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Abstract A complete deformation analysis process requires adequate consideration of all

sources of errors from the initial design of the network to the parameter estimation. In this

study, during deformation analysis, effect of having more object points in geodetic net-

works is researched. Numerical results confirm the theory that having more object points is

also an important factor for deformation analysis.
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1 Introduction

In essence, geodetic networks are established to realize geodetic coordinate systems which

are defined theoretically. Besides, they are also useful to monitor surface deformations.

Geodetic networks created for deformation analysis are defined as 1D, 2D and 3D net-

works depending on the measurement techniques used. If only leveling is run on a geodetic

network, this network is considered 1D network and it may be used; for example, to

observe subsidence due to mining activities or uplifting by tectonic movements. If only

direction and distance measurements are made on a geodetic network, this network is

considered 2D network and these type of networks among other things may be used to

monitor horizontal surface deformations. By combining the aforementioned techniques 3D

networks can also be formed; nonetheless, because of technical issues in practice they are
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not preferred. Using Global Navigation Satellite System (GNSS), the most popular posi-

tioning technique of our time, deformations can be observed precisely in 3D; for instance,

they are used to monitor tectonic movements, to observe structural deformation such as

deformations in dams, bridges etc.

Number of observations taken in a geodetic network shapes network geometry. On the

other hand, the parameters which are needed to connect this network to a coordinate

system are known as datum parameters. These parameters are determined by using points

whose coordinates are already known in the related coordinate system. The minimum

number of reference points needed for determining datum parameters of a geodetic

network varies depending on the dimension of the network and the observation tech-

niques used. Table 1 shows the reference points needed in most commonly used

networks.

In deformation analysis, point coordinates must not be affected by the adjustment

method. Constrained adjustment method in which reference point coordinates must remain

fixed is not suitable for this approach. Hence, for the computations of coordinates of new

points, called object points, which are set up to observe probable deformations, free

network adjustment which does not affect the network geometry is preferred. To quantify

deformations, the geodetic network is surveyed to gain multiple periods of data––minimum

two periods of data is needed. In classical deformation analysis, each period of data is

adjusted separately using free adjustment technique. Object points must stay stable be-

tween periodic observations. If it is found out that an object point has moved between

periodic observations, this point must be removed from reference point classification. To

determine if a point moved between periods, the coordinates which are obtained for each

period of data are transformed using similarity transformation. By making use of this

transformation, presence of outliers in the data is investigated. If an outlier point appears,

this means that this point moved between periodic observations and therefore since it

cannot be included into datum determination process, it must be removed from reference

point classification. After making sure that reference points were stable, all observations

are adjusted together using free adjustment and final coordinates of the points are deter-

mined. Finally, the coordinate differences (obtained by adjustment of periodic observa-

tions) of object points are analyzed to find out whether these differences are significant.

Here, stable points mean object points serving for the determination of displacements.

Numerous approaches have been suggested by different authors (Chen 1983) to determine

the stability of the reference points, for instance, methods developed by Pelzer (1974),

Heck et al. (1977), Lazzarini (1977), Polak (1978), van Mierlo (1978) and Niemeier

(1981).

Table 1 Minimum number of reference points required in geodetic networks

Type of
network

Observation
technique

Number of
datum
parameters

Kind of datum
parameters

Minimum number
of reference
points required

1D networks Leveling 1 1 translation 1

2D networks Directions 4 2 translations, 1 rotation, 1 scale 2

Distances 3 2 translations, 1 rotation 2

Directions, distances

and azimuth

2 2 translations 1

Directions and distances 3 2 translations, 1 rotation 2

3D networks GPS baseline vectors 3 3 translations 1
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In this study, free-network adjustment of each epoch is evaluated separately, however,

there are other approaches available for use. In this regard, interested readers are referred to

International Study Group of FIG Commission 6 reports which are available on FIG

website (fig.net). In addition, readers are referred to Chrzanowski et al. (2003) and

Chrzanowski (2006) for historical development of deformation analysis. Further, Chen

(1983) elucidates amply on analysis of deformation surveys.

