
SeMA Journal
https://doi.org/10.1007/s40324-024-00360-w

Optimal error estimates for non-conforming approximations
of linear parabolic problems with minimal regularity

J. Droniou1 · R. Eymard2 · T. Gallouët3 · C. Guichard4 · R. Herbin3

Received: 22 August 2023 / Accepted: 15 April 2024
© The Author(s), under exclusive licence to Sociedad Española de Matemática Aplicada 2024

Abstract
We consider a general linear parabolic problem with extended time boundary conditions
(including initial value problems and periodic ones), and approximate it by the implicit Euler
scheme in time and the gradient discretisation method in space; the latter is in fact a class of
methods that includes conforming, nonconforming and mixed finite elements, discontinuous
Galerkinmethods and several others. Themain result is an error estimate which holds without
supplementary regularity hypothesis on the solution. This result states that the approximation
error has the same order as the sum of the interpolation error and the nonconformity error.
The proof of this result relies on an inf-sup inequality in Hilbert spaces which can be used
both in the continuous and the discrete frameworks. The error estimate result is illustrated
by numerical examples with low regularity of the solution.

Keywords Linear parabolic problem · Optimal error estimate · Gradient discretisation
method · Inf-sup inequality

Mathematics Subject Classification 65N30 · 35K15 · 47A07

B R. Eymard
robert.eymard@univ-eiffel.fr

J. Droniou
jerome.droniou@umontpellier.fr

T. Gallouët
thierry.gallouet@univ-amu.fr

C. Guichard
cindy.guichard@sorbonne-universite.fr

R. Herbin
raphaele.herbin@univ-amu.fr

1 IMAG, Univ. Montpellier, CNRS, France & School of Mathematics, Monash University,
Melbourne, Australia

2 Université Gustave Eiffel, LAMA, (UMR 8050), UPEM, UPEC, CNRS, 77454 Marne-la-Vallée,
France

3 I2M UMR 7373, Aix-Marseille Université, CNRS, Ecole Centrale de Marseille, 13453 Marseille,
France

4 Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions (LJLL), 75005
Paris, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40324-024-00360-w&domain=pdf
http://orcid.org/0000-0002-6035-0104


J. Droniou et al.

1 Introduction

Let us first recall the a priori error estimate which holds for the approximation, by a con-
forming numerical method, of the homogeneous Dirichlet problem in a bounded nonempty
open set � of Rd , d ≥ 1. Let u ∈ H1

0 (�) and uh ∈ Uh ⊂ H1
0 (�) (where Uh is a finite

dimensional vector space), be the respective solutions of

∀v ∈ H1
0 (�), 〈∇u,∇v〉L2 = 〈 f , v〉L2 (1.1)

and

∀v ∈ Uh, 〈∇uh,∇v〉L2 = 〈 f , v〉L2 ,

where f ∈ L2(�) is given, and where 〈·, ·〉L2 denotes the scalar product in L2(�)d or in
L2(�). It is well-known that Céa’s Lemma [5] yields the following error estimate:

inf
v∈Uh

δ(u, v) ≤ δ(u, uh) ≤ (1 + diam(�)) inf
v∈Uh

δ(u, v),

where, for any v ∈ Uh , δ(u, v) measures the distance between the element u ∈ H1
0 (�) and

the element v ∈ Uh , as defined by

δ(u, v)2 = ‖∇u − ∇v‖2L2 + ‖u − v‖2L2 .

The above error estimate is optimal, since it shows that the approximation error δ(u, uh) has
the same order as that of the interpolation error infv∈Uh δ(u, v). Such a generic error estimate
is then used for determining the order of the method if the solution shows more regularity,
leading to an interpolation error controlled by higher order derivatives of the solution.

Turning to approximations of the function u which are nonconforming (i.e. no longer
belonging to the space in which the problem is well-posed), we consider the framework of
the Gradient Discretisation method (GDM) [11]. This framework provides a setting to prove
convergence results of numerical schemes for (linear and nonlinear) elliptic and parabolic
problems, that do not rely on the specificities of each method but rather identifies the key
properties that enable the proof of their convergence; as a consequence, any error estimate or
convergence established in the GDM framework readily applies to all methods covered by the
framework, which are numerous: conforming, non-conforming and mixed finite elements,
discontinuous Galerkin methods, but also finite volume methods, mimetic finite differences,
arbitrary-order fully discrete polytopal schemes, and even meshless methods; we refer the
reader to [11, Part III] and [8, 9, 12, 15, 16] for a non-exhaustive listing of the methods that
are Gradient Discretisation Methods.

The GDM framework is based on a triplet of a space Xh and two operators Ph : Xh →
L2(�) and Gh : Xh → L2(�)d . The space is a finite-dimensional real vector space that
encodes the degrees of freedomof the approximate solution. This space can takemany shapes:
for conforming methods, for example, it can be a subspace of H1

0 (�); for methods having
cell and/or face averages as unknowns, on the other hand, it could simply be R

K with K
the total number of cells and faces. The operator Ph reconstructs, from an element in Xh , a
function in L2(�), whileGh reconstructs a (discrete) gradient. These two reconstructions are
used to define the scheme associated with (Xh,Ph,Gh), obtained by substituting in the weak
formulation of the PDE the trial and test functions (resp. their gradient) by the reconstructed
functions (resp. gradients). Each particular choice of triplet (Xh,Ph,Gh) corresponds to a
specific scheme. We refer the reader to [11, Chapter 1] for a more thorough introduction to
the GDM, and how the generic underlying ideas can be built from the ground up.
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Optimal error estimates for non-conforming approximations…

The resulting scheme for (1.1) reads: find uh ∈ Xh such that

∀v ∈ Xh, 〈Ghuh,Ghv〉L2 = 〈 f ,Phv〉L2 .

Then the following error estimate [11, Theorem 2.28] is a reformulation of G. Strang’s second
lemma [24]:

1

2

[
ζh(∇u) + inf

v∈Xh
δ(u, v)

]
≤ δ(u, uh) ≤ (1 + ph)

[
ζh(∇u) + inf

v∈Xh
δ(u, v)

]
,

where δ(u, v), which measures the distance between the element u ∈ H1
0 (�) and the element

v ∈ Xh , is such that

δ(u, v)2 = ‖∇u − Ghv‖2L2 + ‖u − Phv‖2L2 ,

and ζh(∇u), which measures the conformity error of the method (it vanishes in the case of
conforming methods), is defined by

ζh(∇u) = max
v∈Xh\{0}

〈∇u,Ghv〉L2 − 〈div(∇u),Phv〉L2

‖Ghv‖L2
.

The value ph is associated to the discrete Poincaré inequality

‖Phv‖L2 ≤ ph‖Ghv‖L2 , for all v ∈ Xh . (1.2)

In the case where ph is bounded independently of the accurateness of the approximation (for
example, for mesh-based methods, ph only depends on a regularity factor of the meshes),
this error estimate is again optimal: it shows the same order for the approximation error and
for the sum of the interpolation and conformity errors.

