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Abstract Deletion diagnostics have been widely adopted to evaluate the influence of one or
more observations on the adjustment outputs. Both the case-deletion model and the mean-
shift outlier model can be used to develop multiple case-deletion diagnostics for linear mod-
els. These two multiple outlier detection models are identical from the statistical point of
view. However, the mean-shift outlier model, in which the underlying observations are im-
plicitly deleted, outweighs the case-deletion model in term of computational efficiency. The
influence of outliers on the adjustment outputs is also addressed. It reveals that the preci-
sion, minimal detectable bias (MDB) measure and dilution of precision metric (DOP) are
all overestimated when outliers exist but were neglected under the assumption that a priori
variance factor is known before.
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1 Introduction

When outliers are present in a data set, a least-squares (LS) adjustment may not be pos-
sible or will produce poor or invalid results (Wolf and Ghilani 1997). Many approaches
to mitigate or even eliminate the deteriorating effect of outlying observations on the pa-
rameter estimates have been developed (Cook 1977; Koch 1999; Monhor and Verö 2011),
albeit there is no universally-accepted definition for an outlier (Barnett and Lewis 1994;
Monhor and Takemoto 2005; Monhor and Verö 2011).

There are two essential approaches to control the corrupt effects of outliers: conventional
outlier detection test procedures developed in geodetic literature (Baarda 1968; Pope 1976)
and robust methods (Huber 1981; Hampel et al. 1986, Rousseeuw and Leroy 1987; Koch
1999; Yang 1999; Hekimoglu and Koch 2000; Xu 2005; Hekimoglu 2005). However, the
conventional test procedures are only applicable under the assumption that no more than
one outlier is present. In case of multiple outliers, the most practical strategy is to employ
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the iterative data snooping presented by Kok (1984), whilst procedures for detecting all
outliers at once have also been proposed (Hadi and Simonoff 1993; Snow and Schaffrin
2003; Baselga 2011).

To evaluate the influence of one or more observations on the adjustment outputs, the
deletion diagnostics have been extensively adopted (Cook 1977, 1979; Chatterjee and Hadi
1988). There are two methods to implement the diagnostics, namely, delete the underlying
observation(s) explicitly or implicitly. The explicit one is case-deletion model and the other
one is referred to as mean-shift outlier model (Hekimoglu et al. 2012). The aim of this con-
tribution is twofold: first to prove the equivalence of these two methods; second to address
influence of outlying observations on the quality measures.

The paper is organized as follows: the equivalence of two multiple outlier detection mod-
els is investigated, followed by the computational considerations in performing the mean-
shift outlier model. Furthermore, theoretical analyses state that the precision, Minimal De-
tectable Bias (MDB) measure and Dilution of Precision (DOP) metric are all overoptimistic
when the outlying observations should have been taken into account but were neglected.

2 Model description

Let us consider a linear Gauss-Markov model defined by Koch (1999)

E(L) = AX with Cov(L) = σ 2
0 P −1, (1)

where L is the n × 1 vector of observations, A the n × u design matrix with full column
rank, and X the u × 1 vector of unknowns. σ 2

0 is the a priori variance factor of unit weight,
and P the symmetric positive-definite weight matrix. Whenever necessary, the observations
are supposed to be normally distributed.

Then, the (weighted) LS estimate of the unknowns in model Eq. (1) reads (Koch 1999)

X̂ = (
AT PA

)−1
AT PL (2)

The corresponding residual vector is readily obtained as

V = L − AX̂ = RL (3)

where R = I n −A(AT PA)−1AT P maps the original observational vector onto the residual
vector as a result of the LS adjustment (Schaffrin 1997; Guo et al. 2011). The matrix R

plays an important role in linear adjustment techniques since it contains extremely useful
information (Huber 1981; Guo et al. 2007, 2010). One can easily verify that R is idempotent
and has the following useful properties

RT P = PR = RT PR, RA = O, AT PR = O (4)

the weighted sum of squares of the LS residuals reads

Ω = V T PV = LT PRL (5)

3 Multiple outlier detection models

As is known, LS method is very susceptible to outliers (Wolf and Ghilani 1997; Koch 1999;
Guo et al. 2010). There are two procedures to implement the deletion diagnostics, namely,
the case-deletion model and the mean-shift outlier model.

Let us assume the i1th, the i2th, . . . , and the imth observations are to be deleted, while
the im+1th, the im+2th, . . . , and the inth observations are the remaining ones.



