity section.

3.1 Synthetic data example

A noisy synthetic data (Fig. 2a) is generated by adding 20 % random noise (the ratio of

noise energy to signal energy is 20 %) to the convolution of a 30-Hz Ricker wavelet with

Fig. 2 The comparisons among the synthetic noisy data (a), the reference reflectivity (b) and the estimated
reflectivity obtained by using different deconvolution methods: the spatial regularized deconvolution with
the optimum regularization parameter 30 (c), the conventional deconvolution by using a L2 norm of model
parameters as a regularization with the optimum regularization parameter 1.5 (d), the conventional
deconvolution by using a L1 norm of model parameters as a regularization with the optimum regularization
parameter 0.1 (e), and the unregularized deconvolution (f)
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the reflectivity derived from a synthetic BG impedance model. The data set contains 700

traces with a sample interval of 2 ms. We use a 0-0-65-80 Hz band-pass filtered result of

the original BG reflectivity as a reference (Fig. 2b), in order to concentrate on discussing

the roles of the spatial regularization in seismic deconvolution. Compared with the ref-

erence reflectivity, the resolution of the original data (Fig. 2a) is lower and the stratigraphic

contact relationship is harder to discontinuity than the reference reflectivity due to the

wavelet interference and noise, denoted by the rectangles and ellipses in Fig. 2a and b.

We quantitatively define a relative error E ¼ jjm̂�mref jj22=jjmref jj22, where column

vector mref represents the reference reflectivity, as an evaluation criterion to choose the

optimum regularization parameter and appraise different deconvolution methods. The

black curve with circles in Fig. 3 is the relative error E versus regularization parameter c
(called E-c curve for short) of spatial regularized deconvolution. When c = 30, the opti-

mum deconvolution result can be obtained, as Fig. 2c shows. The blue curve with triangles

in Fig. 3 is E-c curve for using temporal regularized deconvolution implemented by

minimizing a L2 norm of model parameters. It is obvious that when c = 1.5, the optimum

deconvolution result, as shown in Fig. 2d, is obtained. The red curve with asterisks in

Fig. 3 is E-c curve for using temporal regularized deconvolution implemented by

minimizing a L1 norm of model parameters. When c = 0.1, the optimum deconvolution

result, as shown in Fig. 2e, is obtained. The two optimum regularization parameters for

using temporal regularized deconvolution are also consistent to these obtained by using the

classical L-curve method (Hansen 1992). For the sake of completeness, we also show the

unregularized deconvolution result by setting c = 0, shown in Fig. 2f. Figure 4 is the

amplitude spectra of the original data (Fig. 2a), the reference (Fig. 2b) and deconvolution

results obtained by using different methods (Fig. 2c–f). As both Fig. 2 in the time–space

domain and Fig. 4 in the frequency-space domain show, the spatial regularization can help

to stably invert for reflectivity (Fig. 2c, f), just like the regularization along the time

direction (Fig. 2d, e). In addition, the spatial regularized deconvolution effectively reduces

Fig. 3 The relative error E curves versus regularization parameter c for using three different regularization
methods: the spatial regularized deconvolution marked ‘‘Spatial’’ in the legend, the temporal regularized
deconvolution adopting a L2 norm of model parameters as the regularization marked ‘‘Temporal L2’’ in the
legend and the temporal regularized deconvolution adopting a L1 norm of model parameters as the
regularization marked ‘‘Temporal L1’’ in the legend. The corresponding minimum relative errors of these
three curves are 0.0693, 0.2804 and 0.3696, respectively
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the influence of wavelet interference as denoted by the rectangles and ellipses in Fig. 2a–c,

and gives rise to a high resolution and meanwhile high signal-to-noise ratio (SNR) result,

which matches best with the reference. As well, the spatial regularized deconvolution

avoids lateral instability of the inverted reflectivity, thereby preventing noisy trails like

noodles always caused by the conventional temporal regularized deconvolution (Figs. 2d–

e, 4d–e). It can be observed from Fig. 3 that the minimum relative errors of the two E-c
curves for using temporal regularized deconvolution are larger than that for using the

spatial regularization. Figure 5 is the normalization wavenumber spectra of Fig. 2a–f,

respectively. As Fig. 5 shows, the wavenumber components of spatial regularized de-

convolution result is closest to those of the reference, whereas the wavenumber compo-

nents of temporal regularized deconvolution result are still close to those of the original

data.

In order to further illustrate the ability of the spatial regularization for evidently ex-

ploring the spatial continuities among traces, we randomly set 175 traces to be null, and a

Fig. 4 The amplitude spectra corresponding to Fig. 2a–f
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new synthetic section with 25 % discarding traces (Fig. 6a) is generated. By searching the

smallest E value in the E-c curve, we get the optimum deconvolution result, shown in

Fig. 6b, when c = 20. It can be observed form Fig. 6b that the spatial regularized de-

convolution result for the data set is comparable to that for the full-sampled data set

(Fig. 2c), even for the discarding traces. However, the conventional temporal regularized

deconvolution methods cannot recover the reflectivity series corresponding to the dis-

carding traces (not shown).

3.2 Field data example

A field post-stack seismic data is exploited to test the effectiveness of the spatial

regularization for dealing with the real data. The dataset includes 608 traces with a sam-

pling interval 1 ms, as shown in Fig. 7a. The deconvolution without regularization

(Fig. 7e) yields a blurry result mainly aroused by the high-frequency model error above

*80 Hz. When the smoothness or sparseness regularization of model parameters along the

temporal direction is adopted, deconvolution result with the optimum regularization pa-

rameter obtained by using the classical L-curve method becomes stable, but includes some

noisy trails like noodles and suffers from weak lateral instability (Fig. 7c, d). As expected,

Fig. 5 The normalization wavenumber spectra corresponding to Fig. 2a–f. Every wavenumber spectrum
curve is obtained by summing wavenumber spectra of all time slices and then normalizing

Fig. 6 The synthetic noisy data with 175 discarding traces (a) and the spatial regularized deconvolution
result with the optimum regularization parameter 20 (b)

52 Acta Geod Geophys (2016) 51:43–55

123



the seismic deconvolution via the spatial regularization addresses these issues and yields a

high resolution result with more clear details, as pointed out by the ellipses in Fig. 7b.

These details improved by reducing wavelet interference also appear in temporal

regularized deconvolution results (Fig. 7c, d). It is noticeable that the temporal regularized

deconvolution methods do not introduce any constraints about spatial information of

signals. The spatial regularized deconvolution does not visibly destroy the feature of

structures thanks to the good trade-off between the data misfit term and the regularization

term.

In order to clearly illustrate the continuity-preserving role of the spatial regularization,

we also randomly set 152 traces to be null and generate a new section (Fig. 8a). Therefore,

Fig. 7 The comparisons among the field seismic data (a) and the estimated reflectivity obtained by using
different deconvolution methods: the spatial regularized deconvolution with the regularization parameter 10
(b), the conventional deconvolution by using a L2 norm of model parameters as a regularization with the
optimum regularization parameter 0.5 (c), the conventional deconvolution by using a L1 norm of model
parameters as a regularization with the optimum regularization parameter 0.1 (d), and the unregularized
deconvolution (e). The regularization parameters for Fig. 6c and d are chosen by the classical L-curve
method, whereas the regularization parameter for Fig. 6b is chosen by trial and error
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only 456 traces are utilized to implement 608 traces deconvolution. The result is shown in

Fig. 8b. By comparing Fig. 8b with Fig. 7b, we find that the spatial regularized decon-

volution result considering some discarded traces out of the inversion is close to that for

processing the whole data. The recovery of the reflectivity for the discarded traces

demonstrates that the spatial regularization indeed help exploiting the spatial (local)

continuities among traces.

4 Conclusions

The spatial regularization used in seismic deconvolution plays important roles in pre-

venting the lateral instability of the estimated reflectivity, exploring spatial continuities

among traces, and stabilizing reflectivity inversion. Compared with the conventional de-

convolution adopting temporal regularization implemented by a L2 norm or a L1 norm of

model parameters, spatial regularized deconvolution yields the higher resolution and

meanwhile high SNR deconvolution result, mainly attributed to the optimal trade-off

between the multi-trace data misfit term and the spatial regularization term. Different from

the temporal regularization via a L1 norm, the spatial regularization has a limitation that it

cannot help recovering information outside frequency band of seismic signal. Although we

only show 2D data examples in this paper, our objective function Eq. (12) can be directly

adopted to simultaneously process 3D seismic data.
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