Hence, in the conforming case, the order of the method is only determined by the interpo-
lation properties of Uh , and in the nonconforming one, by the interpolation and conformity
properties of (Xh,Ph,Gh).

In the case of parabolic problems, a large part of the literature only provides error estimates
assuming supplementary regularity of the solution. For example, in [10], an error estimate is
established for theGDMapproximation of the heat equation under the condition that the exact
solution of the problem belongs to the space W 1,∞(0, T ; W 2,∞(�)). Error estimate results
for linear parabolic problems in the spirit of Céa’s Lemma have only recently been published.
These results are based on variational formulations of the parabolic problem and on an inf-sup
inequality satisfied by the involved bilinear form (see [7, XVIII.3 Théorème 2] for first results,
and [23, III Proposition 2.3, p. 112] for a more complete formulation); they concern either
semi-discrete numerical schemes (continuous in time, discrete in space), see for example
[6, 25], or fully discrete time-space problems [3, 20, 21, 26]. In [2], similar optimal results
are obtained for the full time-space approximation of linear parabolic partial differential
equation, using Euler schemes or a discontinuous Galerkin scheme in time, together with
conforming approximations. Let us more precisely describe the result obtained in [2], in
the case of the implicit Euler scheme for the heat equation. Let T > 0, ξ0 ∈ L2(�) and
f ∈ L2(0, T ; L2(�)) be given and let u ∈ W :=H1(0, T ; H−1(�)) ∩ L2(0, T ; H1

0 (�))

(equivalently W = {u ∈ L2(0, T ; H1
0 (�)) : ∂t u ∈ L2(0, T ; H−1(�))}) be the solution of:

u(0) = ξ0 and, for a.e. t ∈ (0, T ),

∀v ∈ H1
0 (�), 〈∂t u(t), v〉H−1,H1

0
+ 〈∇u(t),∇v〉L2 = 〈 f (t), v〉L2 .

The existence and uniqueness of u is due to Lions [19, Théorème 1.1, p. 46], see also [17,
Théorème 4.29]. Let N ∈ N\{0} and Uh ⊂ H1

0 (�) be given (as above, Uh is assumed to be a
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finite dimensional vector space). Let uh :=(u(m))m=0,...,N ∈ Wh :=U N+1
h be the solution of:

u(0) = PL2

Uh
(ξ0) (orthogonal projection on Uh in L2(�)) and, for m = 1, . . . , N ,

∀v ∈ Uh, 〈u(m) − u(m−1)

k
, v〉L2 + 〈∇u(m),∇v〉L2 = 〈 f (m), v〉L2 ,

with k = T /N and f (m) = 1
k

∫ mk
(m−1)k f (t)dt . Then it is shown in [2] that

inf
v∈Wh

δ(T )(u, v) ≤ δ(T )(u, uh) ≤ C inf
v∈Wh

δ(T )(u, v),

where δ(T )(u, v) is a suitable distance between the elements of W and those of Wh , and C
only depends on T and�. Note that the common bilinear form, for which inf-sup inequalities
cover both the discrete and the continuous case, is not conforming in W .

The present work establishes an optimal error estimate result for the full time-space
approximationof linear parabolic partial differential equation, using the implicit Euler scheme
togetherwith theGDMfor the approximation of the continuous operators,without assuming a
stronger regularity than the natural hypothesis u ∈ W . Our analysis also includes conforming
methods with mass lumping: the latter technique is widely used, for stability reasons, in
the real life implementation of conforming finite element methods for parabolic problems.
Indeed, the implementation of the mass lumping, often viewed as a numerical integration
approximation, is in fact a change of the approximation space which yields a non conformity
error (see, e.g., the presentation in [11, Sect. 8.4]), and the resulting implicit Euler method
is thus a doubly non conforming method, both in space and in time.

Let us describe such a doubly non conforming scheme in the case of the discretisation of
the heat equation. Given (Xh,Ph,Gh) for the nonconforming approximation of an elliptic
problem by the GDM, the time-space approximation is defined through the knowledge of
uh :=(u(m))m=0,...,N ∈ Wh :=X N+1

h , solution of: Phu(0) = PL2

Ph(Xh)(ξ0) (orthogonal projec-

tion on Ph(Xh) in L2(�)) and, for m = 1, . . . , N ,

∀v ∈ Xh, 〈Ph
u(m) − u(m−1)

k
,Phv〉L2 + 〈Ghu(m),Ghv〉L2 = 〈 f (m),Phv〉L2 ,

defining k and f (m) as above. Then our main result (expressed in Theorem 4.1) states that

1

2

[
ζ

(T )
h (v) + inf

v∈Wh
δ(T )(u, v)

]
≤ δ(T )(u, uh) ≤ Ch

[
ζ

(T )
h (v) + inf

v∈Wh
δ(T )(u, v)

]
,

where v ∈ L2(0, T ; H÷(�)) is computed from u by (4.5), ζ
(T )
h (v) defined by (4.4) again

measures the conformity error of the method (and again vanishes in the case of conforming
methods), and δ(T )(u, v) measures the distance between the element u ∈ W and the element
v ∈ Wh [see (4.3)]. The real numberCh depends continuously on ph [see (1.2)]which remains
bounded for any reasonable nonconforming method [11]. This error estimate is established
in the case of nonconforming methods for a general parabolic problem with general time
conditions which include periodic boundary conditions.

This paper is organized as follows. In Sect. 2, we establish the continuous setting for
parabolic problems with generic Cauchy data (initial or periodic, for example): this setting
is presented in an abstract way (based on generic Hilbert spaces and unbounded operators
between them, instead, say, of H1

0 spaces and the specific case of the Laplacian or some
anisotropic diffusion operator) to demonstrate the generality of our analysis that covers for
example diffusion and advection–diffusion PDEs, as well as higher-order models. In Sect.
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3, we recall the general setting of the gradient discretisation method (GDM) and define the
GDM for the approximation of space-time parabolic problems. Section 4 is concerned with
Theorem 4.1, which is our main result and which states the error estimate between the space-
time GDM approximation and the exact solution under the natural regularity assumptions
given by the existence and uniqueness theorem of Sect. 2. The proof of this theorem relies
on a series of technical lemmas establishing an inf-sup property on a bilinear form involved
in the continuous and the discrete formulation. In Sect. 5, interpolation results are proved
on a dense subspace of the solution space, hence leading to convergence results. Finally,
Sect. 6 provides a numerical confirmation of the error estimate result, on problems with
low regularity solutions. In the examples that are considered here, the non conformity error
(which in one case includes the effect of mass lumping) is smaller than the interpolation
error.

2 The parabolic problem

Let L and L be separable Hilbert spaces; let HG ⊂ L be a dense subspace of L and let
G : HG → L be a linear operator whose graph G = {(u,Gu), u ∈ HG} is closed in L × L.

As a consequence, HG endowed with the graph norm |u|2HG,G = |u|2L +|Gu|2L is a Hilbert
space continuously embedded in L . We assume that the graph norm is equivalent to |Gu|L ,
which means that there exists a Poincaré constant CP such that

|u|L ≤ CP |Gu|L for all u ∈ HG. (2.1)

As a consequence, we use from hereon the norm |·|HG
:= |G·|L on HG. Since L × L is

separable, HG is also separable for the norm |·|HG
(see [4, Chap. III]).

Remark 2.1 (Example of spaces and operators) In the case of the heat equation, considering
homogeneousDirichlet boundary conditions, we let L = L2(�), L = L2(�)d andGv = ∇v

for all v. If we consider an initial value problem with homogeneous Neumann boundary
conditions, using the change of variable w(t) = exp(−t)u(t) it is possible to consider
L = L2(�)d × L2(�) and Gv = (∇v, v) for all v. This change of variable is no longer
possible in the case of periodic time boundary conditions. Notice that the solution may be
periodic in the case of some zero mean value right-hand-side: in this case, it is possible to
choose L = L2(�)d × R and Gv = (∇v,

∫
�

v(x)dx).

In the following, the notation 〈·, ·〉Z denotes the inner product in a given Hilbert space
Z , and 〈·, ·〉Z ′,Z denotes the duality action in a given Banach space Z whose dual space is
denoted Z ′. Define HD by:

HD = {
v ∈ L : ∃w ∈ L,∀u ∈ HG, 〈v,Gu〉L + 〈w, u〉L = 0

}
. (2.2)

The density of HG in L implies (and is actually equivalent to) the following property.

For all w ∈ L ,
(∀u ∈ HG, 〈w, u〉L = 0

) ⇒ w = 0. (2.3)

Therefore, for any v ∈ HD, the elementw ∈ L whose existence is assumed in (2.2) is unique;
this defines a linear operator D : HD → L , so that

∀u ∈ HG, ∀v ∈ HD, 〈v,Gu〉L + 〈Dv, u〉L = 0. (2.4)
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Remark 2.2 (Divergence and operator D) In the case where G is the standard gradient oper-
ator, D is the standard divergence operator. These notations match the choice made in [13]
for stationary problems.

It easily follows from this that the graph of D is closed in L × L , and therefore that,
endowed with the graph norm |v|HD = |v|L + |Dv|L , HD is a Hilbert space continuously
embedded and dense in L (see [18, Theorem 5.29, p. 168]).

The continuous framework for linear parabolic problems with general time boundary
conditions starts by the usual identification of the space L with a subspace of HG

′ by letting

〈y, u〉HG
′,HG

= 〈y, u〉L , for all y ∈ L, u ∈ HG.

This identification yields the Gelfand triple

HG
d

↪→ L ↪→ HG
′,

where the superscript d recalls that the first embedding is dense. Let T > 0, and recall that we
may identify the dual space L2(0, T ; HG)

′
with L2(0, T ; HG

′) and the space L2(0, T ; L)
′

with L2(0, T ; L); hence we have a further Gelfand triple

L2(0, T ; HG)
d

↪→ L2(0, T ; L) ↪→ L2(0, T ; HG)′.

The classical space W associated with the Gelfand triple is defined by

W =
{

u ∈ L2(0, T ; HG); ∃C ≥ 0 such that 〈u, v′〉L2(L) ≤ C‖v‖L2(HG)

for all v ∈ C1
c ((0, T ); HG)

}
.

The “timederivative” ofu ∈ W may thenbe defined as the element of the space L2(0, T ; HG)′
identified with the space L2(0, T ; HG

′) such that

〈u′, v〉L2(HG)′,L2(HG):= − 〈u, v′〉L2(L) for all v ∈ C1
c ((0, T ); HG).

Note that here as well as in the rest of this paper, for a given space Z we use in the dual
products and norms the notation L2(Z) (resp. H p(Z) for p = 1, 2) as an abbreviation for
L2(0, T ; Z) (resp. H p(0, T ; Z) for p = 1, 2). In other words, we can write W as follows,
introducing also a Hilbert structure,

W = H1 (
0, T ; HG

′) ∩ L2(0, T ; HG)

with ‖v‖W :=
(
‖v‖2L2(HG)

+ ‖v′‖2L2(HG)′
)1/2

for all v ∈ W .

The space W can be identified with a subspace of C([0, T ]; L) and there exists CT > 0
such that

sup
t∈[0,T ]

‖v(t)‖L ≤ CT ‖v‖W , for all v ∈ W . (2.5)

Recall the following integration by parts formula [23, III Corollary 1.1, p. 106]).

Lemma 2.3 One has, for all v,w ∈ W ,

〈v′, w〉L2(HG)′,L2(HG) + 〈w′, v〉L2(HG)′,L2(HG)

= 〈v(T ), w(T )〉L − 〈v(0), w(0)〉L .
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Let � ∈ L∞(0, T ;L(L, L)) and let S ∈ L(L, L) be a symmetric positive definite
operator such that there exists M ≥ 1 and α > 0 with

‖S−1�(t)‖ ≤ M for a.e. t ∈ (0, T ), (2.6a)

〈S−1�(t)ξ, ξ 〉L ≥ α‖ξ‖2L for a.e. t ∈ (0, T ) and all ξ ∈ L. (2.6b)

We also define ρ > 0 by

ρ = ess sup
t∈(0,T )

‖S−1/2�(t)S−1/2‖L . (2.7)

The role of� is described in the remark below, while the role ofS (introduced to enable a
more precise control of M , α and ρ in certain cases, and thus improve the constants appearing
in the error estimate) is discussed in Remark 4.3.

Remark 2.4 (Example of �) The operator � represents the model under consideration as
well as the associated physical data. In the context of Remark 2.1 with Dirichlet boundary
conditions (so L = L2(�)d ), for example, taking a uniformly coercive matrix M : � →
Sd(R) (where Sd(R) is the set of symmetric matrices), a vector field b : [0, T ] × � → R

d ,
and setting �(t)ξ = Mξ + b(t) · ξ for all ξ ∈ L2(�)d , the model (2.8) below represents a
diffusion–advection parabolic problem with diffusion matrixM and advective velocity .

Let� : L → L be a linear contraction (which means that ‖�v‖L ≤ ‖v‖L for all v ∈ L).
Our aim is to obtain an error estimate for an approximate solution of the following problem.
Given g ∈ L2(0, T ; HG

′) and ξ0 ∈ L ,

find u ∈ W s.t. u′ − D(�Gu) = g and u(0) − �u(T ) = ξ0. (2.8)

Using the identification between HG and HG
′ by the Riesz representation theorem, we

decompose g ∈ L2(0, T ; HG
′) as g = f + DF with f ∈ L2(0, T ; L), F ∈ L2(0, T ; L).

This decomposition is not unique; indeed f = 0 is always possible, but in several problems
of interest, the source term g belongs to L2(0, T ; L). Therefore, the problem to be considered
reads

find u ∈ W s.t. u′ − D(�Gu + F) = f and u(0) − �u(T ) = ξ0. (2.9)

We introduce the Riesz isomorphism R : HG
′ → HG (which also defines the Riesz isomor-

phism R : L2(0, T ; HG
′) → L2(0, T ; HG)) such that

∀(ξ, v) ∈ HG
′ × HG, 〈SGRξ,Gv〉L = 〈ξ, v〉HG

′,HG
. (2.10)

The problem (2.9) is then equivalent to

find u ∈ W s.t. − D(SGRu′ + �Gu + F) = f and u(0) − �u(T ) = ξ0, (2.11)

which contains that SGRu′ + �Gu + F ∈ L2(0, T ; HD).

Theorem 2.5 [1]For all f ∈ L2(0, T ; HG)′ and ξ0 ∈ L, Problem (2.9) has a unique solution.

3 The space-time discretisation

3.1 Space approximation using the gradient discretisationmethod

Definition 3.1 (Gradient discretisation) A gradient discretisation is defined by Dh =
(Xh,Ph,Gh), where:
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1. The set of discrete unknowns Xh is a finite dimensional real vector space.
2. The “function” reconstruction Ph : Xh → L is a linear mapping that reconstructs, from

an element of Xh , an element in L .
3. The “gradient” reconstructionGh : Xh → L is a linear mapping that reconstructs, from

an element of Xh , an element of L.
4. The mapping Gh is such that the mapping v �→ |Ghv|L defines a norm on Xh .

We then define the following weighted norm on Xh

|v|h :=
∣∣∣S1/2Ghv

∣∣∣
L

(3.1)

and ph as the norm of Ph :

ph = max
v∈Xh\{0}

|Phv|L

‖v‖h
. (3.2)

3.2 Description of the Euler scheme

We now refer to the framework of Sect. 2. In particular, � : L → L is linear and ‖�‖ ≤ 1.
Moreover, f ∈ L2(0, T ; L), F ∈ L2(0, T ; L) and ξ0 ∈ L are given.

Let N ∈ N\{0} and define the time step (taken to be uniform for simplicity of presentation)
k = T

N . For all m = 1, . . . , N , �(m) ∈ L(L, L) denotes the coercive linear operator given
by

�(m) = 1

k

∫ mk

(m−1)k
�(t)dt

and f (m) ∈ L , F(m) ∈ L are defined by

f (m) = 1

k

∫ mk

(m−1)k
f (t)dt and F(m) = 1

k

∫ mk

(m−1)k
F(t)dt .

The implicit Euler scheme consists in seeking N + 1 elements of Xh , denoted by
(w(m))m=0,...,N , such that

〈Phw(0) − �Phw(N ),Phu〉L = 〈ξ0,Phu〉L for all u ∈ Xh (3.3a)

and

〈Ph
w(m) − w(m−1)

k
,Phu〉L + 〈�(m)Ghw(m),Ghu〉L

= 〈 f (m),Phu〉L − 〈F(m),Ghu〉L
for all m = 1, . . . , N and u ∈ Xh .

(3.3b)

Remark 3.2 The discrete value w(0) is only involved in (3.3a)–(3.3b) through Phw(0). As a
consequence, we only prove in the following the uniqueness of Phw(0). If Ph : Xh → L is
one-to-one, this shows the uniqueness of w(0); if this operator is not one-to-one, then w(0) is
actually not unique.

Note that, if � ≡ 0, the scheme is the usual implicit scheme, and the existence and
uniqueness of a solution (Phw(0), (w(m))m=1,...,N ) to (3.3b) is standard. In the general case,
a linear system involving Phw(0) must be solved, and its invertibility is proved by Theorem
4.1.
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We now define the space Wh of all functionsw : [0, T ] → Xh that are piecewise constant
in time in the following way: there exist N + 1 elements of Xh , denoted by (w(m))m=0,...,N ,
such that

w(0) = w(0), and

w(t) = w(m) for all t ∈ ((m − 1)k, mk], for all m = 1, . . . , N .
(3.4)

We observe that the space Wh is isomorphic to X N+1
h , through the mapping w �→

(w(mk))m=0,...,N . We define the discrete derivative of w ∈ Wh as follows:

∂w(t) = w(m) − w(m−1)

k
,

for a.e. t ∈ ((m − 1)k, mk), for all m = 1, . . . , N .

(3.5)

Define the space Vh of all functions v ∈ L2(0, T ; Xh) for which there exist N elements
of Xh , denoted by (v(m))m=1,...,N , such that

v(t) = v(m) for all t ∈ ((m − 1)k, mk), for all m = 1, . . . , N . (3.6)

Remark 3.3 (Difference betweenWh andVh)Wh andVh are both spaces of piecewise constant
functions in time. However, functions in Wh are defined pointwise and everywhere, including
at all time steps (and are left-continuous on [0, T ]), whereas functions in Vh are only defined
almost everywhere on (0, T ). This distinction between the two spaces plays the same role as
the distinction between X and Y in [21, Sect. 5].

Scheme (3.3a)–(3.3b) can than be written under the form:

Find wh ∈ Wh such that ∀(v, z) ∈ Vh × Xh, b(wh, (v, z)) = L((v, z)), (3.7)

with

b(wh, (v, z)) = 〈Ph∂wh,Phv〉L2(L) + 〈�Ghwh,Ghv〉L2(L)

+ 〈Phwh(0) − �Phwh(T ),Ph z〉L
(3.8)

and

L((v, z)) = 〈 f ,Phv〉L2(L) − 〈F,Ghv〉L2(L) + 〈ξ0,Ph z〉L .

Remark 3.4 (Role of the test functions) In (3.7), the function v ∈ Vh tests the evolution Eq.
(3.3b) while z ∈ Xh tests (through Ph z) the initial/final condition (3.3a).

Theorem 3.5 Under the setting of this section, there exists one and only one solution
(Phw(0), (w(m))m=1,...,N ) to (3.3a)–(3.3b) or equivalently to (3.7). For this solution, we
denote by wh the element of Wh corresponding to (w(m))m=0,...,N ) for a given choice of
w(0).

Proof Since (Phw(0), (w(m))m=1,...,N ) is solution to a square linear system, the error estimate
Theorem 4.1 proves that, for a null right-hand-side, the solution is null. Hence the system is
invertible. ��
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4 Error estimate

Define the discrete Riesz operator Rh : Xh → Xh by: for all u ∈ Xh , Rhu satisfies

〈SGh Rhu,Ghv〉L = 〈Phu,Phv〉L for all v ∈ Xh . (4.1)

We note that with this definition, the scheme (3.7) can be recast as: for all (v, z) ∈ Vh × Xh ,

〈SGh Rh∂wh + �Ghwh + F,Ghv〉L2(L) + 〈Phwh(0) − �Phwh(T ),Ph z〉L

= 〈 f ,Phv〉L2(L) + 〈ξ0,Phz〉L .
(4.2)

Set, for all u ∈ W and v ∈ Wh ,

δ
(T )
h (u, v) = ‖S1/2

(
GRu′ − Gh Rh∂v

) ‖L2(L)

+ ‖S−1/2�(Gu − Ghv) ‖L2(L) + max
t∈[0,T ] ‖u(t) − Phv(t)‖L .

(4.3)

We also define ζ
(T )
h : L2(0, T ; HD) → [0,+∞) by: for all v ∈ L2(0, T ; HD),

ζ
(T )
h (v) = sup

v∈Vh\{0}

∣∣〈v,Ghv〉L2(L) + 〈Dv,Phv〉L2(L)

∣∣
‖S1/2Ghv‖L2(L)

. (4.4)

Theorem 4.1 Let u be the solution to (2.9), let

v:=SGRu′ + �Gu + F ∈ L2(0, T ; HD) (4.5)

and let wh be a solution to (3.3). Then there exists Ch ≥ 0, depending only on ph [defined
by (3.2)] in a non decreasing and continuous way, and on (α, M, T ) [see (2.6)], such that:

1

2

[
ζ

(T )
h (v) + inf

v∈Wh
δ
(T )
h (u, v)

]

≤ δ
(T )
h (u, wh) ≤ Ch max(1, ρ)

[
ζ

(T )
h (v) + inf

v∈Wh
δ
(T )
h (u, v)

]
. (4.6)

Remark 4.2 (Optimal error estimate) If Ch is bounded independently of h, which is the case
for several discretisation methods for which ph can be shown to be bounded thanks to a
regularity assumption on the mesh [11, Part III], the second inequality in (4.6) gives an error
estimate for the scheme, while the first inequality shows its optimality. This is the result
announced in the title and introduction of this work.

Remark 4.3 (Role of S) The role of S is to provide a more precise control of the constants
M, α, ρ which impact Ch in (4.6). The weightS should be chosen to make M, α, ρ as small
as possible—and, ideally, to compensate for a possible strong anisotropy of � (that would
create large ratios M/α ifS is absent). In the case where� is a time-independent symmetric
coercive operator, a natural choice is S = �; then, we can take α = M = ρ = 1 in (2.6),
and Ch and ρ are independent of � [but the norm of the error estimate depends on it, see
Definition (3.1)].

We also note that, by Hypothesis (2.6b) and since S is symmetric positive definite, we
have

C�

(
|Sξ |L +

∣∣∣S−1/2�ξ

∣∣∣
L

)
≤ |ξ |L ≤ C�

(
|Sξ |L +

∣∣∣S−1/2�ξ

∣∣∣
L

)

where C� and C� depend on S, α, M . Hence, the estimate (4.6) also translates into an
estimate on the term (4.3) without the factorsS andS−1/2�. The latter estimate, however, has
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multiplicative constants that may depend more severely on the anisotropy of �, as explained
above.

Remark 4.4 (Error estimate without regularity assumption) One of the strengths of the error
estimate (4.6), besides the fact that it is in some cases robust with respect to the model’s
anisotropy as explained in Remark 4.3 above, is that it is established without assuming any
regularity property on the PDE solution. If we assume some smoothness in time and space
of that solution, and if we consider mesh-based methods where h is the mesh size, the terms
on each side of this estimate can be evaluated in terms of powers of h, but even if we take a
minimal-regularity solution, this estimate provides the convergence of any GDM scheme.

Remark 4.5 In the casewhere the source term g belongs to L2(0, T ; L) (instead of theweaker
assumption g ∈ L2(0, T ; HG

′) that we assume here), an error estimate for solutions with
minimal regularity was established in [22] for a discontinuous Galerkin discretisation in time
and a conforming discretisation in space. Our result, on the contrary, covers non-conforming
and non-Galerkin approximations and highlights the role of the defect of conformity measure
(4.4) when considering general spatial discretisations.

The proof of Theorem 4.1 is given after stating and proving a series of technical lemmas
involving operators on Hilbert spaces.

Lemma 4.6 For w ∈ Wh, the following inequalities hold

max
t∈[0,T ] ‖Phw(t)‖L

≤ ‖S1/2Gh Rh∂w‖L2(L) + ‖S1/2Ghw‖L2(L) + ‖Phw(0)‖L , (4.7)

〈SGh Rh∂w,Ghw〉L2(L) ≥ 1

2
‖Phw(T )‖2L − 1

2
‖Phw(0)‖2L , (4.8)

and, recalling that ph is defined by (3.2),

‖S1/2Gh Rh∂w‖2L2(L)
+

(
1 + p2h

T

)
‖S1/2Ghw‖2L2(L)

≥ ‖Phw(T )‖2L . (4.9)

Proof Let w ∈ Wh . Using the relation (a − b)a = 1
2a2 + 1

2 (a − b)2 − 1
2b2, the definition

(4.1) of Rh yields, for 0 ≤ m ≤ m′ ≤ N ,
∫ m′k

mk
〈SGh Rh∂w(t),Ghw(t)〉Ldt =

∫ m′k

mk
〈Ph∂w(t),Phw(t)〉Ldt

=
m′−1∑
p=m

k〈Ph
w(p+1) − w(p)

k
,Phw(p+1)〉L

= 1

2
‖Phw(m′)‖2L + 1

2

m′−1∑
p=m

‖Ph

(
w(p+1) − w(p)

)
‖2L − 1

2
‖Phw(m)‖2L . (4.10)

Using the Cauchy–Schwarz inequality on the left-hand side provides

1

2
‖Phw(m′)‖2L ≤ ‖S1/2Gh Rh∂w‖L2(L)‖S1/2Ghw‖L2(L) + 1

2
‖Phw(m)‖2L

≤ 1

2
‖S1/2Gh Rh∂w‖2L2(L)

+ 1

2
‖S1/2Ghw‖2L2(L)

+ 1

2
‖Phw(m)‖2L , (4.11)
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where the second line follows from the Young inequality. Setting m = 0 allows us to take any
m′ = 0, . . . , N . Taking the square root of the above inequality and using (a2 + b2 + c2)1/2 ≤
a + b + c then concludes the proof of (4.7).

The inequality (4.8) is obtained letting m = 0 and m′ = N in (4.10). To prove (4.9), we
come back to (4.11) and set m′ = N to get, after multiplication by 2k, for all m = 0, . . . , N ,

k‖Phw(T )‖2L ≤ k‖S1/2Gh Rh∂w‖2L2(L)
+ k‖S1/2Ghw‖2L2(L)

+ k‖Phw(m)‖2L .

Summing over m = 1, . . . , N yields

T ‖Phw(T )‖2L ≤ T ‖S1/2Gh Rh∂w‖2L2(L)
+ T ‖S1/2Ghw‖2L2(L)

+ ‖Phw‖2L2(L)

≤ T ‖S1/2Gh Rh∂w‖2L2(L)
+ (

T + p2h
) ‖S1/2Ghw‖2L2(L)

,

which proves (4.9). ��
Lemma 4.7 Let V be a Hilbert space and let A : V → V be an M-continuous and
α-coercive operator (with M ≥ 1 and α > 0), which means that

‖Av‖V ≤ M‖v‖V and 〈Av, v〉V ≥ α‖v‖2V ∀v ∈ V . (4.12)

Then, for all v,w ∈ V ,

‖w + Av‖2V ≥ 2α〈w, v〉V + 1

3

( α

M

)3 (‖w‖2V + ‖v‖2V
)
. (4.13)

Proof Consider the symmetric As:= A+A∗
2 and anti-symmetric Aa:= A−A∗

2 parts of A. We
have, for all v ∈ V , 〈Asv, v〉 = 〈Av, v〉 ≥ α‖v‖2V . It follows that the self-adjoint operator
As is positive and invertible, and has a positive invertible square root A

1/2
s which satisfies

‖A1/2
s v‖V ≥ √

α‖v‖V ∀v ∈ V (4.14)

and ‖A
1/2
s v‖ ≤ √

M‖v‖, so that

‖A−1/2
s v‖ ≥ 1√

M
‖v‖ ∀v ∈ V . (4.15)

Applying (4.14) to A−1/2
s (w + Av) = A−1/2

s w + A
1/2
s v + A−1/2

s Aav instead of v gives

‖w + Av‖2 ≥ α
(
‖A−1/2

s w + A1/2
s v + A−1/2

s Aav‖2V
)

= α
(
‖A−1/2

s w‖2V + ‖A1/2
s v‖2V + ‖A−1/2

s Aav‖2V
)

+ 2α〈w, v〉V + 2α〈v, Aav〉V + 2α〈A−1/2
s w, A−1/2

s Aav〉V

where the second line follows from developing the square of the norm and using
〈A−1/2

s ·, A
1/2
s ·〉V = 〈·, ·〉V . By anti-symmetry of Aa we have 〈v, Aav〉V = 0, which leads to

‖w + Av‖2 ≥ 2α〈w, v〉V + α
(
‖A−1/2

s w‖2V + ‖A1/2
s v‖2V + ‖A−1/2

s Aav‖2V
)

+ 2α〈A−1/2
s w, A−1/2

s Aav〉V . (4.16)

Nowwe use theYoung inequality combinedwith the Cauchy–Schwarz inequality to estimate,
for all γ > 0,

2
∣∣〈A−1/2

s w, A−1/2
s Aav〉V

∣∣ ≤ 2‖A−1/2
s w‖V ‖A−1/2

s Aav‖V

≤ γ ‖A−1/2
s w‖2V + 1

γ
‖A−1/2

s Aav‖2V .
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Taking γ < 1 and plugging this estimate into (4.16) yields

‖w + Av‖2 ≥ 2α〈w, v〉V + α(1 − γ )‖A−1/2
s w‖2V

+α

(
1 − 1

γ

)
‖A−1/2

s Aav‖2V + α‖A1/2
s v‖2V .

Applying (4.14) with A−1/2
s Aav instead of v and using ‖Aav‖V ≤ M‖v‖V gives

‖A−1/2
s Aav‖V ≤ M√

α
‖v‖V ,

which leads, since 1 − 1
γ

< 0, to

‖w + Av‖2 ≥ 2α〈w, v〉V + α(1 − γ )‖A−1/2
s w‖2V

+M2
(
1 − 1

γ

)
‖v‖2V + α‖A1/2

s v‖2V .

Let γ = 1
1+s where s > 0 is fixed later. Then 1 − γ = s

1+s and 1 − 1
γ

= −s and, using
(4.14) and (4.15), it follows that

‖w + Av‖2 ≥ 2α〈w, v〉V + s

1 + s

α

M
‖w‖2V − s M2‖v‖2V + α2‖v‖2V .

Choose s = α2

2M2 to obtain

‖w + Av‖2 ≥ 2α〈w, v〉V + β
(‖w‖2V + ‖v‖2V

)
,

where, using α ≤ M and 1 ≤ M ,

β = min

{
α2

2
,

α2

α2 + 2M2

α

M

}
= α2

α2 + 2M2

α

M
≥ 1

3

( α

M

)3
.

��
Lemma 4.8 Let L be a Hilbert space, and let � : L → L be a contraction (which means
that ‖�‖ ≤ 1). Let a > 0 and b ∈ [0, a] be given reals such that γ :=a − b‖�‖2 > 0. The
following estimate holds

a‖w‖2L − b‖v‖2L + 9a2

γ
‖v − �w‖2L ≥ γ

3

(‖w‖2L + ‖v‖2L
)

for all v,w ∈ L. (4.17)

Proof Let v,w ∈ L be given. By the Young inequality, we have for any μ > 0,

−2〈v,�w〉L ≥ −μ‖�w‖2L − 1

μ
‖v‖2L .

Choosing μ > 1, this implies that

‖v − �w‖2L ≥ ‖v‖2L
(
1 − 1

μ

)
− ‖w‖2L‖�‖2(μ − 1). (4.18)

Let β:=b‖�‖2 ∈ [0, a) and μ:=β+2a
2β+a ∈ (1,+∞). Let θ > 0 and α > 0 be such that

θ

(
1 − 1

μ

)
= b + α and θ(μ − 1)‖�‖2 = a − α.
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Using ‖�‖2 ≤ 1, this system is satisfied for

α = (a − β)(a + β)

2β + a + ‖�‖2(2a + β)
≥ γ

3
. (4.19)

Using the preceding equation and b ≤ a, we get

θ = 2a + β

a − β
(b + α) ≤ 9a2

γ
.

Invoking (4.18) then gives

a‖w‖2L − b‖v‖2L + 9a2

γ
‖v − �w‖2L ≥ a‖w‖2L − b‖v‖2L + θ‖v − �w‖2L

≥ (a − θ(μ − 1)‖�‖2)‖w‖2L +
(

θ

(
1 − 1

μ

)
− b

)
‖v‖2L

= α
(‖w‖2L + ‖v‖2L

)
.

Recalling (4.19) concludes the proof of (4.17). ��

Wenowgive a sufficient condition for establishing an inf-sup condition on the bilinear form
b defined by (3.8). Such a condition is sufficient to obtain an error estimate for conforming
schemes (see e.g. [14]). In the case of the (possibly non-conforming) scheme studied in this
paper, it provides an essential step in the error estimate proof [see (4.29)].

Lemma 4.9 Let V and L be Hilbert spaces. Let Ẑ and Y be the Hilbert spaces defined by
Ẑ = V × V × L × L and Y = V × L. Let A : V → V be an M-continuous and α-coercive
linear operator in the sense of (4.12). Let � : L → L be a linear operator such that ‖�‖ ≤ 1.
We define b̂ : Ẑ × Y → R by

b̂((z1, z2, z3, z4), (y1, y2)) = 〈z1 + Az2, y1〉V + 〈z3 − �z4, y2〉L , (4.20)

for all (z1, z2, z3, z4) ∈ Ẑ and for all (y1, y2) ∈ Y .
Let X̂ ⊂ Ẑ be a subspace of Ẑ . We define the Hilbert spaces X̂1 ⊂ V , X̂2 ⊂ V , X̂3 ⊂ L

and X̂4 ⊂ L by: for i = 1, . . . , 4,

X̂i = {
xi : x ∈ X̂

}
, where xi is the i-th component of x ∈ Ẑ .

Assume that

X̂1 ⊂ X̂2, (4.21)

and that there exist ζ > 0 and δ > 0 such that, for all x ∈ X̂ ,

〈x1, x2〉V + α2

12 M3

(‖x2‖2V + ‖x1‖2V
) ≥ μ‖x4‖2L − ν‖x3‖2L , (4.22)

for some μ ∈ (0, ζ ] and ν ∈ [0, μ] with μ − ν‖�‖2 ≥ δ. Then, there exists β̂ > 0, only
depending on α, M, ζ and δ (and not on μ, ν and ‖�‖) such that

sup
y∈X̂2×X̂3,‖y‖Y =1

b̂(x, y) ≥ β̂‖x‖Ẑ ∀x ∈ X̂ . (4.23)
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Proof Let x ∈ X̂ . Let P3 : L → X̂3 ⊂ L be the orthogonal projection onto X̂3. Then, setting

N (x) = sup
y∈X̂2×X̂3,‖y‖Y =1

b̂(x, y),

we have, using (4.21),

N (x)2 = ‖x1 + Ax2‖2V + ‖P3(x3 − �x4)‖2L . (4.24)

We then obtain, for θ > 0 to be chosen later

N (x)2 ≥ 1

max(1, θ)
‖x1 + Ax2‖2V + θ

max(1, θ)
‖P3(x3 − �x4)‖2L . (4.25)

We apply Lemma 4.7 to obtain

‖x1 + Ax2‖2V ≥ 2α〈x1, x2〉V + 1

3

( α

M

)3
(‖x2‖2V + ‖x1‖2V )

≥ 2α(μ‖x4‖2L − ν‖x3‖2L) + 1

6

( α

M

)3 (‖x2‖2V + ‖x1‖2V
)
,

where the second line follows from the assumption (4.22), after writing 1
3

(
α
M

)3 = 2α α2

12 M3 +
1
6

(
α
M

)3.
Together with (4.25), this yields

max(1, θ)N (x)2 ≥ 2α
(
μ‖x4‖2L − ν‖x3‖2L

) + α3

6 M3

(‖x2‖2V + ‖x1‖2V
)

+ θ‖P3 (x3 − �x4) ‖2L . (4.26)

Noting that P3(x3 −�x4) = x3 − P3�x4 and that ‖P3 ◦�‖ ≤ ‖�‖ ≤ 1, we use Lemma 4.8
with P3 ◦ � instead of �, a = 2αμ and b = 2αν, which gives γ ≥ 2α(μ − ν‖�‖2) ≥ 2αδ.

If we set θ = 9a2
γ

≤ 18αμ2

μ−ν‖�‖2 ≤ 18αζ 2

δ
, we get

2α
(
μ‖x4‖2L − ν‖x3‖2L

) + θ‖P3(x3 − �x4)‖2L ≥ γ

3

(‖x3‖2L + ‖x4‖2L
)
.

Combined with (4.26), this gives

max

(
1,

18αζ 2

δ

)
N (x)2 ≥ α3

6 M3

(‖x1‖2V + ‖x2‖2V
) + 2αδ

3

(‖x3‖2L + ‖x4‖2L
)
,

which leads to (4.23). ��
Let us now prove the error estimate.

Proof (Proof of Theorem 4.1) Let v ∈ Vh and z ∈ Xh be given. Definition (4.4) of ζ
(T )
h (v)

give
∫ T

0

(
〈v(t),Ghv(t)〉L + 〈Dv(t),Phv(t)〉L

)
dt ≤ ζ

(T )
h (v)‖S1/2Ghv‖L2(L).

This yields, using the definition of v, the relation (2.11) (which gives Dv = − f ), and (4.2),
∫ T

0

(
〈SGRu′(t) + �(t)Gu(t) − (SGh Rh∂wh(t) + �(t)Ghwh(t)),Ghv(t)〉L

)
dt

+〈ξ0 − (Phwh(0) − �Phwh(T )),Ph z〉L ≤ ζ
(T )
h (v)‖S1/2Ghv‖L2(L).
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Using u(0) − �u(T ) = ξ0, we get

∫ T

0

(
〈SGRu′(t) + �(t)Gu(t) − (SGh Rh∂wh(t) + �(t)Ghwh(t)),Ghv(t)〉L

)
dt

+〈u(0) − �u(T ) − (Phwh(0) − �Phwh(T )),Phz〉L

≤ ζ
(T )
h (v)‖S1/2Ghv‖L2(L). (4.27)

We then take an arbitrary element ṽ ∈ Wh and notice that, by definition (4.3) of δ
(T )
h (u, ṽ)

and since � is a contraction,
∫ T

0
〈S[Gh Rh∂ṽ − GRu′](t),Ghv(t)〉L + 〈�(t)[Gh ṽ − Gu](t),Ghv(t)〉Ldt

+〈Ph ṽ(0) − u(0) − �(Ph ṽ(T ) − u(T )),Phz〉L

≤ δ
(T )
h (u, ṽ)‖S1/2Ghv‖L2(L) + 2δ(T )

h (u, ṽ)‖Phz‖L .

Adding this inequality to (4.27) yields

∫ T

0
〈SGh Rh∂(̃v − wh)(t) + �(t)Gh (̃v(t) − wh(t)),Ghv(t)〉Ldt

〈Ph (̃v(0) − wh(0)) − �Ph
(̃
v(T ) − wh(T )

)
,Ph z〉L

≤
(
δ
(T )
h (u, ṽ) + ζ

(T )
h (v)

)
‖S1/2Ghv‖L2(L) + 2δ(T )

h (u, ṽ) ‖Ph z‖L .

Using the bilinear form b̂ defined by (4.20), with V = L2(0, T ; L) endowed with the inner
product 〈S·, ·〉L2(L) and A = S−1� [which satisfies (4.12) by (2.6a)–(2.6b)], the preceding
inequality implies

b̂((z1, z2, z3, z4), (y1, y2)) ≤ ĉ1‖y1‖V + ĉ2‖y2‖L , (4.28)

with

z1 = Gh Rh∂(̃v − wh), z2 = Gh (̃v − wh),

z3 = Ph (̃v(0) − wh(0)), z4 = Ph (̃v(T ) − wh(T )),

y1 = Ghv, y2 = Phz,

ĉ1 = δ
(T )
h (u, ṽ) + ζ

(T )
h (v), ĉ2 = 2δ(T )

h (u, ṽ).

We therefore aim to apply Lemma 4.9 with

X̂ = Gh(Vh) × Gh(Vh) × Ph(Xh) × Ph(Xh).

Condition (4.21) is satisfied since X̂1 = X̂2. Let Ĉ be an upper bound of the norm of Ph

defined by (3.2). Adding (4.8) to (1 + Ĉ2

T )−1 α2

12 M3 × (4.9) shows that the hypothesis (4.22)
is satisfied with

μ = 1

2
+

(
1 + Ĉ2

T

)−1
α2

12M3 and ν = 1

2
.

We note that μ − ν‖�‖2 ≥ μ − ν =
(
1 + Ĉ2

T

)−1
α2

12 M3 =:δ. Taking the maximum of (4.28)

over all (y1, y2) ∈ Gh(Vh) × Ph(Xh) with norm in V × L equal to 1, Lemma 4.9 therefore
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yields β̂ > 0 depending only on α, M , Ĉ and T such that

β̂
(
‖S1/2Gh Rh∂(̃v − wh)‖2L2(L)

+ ‖S1/2Gh (̃v − wh)‖2L2(L)

+‖Ph (̃v − wh)(0)‖2L + ‖Ph (̃v − wh)(T )‖2L
)1/2

≤
[(

δ
(T )
h (u, ṽ) + ζ

(T )
h (v)

)2 + 4δ(T )
h (u, ṽ)2

]1/2

≤ δ
(T )
h (u, ṽ) + ζ

(T )
h (v) + 2δ(T )

h (u, ṽ), (4.29)

where we use (a2 + b2)1/2 ≤ a + b for positive a and b in the last inequality. By (2.7) we
have

‖S−1/2�Gh (̃v − wh)‖L2(L) ≤ ρ‖S1/2Gh (̃v − wh)‖L2(L).

Plugging this into (4.29) and using (4.7) in Lemma 4.6 together with a + b + c ≤ √
3(a2 +

b2 + c2)1/2, we infer

β̂
(
‖S1/2Gh Rh∂(̃v − wh)‖L2(L) + ‖S−1/2�Gh (̃v − wh)‖L2(L)

+ max
t∈[0,T ] ‖Ph (̃v − wh)(t)‖L

)

≤ √
3max(1, ρ)

(
3δ(T )

h (u, ṽ) + ζ
(T )
h (v)

)
.

Using the triangle inequality in the definition (4.3) of δ
(T )
h , we infer

β̂δ
(T )
h (u, wh) ≤ √

3max(1, ρ)
(
3δ(T )

h (u, ṽ) + ζ
(T )
h (v)

)
+ β̂δ

(T )
h (u, ṽ).

Since ṽ is arbitrary in Wh , this concludes the proof of the second inequality in (4.6).
Let us now turn to the first inequality in (4.6). We first note that

inf
v∈Wh

δ
(T )
h (u, v) ≤ δ

(T )
h (u, wh).

To bound ζ
(T )
h (v) we recall that v = SGRu′ + �Gu + F satisfies −Dv = f [see (2.11)],

and use the scheme (4.2) (with z = 0) to write, for any v ∈ Vh\{0},
〈v,Ghv〉L + 〈Dv,Phv〉L

=
∫ T

0

(
〈SGRu′(t) + �(t)Gu(t)

− (SGh Rh∂wh(t) + �(t)Ghwh(t)),Ghv(t)〉L
)
dt

≤
(
‖S1/2(GRu′ − Gh Rh∂wh)‖L2(L) + ‖S−1/2�(Gu − Ghwh)‖L2(L)

)

× ‖S1/2Ghv‖L2(L).

Dividing by ‖S1/2Ghv‖L2(L) and taking the supremumover v ∈ Vh\{0} shows that ζ (T )
h (v) ≤

δ
(T )
h (u, wh), which concludes the proof. ��
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5 Interpolation results

In this section, we consider a sequence (Dhn )n∈N of gradient discretisations which is

1. Consistent, in the sense that

∀ϕ ∈ HG, lim
n→∞ σhn (ϕ) = 0, (5.1)

where

σhn (ϕ) = inf
v∈Xhn

δhn (ϕ, v),

with δhn (ϕ, v) =
(∣∣Phn v − ϕ

∣∣2
L + ∣∣Ghn v − Gϕ

∣∣2
L

)1/2

.

(5.2)

2. Limit-conforming, in the sense that

∀ϕ ∈ HD, lim
n→∞ ζhn (ϕ) = 0, (5.3)

where

∀ϕ ∈ HD, ζhn (ϕ) = sup
v∈Xhn \{0}

∣∣〈ϕ,Ghn v〉L + 〈Dϕ,Phn v〉L
∣∣

‖v‖hn

. (5.4)

Applying [13, Lemma 3.10] or [11, Lemma 2.6] for example, we can state that there exists
Ĉ > 0 such that, for all n ∈ N,

max
v∈Xhn \{0}

∣∣Phn v
∣∣
L

‖Ghv‖L ≤ Ĉ . (5.5)

In the following, we denote by Ci , for i ∈ N, various constants which only depend on Ĉ , T ,
CT [see (2.5)], � and S.

Let Nn a sequence of positive integers diverging to infinity, and let kn = T /Nn . This
section is devoted to the proof of the following theorem, which enables us to apply Theorem
4.1 for proving the convergence of the scheme under the hypotheses of this section.

Theorem 5.1 Under the hypotheses of this section, the following holds.
For any ϕ ∈ L2(0, T ; HD),

lim
n→∞ ζ

(T )
hn

(ϕ) = 0. (5.6)

Moreover, recalling the definition (4.3) of δ
(T )
h , we have, for all w ∈ W ,

lim
n→∞ inf

v∈Whn

δ
(T )
hn

(w, v) = 0. (5.7)

As a consequence, letting u be the solution to (2.9), and whn be the solution to (3.3) for
h = hn, then

lim
n→∞ δ

(T )
hn

(u, whn ) = 0. (5.8)

Proof For a.e. t ∈ (0, T ) and all v ∈ Vhn we have
∣∣〈ϕ(t),Ghn v(t)〉L + 〈Dϕ(t),Phn v(t)〉L

∣∣ ≤ ζhn (ϕ(t))‖v(t)‖hn .
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Recalling that ‖v(t)‖hn = ‖S1/2Ghn v(t)‖L , integrating over t ∈ (0, T ) and using the
Cauchy–Schwarz inequality yields∣∣〈ϕ,Ghn v〉L2(L) + 〈Dϕ,Phn v〉L2(L)

∣∣
≤

(∫ T

0
ζhn (ϕ(t))2 dt

)1/2

‖S1/2Ghn v‖L2(L)

and thus

ζ
(T )
hn

(ϕ) ≤
(∫ T

0
ζhn (ϕ(t))2 dt

)1/2

.

By limit-conformity we know that, for a.e. t ∈ (0, T ), ζhn (ϕ(t)) → 0 as n → ∞. Since we
also have ζhn (ϕ(t)) ≤ ‖ϕ(t)‖HD(‖S−1/2‖ + Ĉ), we can apply the dominated convergence
theorem to obtain (5.6).

Let us now turn to the proof of (5.7). Let w ∈ H2(0, T ; HG). We prove in Lemma 5.7
that

lim
n→∞ inf

v∈Whn

δ
(T )
hn

(w, v) = 0.

The conclusion follows by density of H2(0, T ; HG) in W , and the property

δ
(T )
hn

(w, v) ≤ δ
(T )
hn

(w, v) + (‖w − w‖2L + ‖Gw − Gw‖2L
) 1
2 ,

valid for any w,w ∈ W .
Finally, (5.8) is a consequence of (5.6), (5.7) and Theorem 4.1. ��
The next lemmas are steps for the proof of the final lemma of this section, Lemma 5.7.
In the following, for legibility reasons, we sometimes drop the index n in hn . