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Abstract Themost regularly usedmathematical tools for representing the geopotential glob-
ally are the spherical harmonics, which consists of the longitude-dependent Fourier transform
and of the latitude-dependent associated Legendre functions. While the former is by defi-
nition a Fourier series, the latter also can be formed to that. An alternative formulation for
the sine series expansion of associated Legendre polynomials has been derived based on
well-known recurrence formulae. The resulted formulae are subsequently empirically tested
for errors to determine the limitations of its use, and strong dependence on the co-latitude
has been found.
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1 Introduction

The most regularly used mathematical tools for representing the geopotential globally are
the spherical harmonics, which consists of the longitude-dependent Fourier transform and of
the latitude-dependent associated Legendre functions (Heiskanen and Moritz 1967). As this
representation is widely used in physical geodesy, it should be noted that spherical harmonics
may be represented as 2D-Fourier series as well. The 2D-Fourier series representation of the
spherical harmonics gives room for developing different numerically efficient methods for
analysis or synthesis of gravity information based on 2D-Fourier transforms (Sneeuw and
Bun 1996).

The 2D-Fourier series representation requires a conversion of the associated Legendre
functions to a Fourier-series. In practice, associateLegendre polynomials are often considered
by the Rodrigues’ formula (Dunster 2010), which is characterized by derivatives of the sin ϑ

L. Földváry (B)
Department of Geodesy and Surveying, Budapest University of Technology and Economics,
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function of order n +m, where n is the degree and m is the order of the spherical harmonics
and ϑ is the co-latitude.

The Rodigues’ formula is convenient from programming, particularly certain recurrence
formulae derived for them, c.f. Eqs. 8.5.1 and 8.5.3 of Abramowitz and Stegun (1965). This
representation of the associated Legendre functions, however, overshadows the periodicity
by integer multiples of latitude of the certain terms. In fact, associated Legendre functions
can be represented as a set of sine series.

There have different solutions for trigonometric expansion of the associated Legendre
functions been found in literature, c.f. Eq. 8.7.1. of Abramowitz and Stegun (1965) or
Eq. 14.13.1 of Dunster (2010). Some of those formulae are not really efficient for pro-
gramming purposes due to an infinite summation involved in it. Several solutions have been
derived considering programming efficiency mainly with the bloom of the computer era
(Hofsommer and Potters 1960; Ricardi and Burrows 1972; Dilts 1985; Elovitz et al. 1989;
Swarztrauber 1993; Cheong et al. 2012). Thesemethods deliver useful and efficient solutions,
and are to be discussed later on, in Sect. 4. In the present study an alternative solution to
those ones is derived, providing sine series expansion of the Legendre functions and of the
associated Legendre polynomials.

In the present solution the coefficients of the sine series are presented as linear combina-
tion of lower degrees’ and/or orders’ coefficients. As so, coefficients of higher degrees and
orders can be determined conveniently and quickly due to the computationally simple binary
operations. The coefficients in this method are presented in closed form.

2 Deriving the formulation

Without providing complete and exact definition of the Legendre polynomials and associated
Legendre functions, here we start by the definition of the Rodrigues’ formula (Heiskanen
and Moritz 1967; Dunster 2010):

Pn (x) = 1

2nn!
dn

dxn
[
(x2 − 1)n

]
(1)

Pn,m (x) = (−1)m

2nn! (1 − x2)m/2 dn+m

dxn+m

[
(x2 − 1)n

]
(2)

For more fundamentals on the associated Legendre functions the reader is directed to
the “Fundamentals of Potential Theory” chapter of Heiskanen and Moritz (1967) or (more
recently) to the “Vector Spherical Harmonics” chapter of Smylie (2013).

In the geodetic practice the argument of Eqs. (1) and (2) is x = cosϑ = sin ϕ. To derive
sine transforms analytically, the following trigonometric identities are to be made use:

sin2(x) = 1 − cos(2x)

2
(3)

cos2(x) = 1 + cos(2x)

2
(4)

sin3(x) = 3 sin (x) − sin(3x)

4
(5)

cos3(x) = 3 cos (x) + cos(3x)

4
(6)

cos(x)cos(y) = cos (x − y) + cos(x + y)

2
(7)
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sin(x)sin(y) = cos (x − y) − cos(x + y)

2
(8)

sin(x)cos(y) = sin (x − y) + sin(x + y)

2
(9)

The following equations present the Legendre polynomials and associated Legendre func-
tions up to degree and order 4 in their most commonly known form. As it is obvious, by
making use of Eqs. (3)–(9), their sine transforms can also be determined, which is listed
afterwards.

P0,0(cosϑ) = 1 (10)

P1,0 (cosϑ) = cosϑ = sin
(
ϑ + π

2

)
(11)

P1,1 (cosϑ) = − sin ϑ = − sin ϑ (12)

P2,0 (cosϑ) = 1

2

(
3 cos2 ϑ − 1

) = 3

4
sin

(
2ϑ + π

2

)
+ 1

4
(13)

P2,1 (cosϑ) = −3 cosϑ sin ϑ = −3

2
sin(2ϑ) (14)

P2,2 (cosϑ) = 3 sin2 ϑ = −3

2
sin

(
2ϑ + π

2

)
+ 3

2
(15)

P3,0 (cosϑ) = 1

2

(
5 cos3 ϑ − 3 cosϑ

) = 5

8
sin

(
3ϑ + π

2

)
+ 3

8
sin

(
ϑ + π

2

)
(16)

P3,1 (cosϑ) = −3

2

(
5 cos2 ϑ − 1

)
sin ϑ = −15

8
sin(3ϑ) − 3

8
sin ϑ (17)

P3,2 (cosϑ) = 15 cosϑ sin2 ϑ = −15

4
sin

(
3ϑ + π

2

)
+ 15

4
sin

(
ϑ + π

2

)
(18)

P3,3 (cosϑ) = −15 sin3 ϑ = 15

4
sin (3ϑ) − 45

4
sin ϑ (19)

P4,0 (cosϑ) = 1

8

(
35 cos4 ϑ − 30 cos2 ϑ + 3

) = 35

64
sin

(
4ϑ + π

2

)

+10

32
sin

(
2ϑ + π

2

)
+ 9

64
(20)

P4,1 (cosϑ) = −5

2

(
7 cos3 ϑ − 3 cosϑ

)
sin ϑ = −35

16
sin (4ϑ) − 5

8
sin (2ϑ) (21)

P4,2 (cosϑ) = 15

2

(
7 cos2 ϑ − 1

)
sin2 ϑ = −105

16
sin

(
4ϑ + π

2

)

+15

4
sin

(
2ϑ + π

2

)
+ 45

16
(22)

P4,3 (cosϑ) = −105 cosϑ sin3 ϑ = 105

8
sin (4ϑ) − 105

4
sin (2ϑ) (23)

P4,4 (cosϑ) = 105 sin4 ϑ = 105

8
sin

(
4ϑ + π

2

)
− 105

2
sin

(
2ϑ + π

2

)
+ 315

8
(24)

Obviously, for any degree n and order m the associated Legendre function can be re-formed
as a set of sine functions, in the following way:

Pn,m (cosϑ) = An,m sin
(
nϑ + j

π

2

)
+ An−2,m sin

(
(n − 2)ϑ + j

π

2

)
+ . . . + bias (25)

where j =
{
1, m even or zero, except n = 0
0, m odd, or n = 0
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The bias is in the most cases zero, except for the even degree and even order terms.
Sine series of associate Legendre functions of higher degrees and orders can be derived

similarly by making use of elementary trigonometric identities. Optionally, the regularly
applied recurrence formulae can also be applied; among them, two basic formulae are pre-
sented here, Eqs. 8.5.1 and 8.5.3 of Abramowitz and Stegun (1965). The first formula enables
deriving a function of a higher degree, based on the functions of the two preceding degrees
and the same order.

Pn+1,m (cosϑ) = (2n + 1)

(n − m + 1)
P1,0 (cosϑ) Pn,m (cosϑ) − (n + m)

(n − m + 1)
Pn−1,m (cosϑ)

(26)

A formula for deriving the associated Legendre function of a higher order, based on two
neighbouring values with order m reads:

Pn,m+1 (cosϑ) = −(n − m)
P1,0 (cosϑ)

P1,1 (cosϑ)
Pn,m (cosϑ)

+(n + m)
1

P1,1 (cosϑ)
Pn−1,m (cosϑ) (27)

Finally, an identity to derive sectorials is also made use of. That is

Pn,n = (−1)n (2n − 1)!! sinn ϑ (28)

In the followings sine series formulae in the form of Eq. (25) are derived making use of
Eqs. (26), (27) and (28).

2.1 Deriving the ‘increase degree’ formula

In this step the basic formula for sine series of associated Legendre function with increased
degree is derived. The formulation is derived based on Eq. (26) by inserting the sine series
forms of the corresponding terms on the right hand side. These three terms are:

Pn,m (cosϑ) = An,m sin
(
nϑ + j

π

2

)

+An−2,m sin
(
(n − 2)ϑ + j

π

2

)
+ . . . (29)

Pn−1,m (cosϑ) = An−1,m sin
(
(n − 1) ϑ + j

π

2

)

+An−3,m sin
(
(n − 3)ϑ + j

π

2

)
+ . . . (30)

P1,0 (cosϑ) = cosϑ (31)

Inserting these equations to (26), it becomes:

Pn+1,m (cosϑ) = (2n + 1)

(n − m + 1)
cosϑ

{
An,m sin

(
nϑ + j

π

2

)

+An−2,m sin
(
(n − 2) ϑ + j

π

2

)
+ . . .

}

− (n + m)

(n − m + 1)

{
An−1,m sin

(
(n − 1) ϑ + j

π

2

)

+An−3,m sin
(
(n − 3)ϑ + j

π

2

)
+ . . .

}
(32)
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In the first term of the right hand side of Eq. (32) by the cosϑ is incorporated to the sine
terms making use of Eq. (9):

Pn+1,m (cosϑ) = (2n + 1)

(n − m + 1)

{
An,m

2
sin

(
(n + 1) ϑ + j

π

2

)

+ An,m + An−2,m

2
sin

(
(n − 1) ϑ + j

π

2

)

+ An−2,m + An−4,m

2
sin

(
(n − 3) ϑ + j

π

2

)
+ . . .

}

− (n + m)

(n − m + 1)

{
An−1,m sin

(
(n − 1) ϑ + j

π

2

)

+An−3,m sin
(
(n − 3)ϑ + j

π

2

)
+ . . .

}
(33)

By re-arranging the equation to separate the different sine terms we get:

Pn+1,m (cosϑ) = (2n + 1)

(n − m + 1)

An,m

2
sin

(
(n + 1) ϑ + j

π

2

)

+ (2n + 1) An,m+An−2,m
2 − (n + m)An−1,m

(n − m + 1)
sin

(
(n − 1) ϑ + j

π

2

)

+ (2n + 1) An−2,m+An−4,m
2 − (n + m)An−3,m

(n − m + 1)
sin

(
(n − 3) ϑ+ j

π

2

)
+ . . .

(34)

Introducing new variables for the coefficients of the sine terms in (34), the sine transform of
an associated Legendre function of degree n + 1 is:

Pn+1,m (cosϑ) = Bn+1,m sin
(
(n + 1) ϑ + j

π

2

)
+ Bn−1,m sin

(
(n − 1) ϑ + j

π

2

)

+ Bn−3,m sin
(
(n − 3)ϑ + j

π

2

)
+ . . . (35)

where

Bn+1,m = (2n + 1)

(n − m + 1)

An,m

2
(36)

Bn−1,m = (2n + 1)

(n − m + 1)

An,m + An−2,m

2
− (n + m)

(n − m + 1)
An−1,m (37)

Bn−3,m = (2n + 1)

(n − m + 1)

An−2,m + An−4,m

2
− (n + m)

(n − m + 1)
An−3,m (38)

etc., where An,m, An−2,m, An−4,m, etc. are the coefficients of the Pn,m (cosϑ) sine series,
while the coefficients of An−1,m, An−3,m, etc. are coefficients of the Pn−1,m (cosϑ) sine
series. As this equation is constant for order m, the phase does not change. In a generalized
form Eqs. (36)–(38) can be written as:

Bn−2k+1,m = (2n + 1)

(n − m + 1)

An−2k+2,m + An−2k,m

2
− (n + m)

(n − m + 1)
An−2k+1,m (39)

where k = 0, 1, 2 . . . , n
2

Special care is needed at the last term of the trigonometric series of (35), which is for even
n + 1 degrees B0,m sin

(
0 + j π

2

)
, while for odd n + 1 degrees it is B1,m sin

(
ϑ + j π

2

)
. It can
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be derived that for the last coefficients the valid formulae for these coefficients read:

B0,m = (2n + 1)

(n − m + 1)

δ0(m even)A1,m

2
− (n + m)

(n − m + 1)
A0,m (40)

B1,m = (2n + 1)

(n − m + 1)

A2,m + 2A0,m

2
− (n + m)

(n − m + 1)
A1,m (41)

where δ0(modd) is the Kronecker delta, which is 1 for even values ofm, otherwise 0. For coding
aspects it can be said that An−2k,m term in (40) is vanishing (as n − 2k becomes −1), while
the same term in (41) gets doubled, i.e. 2A0,m . Furthermore, the An−2k+2,m term in (40) also
vanishes for m odd cases.

2.2 Deriving the ‘increase order’ formula

In this step the basic formula for sine series of associated Legendre function with increased
order is derived. The formulation is derived based on Eq. (27) by inserting the sine series
forms of the corresponding terms on the right hand side. These three terms are:

Pn,m (cosϑ) = An,m sin
(
nϑ + j

π

2

)
+ An−2,m sin

(
(n − 2)ϑ + j

π

2

)
+ . . . (42)

Pn−1,m (cosϑ) = An−1,m sin
(
(n − 1) ϑ + j

π

2

)
+ An−3,m sin

(
(n − 3)ϑ + j

π

2

)
+ . . .

(43)

P1,0 (cosϑ) = cosϑ (44)

P1,1 (cosϑ) = − sin ϑ (45)

Inserting these equations to (27), it becomes:

Pn,m+1 (cosϑ) = (n − m)
cosϑ

sin ϑ

×
{
An,m sin

(
nϑ + j

π

2

)
+ An−2,m sin

(
(n − 2) ϑ + j

π

2

)
+ . . .

}
.

− (n + m)
1

sin ϑ

{
An−1,m sin

(
(n − 1) ϑ + j

π

2

)

+An−3,m sin
(
(n − 3)ϑ + j

π

2

)
+ . . .

}
(46)

Involving the 1
sin ϑ

inside the parentheses, Eq. (46) reads:

Pn,m+1 (cosϑ) = (n − m) cosϑ

×
{
An,m sin

(
nϑ + j π

2

)

sin ϑ
+ An−2,m sin

(
(n − 2) ϑ + j π

2

)

sin ϑ
+ . . .

}

− (n + m)

{
An−1,m sin

(
(n − 1) ϑ + j π

2

)

sin ϑ

+ An−3,m sin
(
(n − 3)ϑ + j π

2

)

sin ϑ
+ . . .

}

(47)
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Now let’s insert x = nϑ + k π
2 and y = ϑ variables to identity (9), and use for cos (x) =

sin(x + π
2 ). It becomes

sin
(
nϑ+k

π

2

)
sin (ϑ) = 1

2
sin

(
(n − 1) ϑ+ (k+1)

π

2

)
− 1

2
sin

(
(n+1) ϑ+ (k+1)

π

2

)

(48)

By re-arranging, and by introducing j = k + 1 we get:

2sin
(
nϑ + ( j − 1)

π

2

)
= sin

(
(n − 1) ϑ + j π

2

)

sin (ϑ)
− sin

(
(n + 1) ϑ + j π

2

)

sin (ϑ)
(49)

In Eq. (47) the 1
sin ϑ

terms can be incorporated to the sine terms by the use of (49). For the
purpose, let’s re-formulate Eq. (47) by adding and subtracting identical terms in the following
way:

Pn,m+1 (cosϑ) = (n − m) cosϑ

{

An,m
sin

(
nϑ + j π

2

)

sin ϑ
− An,m

sin
(
(n − 2) ϑ + j π

2

)

sin ϑ

+ (
An,m + An−2,m

) sin
(
(n − 2) ϑ + j π

2

)

sin ϑ

− (
An,m + An−2,m

) sin
(
(n − 4) ϑ + j π

2

)

sin ϑ

+ (
An,m + An−2,m + An−4,m

) sin
(
(n − 4) ϑ + j π

2

)

sin ϑ

− (
An,m + An−2,m + An−4,m

) sin
(
(n − 6) ϑ + j π

2

)

sin ϑ
+ . . .

}

− (n + m)

{

An−1,m
sin

(
(n − 1) ϑ + j π

2

)

sin ϑ
− An−1,m

sin
(
(n−3) ϑ+ j π

2

)

sin ϑ

+ (
An−1,m + An−3,m

) sin
(
(n − 3)ϑ + j π

2

)

sin ϑ

− (
An−1,m + An−3,m

) sin
(
(n − 5)ϑ + j π

2

)

sin ϑ
+ . . .

}

(50)

Now (49) can be inserted to (50), it simplifies to:

Pn,m+1 (cosϑ) = (n − m) cosϑ
{
2An,m sin

(
(n − 1) ϑ + ( j − 1)

π

2

)

+2
(
An,m + An−2,m

)
sin

(
(n − 3) ϑ + ( j − 1)

π

2

)

+2
(
An,m + An−2,m + An−4,m

)
sin

(
(n − 5) ϑ + ( j − 1)

π

2

)
+ . . .

}

− (n + m)
{
2An−1,m sin

(
(n − 2) ϑ + ( j − 1)

π

2

)

+2
(
An−1,m + An−3,m

)
sin

(
(n − 4)ϑ + ( j − 1)

π

2

)
+ . . .

}
(51)
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Next step is the incorporation of the cosϑ term in the first term of the right hand side of
Eq. (51). This is done by the use of identity (9), and results in

Pn,m+1 (cosϑ) = (n − m)
{
An,m sin

(
nϑ + ( j − 1)

π

2

)
+ An,m sin

(
(n − 2) ϑ + ( j − 1)

π

2

)

+ (
An,m + An−2,m

)
sin

(
(n − 2) ϑ + ( j − 1)

π

2

)

+ (
An,m + An−2,m

)
sin

(
(n − 4) ϑ + ( j − 1)

π

2

)

+ (
An,m + An−2,m + An−4,m

)
sin

(
(n − 4) ϑ + ( j − 1)

π

2

)

+ (
An,m + An−2,m + An−4,m

)
sin

(
(n − 6) ϑ + ( j − 1)

π

2

)
+ . . .

}

− (n + m)
{
2An−1,m sin

(
(n − 2) ϑ + ( j − 1)

π

2

)

+2
(
An−1,m + An−3,m

)
sin

(
(n − 4)ϑ + ( j − 1)

π

2

)
+ . . .

}
(52)

By re-arranging the equation to separate the different sine terms we get:

Pn,m+1 (cosϑ) = (n − m) An,m sin
(
nϑ + ( j − 1)

π

2

)

+ {
(n − m)

(
2An,m + An−2,m

)

−(n + m)2An−1,m
}
sin

(
(n − 2) ϑ + ( j − 1)

π

2

)

+ {
(n − m)

(
2An,m + An−2,m + An−4,m

)

−(n + m)2
(
An−1,m + An−3,m

)}
sin

(
(n − 4) ϑ + ( j − 1)

π

2

)
+ . . .

(53)

Introducing new variables for the coefficients of the sine terms in (34), the sine transform of
an associated Legendre function of order m + 1 is:

Pn,m+1 (cosϑ) = Bn,m sin
(
nϑ + j̃

π

2

)
+ Bn−2,m sin

(
(n − 2) ϑ + j̃

π

2

)

+Bn−4,m sin
(
(n − 4)ϑ + j̃

π

2

)
+ . . . + B0,m sin

(
0 + j̃

π

2

)
(54)

In this case the corresponding coefficients are:

Bn,m = s j̃ (n − m)An,m (55)

Bn−2,m = s j̃
[
(n − m)

(
2An,m + An−2,m

) − (n + m) 2An−1,m
]

(56)

Bn−4,m = s j̃
[
(n − m)

(
2An,m + 2An−2,m + An−4,m

) − (n + m)
(
2An−1,m + 2An−3,m

)]

(57)

etc., where An,m, An−2,m, An−4,m , etc. are the coefficients of the Pn,m (cosϑ) sine series,
while the coefficients of An−1,m An−3,m , etc. are coefficients of the Pn−1,m (cosϑ) sine
series; j̃ is the inverse of j , so

j̃ =
{
1, if j = 0
0, i f j = 1

and s j̃ =
{
1, if j = 0 and j̃ = 1
−1, i f j = 1 and j̃ = 0
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The generalized form of Eqs. (55)–(57) reads:

Bn−2k,m = 2s j̃

[
(n − m)

(
An−2k,m

2
+

∑k−1

i=0
An−2i,m

)
− (n + m)

∑k−1

i=0
An−2i−1,m

]

(58)

where k = 0, 1, 2 . . . , n
2

Similarly to Eqs. (40) and (41), special care is needed at the last term of the trigonometric
series of (58), which is for even n degrees B0,m sin

(
0 + j π

2

)
, while for odd n degrees it is

B1,m sin
(
ϑ + j π

2

)
. For the sectorial and near-sectorial Legendre functions it can be derived

that for the last coefficients the valid formulae for these coefficients read:

B1,m = 2s j̃

[
(n − m)

−A1,m

2
− (n + m)

∑k−1

i=0
An−2i−1,m

]
(59)

B0,m = (−1)n (2n − 1)!! 1
2n

(
n
n/2

)
(60)

In Eq. (60) the symbol !! refers to double factorials. According to Eqs. (10)–(24), only the
even degree and even order functions are biased, otherwise B0,m is zero. In the present study
Eq. (54) is suggested to use only for the sectorial spherical harmonics, i.e. m = n, and for
near-sectorials, m = n− 1 orders (for reasoning see Sect. 3 later on). For such cases the bias
would affect even sectorials only. As so, the corresponding formula, i.e. Eq. (60) has been
derived for even sectorial cases only, by inserting a power-reduction trigonometric identity
formula to Eq. (28). The aforementioned identity to reduce power reads:

sinnϑ = 2

2n
∑ n−1

2

k=0
(−1)

(
n−1
2 −k

) (
n
k

)
sin ((n − 2k) ϑ) for n = odd

(61)

sinnϑ = 1

2n

(
n
n
2

)
+ 2

2n
∑ n

2 −1

k=0
(−1)(

n
2 −k)

(
n
k

)
sin

(
(n − 2k) ϑ + π

2

)
for n = even

(62)

Obviously, only the n = even case is biased, so it is sufficient to insert the bias term of
(61) to (28) to determine the bias of the even degree sectorials, resulting in Eq. (60).

2.3 Normalized formulation

The basic formulation is presented by Eqs. (35), (39)–(41) and (54), (58)–(60) for associated
Legendre polynomials. Most cases in geodesy the associated Legendre polynomials are
normalized be the factor (c.f. Eq. 1–73 of Heiskanen and Moritz 1967)

n f (n,m) =
√

(
2 − δ0(m=0)

)
(2n + 1)

(n − m)!
(n + m)! (63)

Applying the normalization for the formulation derived above, Eqs. (35) and (54) holds for
normalized functions as well with altered coefficients. For the normalized case coefficients
of (35) becomes:
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Bn−2k+1,m =
√

(2n + 1)(2n + 3)

(n − m + 1)(n + m + 1)

An−2k+2,m + An−2k,m

2

−
√

(n + m)(n − m)(2n + 3)

(n + m + 1)(n − m + 1)(2n − 1)
An−2k+1,m (64)

B0,m =
√

(2n + 1)(2n + 3)

(n − m + 1)(n + m + 1)

δ0(m even)A1,m

2

−
√

(n + m)(n − m)(2n + 3)

(n + m + 1)(n − m + 1)(2n − 1)
A0,m (65)

B1,m =
√

(2n + 1)(2n + 3)

(n − m + 1)(n + m + 1)

A2,m + 2A0,m

2

−
√

(n + m)(n − m)(2n + 3)

(n + m + 1)(n − m + 1)(2n − 1)
A1,m (66)

replacing Eqs. (39)–(41). Similarly, the normalized form of coefficients of Eq. (54) can be
derived as

Bn−2k,m = 2s j̃

[√
n − m

n + m + 1

(
An−2k,m

2
+

∑k−1

i=0
An−2i,m

)

−
√

(n + m) (2n + 1)

(n + m + 1) (2n − 1)

∑k−1

i=0
An−2i−1,m

]

(67)

B1,m = 2s j̃

[√
n − m

n + m + 1

−A1,m

2
−

√
(n + m) (2n + 1)

(n + m + 1) (2n − 1)

∑k−1

i=0
An−2i−1,m

]

(68)

B0,m = (−1)n
√

2
(2n − 1)!!

(2n)!!
1

2n

(
n
n/2

)
(69)

replacing Eqs. (58)–(60).

3 Numerical tests

In this section numerical tests are presented to determine the accuracy performance of the
method. The tests are done in MATLAB R2009b, which has a numerical precision of float
arithmetic (the machine ε) of 2.220446049250313× 10−16.

As it has already been foreshadowed in the preceding section, generally the use of ‘increase
degree’ formula is suggested, and the ‘increase order’ formula is used only for determining
new sectorials and near-sectorials, c.f. Fig. 1. This becomes essential for the following accu-
racy analysis.

Normalized Legendre functions has been determined up to degree and order 80 inϑ = 70◦
both by the Rodrigues’ formula, Eqs. (1) and (2), and by the normalized solution of the sine
series expansion formula, Eqs. (35) and (54). The results are displayed in logarithmic scale
in Figs. 2 and 3 in the same arrangement as in Fig. 1.
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Fig. 1 Scheme of the determining sine series by the recurrence formulae. The black arrow shows the use of
‘increase degree’ formula, the red arrow refers to the use of ‘increase order’ formula

Fig. 2 Associate Legendre functions using the Rodrigues’ formulae. The figure is logarithmic, the colorbar
displays powers of 10

The similarity is convincingly validates the sine series expansion method. The errors are
displayed in Fig. 4. Even though it is negligible at every degree and order, it is systematically
increasing by order. Figure 5 shows the signal to noise ratio of the sine series expansion,
i.e. the quotient of the signal (at a certain degree and order) and the error (defined as the
difference with the value from Rodrigues’ formula). Figure 5 reveals even more obvious
order-dependence, and that the error is more emphasized at odd orders.

According to Eqs. (27) and (45), the recurrence formula for ‘increase order’ has a sin-
gularity at ϑ = 0 degree due to the division by sin(ϑ). This is, unavoidably, influences all
solutions making use of this equation. In Figs. 6, 7 and 8 the order dependence of the error
is investigated by the co-latitude, and test points close to the polar singularity, ϑ = 1, at
a mid-latitude, ϑ = 45, and close to the equator, ϑ = 89 were defined. Clearly, close to
the polar region the sine series expansion [and also the well-known recurrence formula, i.e.
equation (27)] does not work properly apart from the zonal and some near-zonal functions.
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Fig. 3 Associate Legendre functions using the sine series expansion formulae. The figure is logarithmic, the
colorbar displays powers of 10.

Fig. 4 The error of the sine series expansion, i.e. the difference of Figs. 2 and 3. The figure is logarithmic,
the colorbar displays powers of 10

Summarily, the applicability of the sine series is highly dependent on the co-latitude of
the point of calculation and of the demanded accuracy. To relate these two criteria to each
other, Fig. 9 displays relationship by the error and co-latitude, showing that by co-latitude at
which order a certain signal to noise ratio has been exceeded.

According to Fig. 9, the demanded accuracy is essentially depends on the co-latitude. The
sine series expansion up to degree and order of 80 safely can be usedwithin theϑ = 50−130◦
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Fig. 5 Signal to noise ratio of sine series expansion, i.e. Fig. 4 divided by Fig. 2. The figure is logarithmic,
the colorbar displays powers of 10

Fig. 6 Signal to noise ratio of sine series expansion at ϑ = 1. The figure is logarithmic, the colorbar displays
powers of 10

interval, outside of this interval an error estimate should be determined case by case for
deciding on its applicability.

A further accuracy test can be defined by investigating the sum of the squared associated
Legendre polynomials by the order of the spherical harmonics, m. The following equation
for normalized polynomials can be derived based on orthogonal properties of the spherical
harmonics:
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Fig. 7 Signal to noise ratio of sine series expansion at ϑ = 45. The figure is logarithmic, the colorbar displays
powers of 10

∑n

m=0
P̄2
n,m (ϑ) = 2n + 1 (70)

As the reliability of the method was found to depend on the co-latitude, the accuracy estimate
of the method is determined for every 10◦ of the co-latitude in the [0◦, 90◦] interval. The
results of the corresponding test are displayed on Fig. 10. On the figure absolute value of the
deviation from 2n + 1 can be seen on logarithmic scale.

In Fig. 10 the dependence on the co-latitude is obvious; the accuracy of the derived coef-
ficients is better closer to the equator. By zooming into the low degree part of the deviations,
the signal is found to be slightly increasing within the order of magnitude of 10−16 range,
and is not a constant. Also at certain parts the curve is interrupted, which is due to the non-
applicable value for the logarithm of zero. Zero deviation is observed when the difference of∑n

m=0 P̄
2
n,m and 2n + 1 is below the machine ε of the software.

4 Discussion

In fact, there are solutions for the associated Legendre polynomials (Hofsommer and Potters
1960; Abramowitz and Stegun 1965; Ricardi and Burrows 1972; Dilts 1985; Elovitz et al.
1989; Swarztrauber 1993; Cheong et al. 2012). Regularly presented trigonometric expansion
of the associated Legendre functions [c.f. Eq 8.7.1. of Abramowitz and Stegun (1965) or
Eq. 14.13.1 of Dunster (2010)] contains infinite summation in the equation. Simple numerical
tests have shown that the convergence of the formula is very slow, so restriction to a few
terms would be insufficient.

Hofsommer and Potters (1960) has presented first a closed form solution using dif-
ferent identities for deriving associated Legendre polynomials. For ‘increase degree’ they
have applied formulae developed for Legendre functions, i.e. m = 0 (can be found e.g in
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Fig. 8 Signal to noise ratio of sine series expansion at ϑ = 89. The figure is logarithmic, the colorbar displays
powers of 10

Fig. 9 Signal to noise ratio of sine series expansion as function of order, m, and co-latitude ϑ .

Gilbert et al. (1960) or Mughal et al. (2006). As degree is increased for zero order only, the
mostly applied formula in their scheme was ‘increase order’, based on an identity relation[
Pn,m−1; Pn,m

]→ Pn,m+1.
Dilts (1985) developed formulae with complex coefficients using an identity in the form of[

Pn,m−1; Pn,m
]→ Pn+1,m to increase the degree. Insteadof using an ‘increase order’ formula,

Dilts (1985) has used an identity similar to Eq. (28) to determine the sectorials. Dilts (1985)
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Fig. 10 Difference of the sum of the square of sine series expansion from 2n + 1 as function of the degree,
n. The different curves refer to different values of the co-latitude ϑ

has used the classical formula for normalization [c.f Eq. (63)]. (Note that Eq. (63) is the
√
4π

multiple of that, which is the regularly used normalization in geodesy). This way the sine
coefficients of the associated Legendre polynomials can be determined under the present
precision of the Matlab software up to degree + order = 170, correspondingly resulting in
overflow at high orders of degree 86. This is solved by Elovitz et al. (1989).

The solution scheme of Ricardi and Burrows (1972) [which has also been adopted
by Sneeuw and Bun (1996) and partially by Cheong et al. (2012)] is more similar
to the present approach: the mostly applied formula is ‘increase degree’ based on the[
Pn−1,m; Pn,m

]→ Pn+1,m identity, c.f. Eq. (26). The solution for ‘increase order’ they
use two identities both different from Eq. (27). For sectorials Ricardi and Burrows
(1972) use

[
Pm,m

] → Pm+1,m+1, and for near sectorials there’s an identity in the form of[
Pm,m

] → Pm+1,m . For increasing the order, Cheong et al. (2012) uses an identity in the
form of

[
Pn−2,m−1; Pn,m−1; Pn−2,m+1

]→ Pn,m+1.
The present solution is different in the ‘increase order’ part, which is derived using an

identity
[
Pn−1,m; Pn,m

]→P
n,m+1, c.f. Eq. (27). This formula has been found to be efficient

for low latitudes but has singularity at the poles.
In practice, the coding of the linear and of the bias term cannot be done by automatically

applying the derived formulation. The applicable terms for that have also been derived here,
which has not been discussed in the aforementioned studies.

5 Summary

As the present solution the coefficients of the sine series are closed form equations, including
linear combination of lower degrees’ and/or orders’ coefficients, higher degrees and orders
can be determined conveniently and quickly due to the computationally simple binary oper-
ations (with certain limitations in applicability). The derivation of the present formula was
performed analytically without assumptions. Note that the short-coming of these formula-
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tions arises from the original identity formula: as Eq. (27) contains a division by sin ϑ on the
second term of the right hand side, it has singularity at the poles, which has also influenced the
results of the numerical tests. In fact, the choice of the ‘increase order’ formula is turned out
be numerically more unstable. In the presently developed method this formula was therefore
highly disregarded against the numerically stable ‘increase degree’ formula. The sine series
expansion for the ‘increase order’ case has been applied only for the unavoidable sectorial
and near-sectorial cases. To improve this shortcoming, further investigations are needed, at
the present stage of the research the expansion can be applied with certain considerations
taken into account and using for limited bands of the co-latitude. Basically, the closed-form
formulation, and the formulation for the linear and the bias terms of the presented method
can be considered to be of theoretical importance.
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