The deficiency of the approach described above is that it is not clear whether the number

of object points used is enough for reliable deformation analysis. If the number of object

points used is not enough, the changes in the point coordinates that moved during the

process might be absorbed by other point coordinates during the computations. In this case,

during the test, which is utilized to detect the reference points which have moved, these

changes cannot be determined. To prevent this during the design stage one has to work

with a number reference points which are enough for a reliable deformation analysis. In

this study, computation algorithms which help in this regard are outlined.

2 Definition of datum parameters in free network adjustment

In geodetic network adjustments the relation between the observations and unknowns are

given as

v ¼ Ax� l; ð1Þ

where A is design matrix, x is unknown vector, l is observation vector and v is residual

vector. Additionally, in free network adjustments, to determine datum parameters for the

network, the following constraint equation is employed (Demirel (2005), Koch (1987) and

Mikhail and Ackermann (1976)).

BTx ¼ 0 ð2Þ

As a matter of fact, this constraint equation constitutes the coefficients of the similarity

transformation which transform the network onto the reference points. In this sense, to

determine the datum parameters tabulated in Table 1, using similarity transformation

principles, B matrix is defined for 1D networks as

BT ¼ 1 1 1 . . . 1½ � ð3Þ

For 2D direction only networks as

BT ¼

1 0 1 0 . . . . . . 1 0

0 1 0 1 . . . . . . 0 1

�y0
1 x0

1 �y0
2 x0

2 . . . . . . �y0
p x0

p

x0
1 y0

1 x0
2 y0

2 . . . . . . x0
p y0

p

2
6664

3
7775 ð4Þ

For 2D direction and distance networks as

BT ¼

1 0 1 0 . . . . . . 1 0

0 1 0 1 . . . . . . 0 1

�y0
1 x0

1 �y0
2 x0

2 . . . . . . �y0
p x0

p

2
664

3
775 ð5Þ

and for 3D GNSS networks as
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BT ¼
1 0 0 1 0 0 . . . . . . . . . 1 0 0

0 1 0 0 1 0 . . . . . . . . . 0 1 0

0 0 1 0 0 1 . . . . . . . . . 0 0 1

2
4

3
5 ð6Þ

The number of columns in B matrix is equal to the number of datum parameters and the

number of rows is equal to the number of coordinates of points in the network. The rows

which correspond to object points are made all zeros. As such, only a transformation onto

reference points coordinates is realized. If the rows which correspond to object points are

not made all zeros, this matrix is termed as G matrix.

Using Eqs. (1) and (2), the unknowns are determined using Least Squares method. For

Least Squares solution we write

vTPv ¼ min ð7Þ

and

xTx ¼ min ð8Þ

By applying Eq. (8) to Eq. (2) we get

t ¼ ðBTBÞ�1BTx ð9Þ

This equation helps determining datum parameters which minimizes the amount of

corrections which are made to coordinates of points identified as the reference points.

If enough number of reference points are not used to allow for reliable external pa-

rameter computations, potential displacements in some of these reference points coordi-

nates may be absorbed substantially by these external parameters. If this is the case, in the

second stage in which stable reference point analysis is performed, these displacements

might not be unveiled. To prevent this, enough number of reference points and/or good

geometry is needed, which will allow reliable external parameter computations. In order to

determine adequate reference point number and geometry, reliability analysis (see the

following section) for transformation parameters needs to be consulted.

Although main focus of this paper is showing the effect of having more reference

points, this does not mean that design of the reference points is ignored. It is well known

that the effects of errors are reflected to their corresponding residuals through their re-

dundancy numbers. That is why the redundancy number of the observations is desired to be

as high as possible. To have high redundancy number for the observations, the design

(geometry) of the network is important as well as the number of redundant measurements

in the network.

Redundant measurements also enable use of least squares and global test afterward. The

global test is used to determine whether the adjustment as a whole is satisfactory. If the

global test fails, one of the reasons might be the outliers in the data. In this case, statistical

tests such as Baarda’s test, Tau (s) test is conducted see Teunissen (2000). These tests are

developed on the assumption that observations are uncorrelated. Nevertheless, correlated

observations are very often encountered i.e., simultaneously observed baseline vectors in

GPS campaigns are correlated. For correlated observations see Wang and Chen (1994) and

Schaffrin (1997).

A mathematically equivalent alternative to statistical testing is the concept of confi-

dence regions. Confidence regions can also be determined by eigenvalues and eigenvectors

since the lengths of confidence region axes are proportional to the square roots of the
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eigenvalues of covariance matrix of the estimated parameters and since the directions are

given by the eigenvectors.

3 Reliability analysis

Reliability of observations for problems such as in Eq. (9) is given as

ri ¼ ðI� BðBTBÞ�1BTÞii; ð10Þ

where I is identity matrix. As well known, in a datum transformation, observations are

reference point coordinates. By making use of reliability values calculated using Eq. (10),

the amount of possible error in a residual which will be applied to a reference point

coordinate (in our case temporal displacements in coordinates) is estimated as

ri ¼
rvi

ri

� vi

ri

ð11Þ

Statistically this can be calculated as

r0ij j � d0ffiffiffi
ri

p mi; ð12Þ

where the limit value r0i is called the minimum detectable error, d0 is the non-centrality

parameter of normal distribution determined by the probability levels a and b of accepting

and rejecting the non-central normal distribution for the residual i and r is the standard

deviation (Leick 1995). As can be seen, as reliability value increases, the amount of error

that might be detected in reference points increases with the square of the minimum

detectable error.

If the error is smaller than the minimum detectable error, it cannot be detected through

the outlier tests, and thus cannot be removed from the adjustment. In this case, the un-

detectable error is absorbed by the adjustment. The amount of the absorption caused to

falsification in the adjustment is computed by the difference between the error and the

impact:

Ai ¼ ri �rvi ¼
1 � ri

ri

vi ð13Þ

It is obvious with this equation that the absorption becomes larger than the residual with

the value of ri\ 0.5 (Kutoglu and Ayan 2006).

3.1 Optimal reference point number in leveling networks

If B matrix given in Eq. (3) is substituted in Eq. (10), reliability value for any reference

point is calculated as

rH ¼ 1 � 1

n
ð14Þ

As can be seen with this equation reliability in leveling networks depends on only the

number of reference points n. As a result, as the number of reference point increases, the

amount of error that might be detected in reference points increase and in addition the
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likelihood of absorption of this error by other point coordinates decreases. To demonstrate

this theory, Fig. 1 is prepared. As can be seen, as n value in Eq. (14) increases, the amount

of absorption rate decreases.

To be able to show the entire picture, in Fig. 1, the number of contributing point (n) is

increased up to 50 and the propagation of 10 cm error is shown as an example.

3.2 Optimal reference point number in 2D networks

The general case for 2D networks is when directions are observed. In this case, the number

of datum parameters need to be determined is four and B matrix is formed as seen in

Eq. (5). Thus, reliability values for reference point coordinates are computed as (Kutoglu

2001).

rxi
¼ ryi

¼ 1 � 1

n
þ ½x�2 þ ½y�2

n2½x2 þ y2� � n[x]2 � n[y]2
þ x2

i þ y2
i

½x2 þ y2� � ð½x�
2þ½y�2
n Þ

 

� 2ð½x�xi þ ½y�yiÞ
n[x2 þ y2� � ½x]2 � ½y]2

� ð15Þ

As can be seen with this equation, unlike leveling networks, in addition to reference

point number, coordinates of the points are also important.

In Fig. 2, the number of contributing point (n) is increased up to 50 and the propagation

of 10 cm error is shown as an example.

3.3 Optimal reference point number in 3D GNSS networks

In 3D GNSS networks, B matrix is formed as can be seen in Eq. (6). Similar to leveling

networks, reliability values for any reference point coordinates which determine the datum

for the network are calculated as

rXi
¼ rYi

¼ rZi
¼ 1 � 1

n
ð16Þ

Fig. 1 Theoretical absorption rate for a leveling network (errors are given in dm unit). Horizontal axis
represents the number of points and vertical axis shows the amount of error
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It means that in GNSS networks, again, the number of reference points is the only

parameter for reliable datum determination. As n value in Eq. (16) increases, the amount of

absorption rate decreases.

In Fig. 3, contribution of 50 points and the propagation of 10 cm error are displayed as

an example.

4 Numerical results

For GNSS measurements FAUNet seen in Fig. 4 is used. Measurements are made using

static method and 1 h data is collected at each site with 5 s sampling rate. A triple

frequency GNSS system (Leica GX1230) is used to take the measurements. This network

is comprised of five object points and eight baseline observations. The network is adjusted

utilizing free network adjustment outlined in Sect. 2.

As mentioned in Sect. 3, to determine optimal point number, first 10 cm error is given

to the 3D coordinates of point 5 and how these errors are propagated to the coordinates of

Fig. 2 Theoretical absorption rate for a triangulation network (errors are given in dm unit). Horizontal axis
represents the number of points and vertical axis shows the amount of error

Fig. 3 Theoretical absorption rate for a GNSS network (errors are given in dm unit). Horizontal axis
represents the number of points and vertical axis shows the amount of error
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other points are observed. And then, first, only the contribution of point 5 is sought by

filling only the rows and columns of this point in Eq. (6). Next, the contributions of points

1, 2 and 3 are investigated respectively. Each time the amount of error propagated to the

other network points are calculated by subtracting remaining error in the coordinates of this

point from the amount of total given error. In Fig. 5, redundancies and propagated errors

are shown for this network. It is clear with Fig. 5 that as n value increases in Eq. (16), the

amount of propagated error decreases.

Later on the same network seen in Fig. 4 is surveyed using Leica NA730 level and eight

height difference observations are taken. Again, it is adjusted utilizing free network ad-

justment. Following the approach described for the GNSS network, to determine optimal

reference point number, first 10 cm error is given to the elevation of point 5 and how this

Fig. 4 FAUNet (image from Google)

Fig. 5 Redundancies versus propagated errors in GNSS network (errors are given in dm unit). Horizontal
axis represents the number of points and vertical axis shows the amount of error
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error is propagated to the elevations of other points is observed. And then, first, only the

contribution of point 5 is sought by filling only the column of this point in Eq. (3). Next,

the contributions of points 1, 2 and 3 are investigated respectively. Again, each time the

amount of error propagated to the other network points are calculated by subtracting

remaining error in the elevation of this point from the amount of total given error (10 cm).

In Fig. 6, redundancies and propagated errors are shown for this network. As can be seen,

as n value increases in Eq. (14), the amount of propagated error decreases. Also, in this

network contributions of four points (5, 1, 2 and 3) are portrayed.

Since FAUNet seen in Fig. 4 is designed for GNSS measurements, it was not adequate

for terrestrial measurements i.e., intervisibility was not possible among some of the net-

work points. As a consequence, another network seen in Fig. 7 is used. This is also a real

network surveyed utilizing Wild T2 instrument. This triangulation network also has five

object points and there are fifteen direction and three distance measurements.

To determine optimal reference point number for this network, first 10 cm error is given

to the 2D coordinates of point 1 and how these errors are propagated to the coordinates of

other points are observed. And then, first, only the contribution of point 1 is sought by

filling only the rows and columns of this point in Eq. (5). Next, the contributions of points

2, 3 and 4 are investigated respectively. Each time the amount of error propagated to the

other network points are calculated by subtracting remaining error in the coordinates of this

point from the amount of total given error. In Fig. 8, redundancies and propagated errors

Fig. 6 Redundancies versus propagated errors in leveling network (errors are given in dm unit). Horizontal
axis represents the number of points and vertical axis shows the amount of error

Fig. 7 Triangulation network
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are shown for this network. As can be seen in Fig. 8, as n value increases in Eq. (15), the

amount of propagated error decreases.

Figures 5, 6 and 8 follow the same pattern displayed by Figs. 1, 2 and 3 and this

confirms the theory.

5 Conclusions and recommendations

In this study, contribution of having more object points in deformation analysis is re-

searched. It is consistent with three types of networks i.e., GNSS, leveling, triangulation

that as the number of reference point increases, the error absorption rate increases and as a

consequence less error is propagated to other point coordinates. This is crystal clear with

GNSS and leveling networks; yet, it is not very clear with triangulation network since not

only the translations but also how reference points are spread out in the project site is

important. The results indicate that rather than just having reference points in solid ground

for deformation analysis having more reference points is also an important factor.

Integrated monitoring schemes in which geodetic (satellite and/or terrestrial) surveys

are combined with geotechnical measurements, and relatively new methods such as InSAR

and laser scanning are not considered in this study; however, interested readers may

develop their own approaches for these techniques using the theory presented.
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