Acta Geod Geophys (2013) 48:191–197 193

3.1 Mean-shift outlier model

For convenience we introduce the following notations,

H b = (hi1 ,hi2 , . . . ,him), H r = (him+1 ,him+2 , . . . ,hin ) (6)

where hi denotes the ith n-vector having a 1 as its ith entry and zeros otherwise. It can be
seen (H b,H r ) is a permutation matrix (Strang and Borre 1997). Since a permutation matrix
is orthogonal, one can obtain

(H b,H r )(H b,H r )
T = H bH

T
b + H rH

T
r = I n (7)

and

(H b,H r )
T (H b,H r ) =

(
H T

b H b H T
b H r

H T
r H b H T

r H r

)

= I n

it follows immediately that

H T
b H b = Im, H T

b H r = O, H T
r H r = I n−m (8)

Accordingly, the corresponding mean-shift outlier model reads

E(L) = AX + H b∇ with Cov(L) = σ 2
0 P −1, (9)

in which (A,H b) is of full column rank.
Based on the LS principle, one can obtain the following normal equation:

(
AT PA AT PH b

H T
b PA H T

b PH b

)(
X̂∇
∇̂

)
=

(
AT PL

H T
b PL

)
(10)

with which and denoting

RH b
= I n − H b

(
H T

b PH b

)−1
H T

b P (11)

we have
⎧
⎨

⎩

X̂∇ = (
AT · PRH b

· A)−1
AT · PRH b

· L
∇̂ = (

H T
b PH b

)−1
H T

b P (L − AX̂∇)
(12)

It can be verified that RH b
is idempotent and has the following useful properties

RT
H b

PRH b
= PRH b

= RT
H b

P , RH b
H b = O, H T

b PRH b
= O (13)

The corresponding residual vector is

V ∇ = (L − AX̂∇) − H b∇̂
= (

I n − H b(H
T
b PH b)

−1H T
b P

)
(L − AX̂∇)

= RH b

(
L − AX̂∇

)
(14)

and thus

σ̂ 2
∇ = Ω∇

n − (m + u)
(15)

with

Ω∇ = V T
∇PV ∇ = (L − AX̂∇)T PRH b

(L − AX̂∇) (16)
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3.2 Multiple case-deletion model

Under the same condition, the multiple case-deletion model reads

E
(
H T

r L
) = H T

r AX with Cov
(
H T

r L
) = σ 2

0 H T
r P −1H r , (17)

with which one can obtain the LS estimator as follows

X̂r = (
AT H r · P r · H T

r A
)−1

AT H r · P r · H T
r L (18)

where

P r = (
H T

r P −1H r

)−1
(19)

The permutation matrix (H b,H r ) is invertible. Therefore, one can obtain

P −1 = (H b,H r )
[
(H b,H r )

T P (H b,H r )
]−1

(H b,H r )
T (20)

which in combination with Eq. (8) yields

H T
r P −1H r = (O, I n−m)

[
(H b,H r )

T P (H b,H r )
]−1

(O, I n−m)T

= [
H T

r PH r − H T
r PH b

(
H T

b PH b

)−1
H T

b PH r

]−1

= (
H T

r PRH b
H r

)−1
(21)

By virtue of Eqs. (7), (13), (19) and (21), we have

H r · P r · H T
r = H r · H T

r PRH b
H r · H T

r

= (
H bH

T
b + H rH

T
r

)
PRH b

(
H bH

T
b + H rH

T
r

)

= PRH b
(22)

It follows that

X̂r = X̂∇ (23)

The weighted sum of squares of the LS residuals in this multiple case-deletion model
reads

Ωr = (
H T

r L − H T
r AX̂r

)T · P r · (H T
r L − H T

r AX̂r

)

= (L − AX̂∇)T PRH b
(L − AX̂∇) = Ω∇

and thus

σ̂ 2
r = Ωr

(n − m) − u
= σ̂ 2

∇ (24)

It can be seen from Eqs. (23) and (24) that the mean-shift outlier model is equivalent to
the multiple case-deletion model, no matter whether the deleted observations are correlated
with the remaining or not.

According to the above discussions, one can conclude that the adjustment outputs are
equal to each other no matter whether the (potential) outliers are deleted explicitly or im-
plicitly, even though the removed observations are correlated with the remaining ones.
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3.3 Computational consideration

With Eq. (12), one has to deal with the two matrix inversions with orders u and m, as
opposed to the two matrix inversions with orders u and n−m in Eq. (18). Therefore, Eq. (12)
outperforms Eq. (18) in term of computational efficiency for in most applications the number
of outliers m is small relative to the number of the original observations n.

However, the computational burden can be further reduced by taking the partitioned
structure of the normal matrix in Eq. (10) into account. In fact, the normal equation (10)
can also be solved as

⎧
⎨

⎩

∇̂ = (
H T

b PRH b

)−1
H T

b PRL

X̂∇ = (
AT PA

)−1
AT P (L − H b∇̂)

(25)

or in more explicit form
⎧
⎨

⎩

∇̂ = (
H T

b PRH b

)−1
H T

b PV

X̂∇ = X̂ − (
AT PA

)−1
AT PH b∇̂

(26)

with which we obtain

V ∇ = R(L − H b∇̂) (27)

and

Ω∇ = V T
∇PV ∇

= (L − H b∇̂)T PR(L − H b∇̂)

= Ω − ∇̂T
H T

b PRH b∇̂
= LT

[
PR − PRH b

(
H T

b PRH b

)−1
H T

b PR
]
L (28)

Apparently, in this situation it only requires extra calculation of the inverse of the m × m

normal matrix H T
b PRH b . As a by-product, the estimate of the vector of the disturbance

parameters ∇ can also be obtained with Eq. (26). This is a sufficient reason for choosing
the mean-shift outlier model over the case-deletion model from the computational point of
view.

4 Quality Assessment of outlying observations

With Sherman-Morrison-Woodbury-Schur formula (Strang and Borre 1997), we have
(
AT PRH b

A
)−1 = (

AT PA − AT PH b

(
H T

b PH b

)−1
H T

b PA
)−1

= (
AT PA

)−1 + (
AT PA

)−1
AT PH b

[
H T

b PH b

− H T
b PA

(
AT PA

)−1
AT PH b

]−1
H T

b PA
(
AT PA

)−1

= (
AT PA

)−1 + (
AT PA

)−1
AT PH b

(
H T

b PRH b

)−1
H T

b PA
(
AT PA

)−1

(29)

This formula states the apparent increase in precision when the outlying observations should
have been taken into account but were neglected under the assumption that a priori variance
factor is known before (Schaffrin 1997).
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The second term of Eq. (29) has a quadratic form, it follows that
[(

AT PRH b
A

)−1]
ii

≥ [(
AT PA

)−1]
ii
, i = 1,2, . . . , u (30)

This inequality shows that all types of DOP metrics (Strang and Borre 1997) will be over-
optimistic if the outliers were ignored, even though the outlying observations are correlated
with the remaining ones.

After some matrix manipulation, it follows that

Ω r = LT H r · P rRr · H T
r L (31)

where Rr = I r − H T
r A · (AT H rP rH

T
r A)−1 · AT H r · P r .

By virtue of Eqs. (28) and (31) and since the two quadratic forms, Ω∇ and Ωr , are
equivalent for any realization of the random observational vector L, we have

H r · P rRr · H T
r = PR − PRH b

(
H T

b PRH b

)−1
H T

b PR (32)

Obviously, the kth observation in the multiple case-deletion model is just the im+k th one
in the original linear Gauss–Markov model. Consequently, we get

H T
r him+k

= h̃k (33)

where h̃k denotes the kth (n − m)-dimensional canonical unit vector with 1 as its ith entry.
The kth Baarda’s w-test in the multiple case-deletion model reads (Baarda 1968)

w̃k = h̃
T

k P rRrH
T
r L

σ0

√
h̃

T

k P rRr h̃k

∼ N (0,1) (34)

The corresponding MDB measure is given by

σ0

√
λ0

h̃
T

k P rRr h̃k

= σ0

√
λ0

hT
im+k

H rP rRrH
T
r him+k

(35)

which in combination with Eq. (32) yields

σ0

√
λ0

h̃
T

k P rRr h̃k

≥ σ0

√
λ0

hT
im+k

PRhim+k

(36)

This indicates that all the MDB measures of the remaining observations will become larger.

5 Conclusions

Both the case-deletion model and the mean-shift outlier model can be employed to perform
multiple case-deletion diagnostics for linear models. The advantage of the case-deletion
model is its intuitive appeal, for the suspicious observations are removed explicitly. The
mean-shift outlier model, in which the underlying observations are implicitly deleted, has
found wider acceptance because of its computational simplicity. However, these two models
are equivalent from the mathematical point of view. Under the assumption that a priori vari-
ance factor is known before, theoretical analyses indicate that the precision, MDB measure
and all kinds of DOP metrics are all over-optimistic when outliers were neglected.
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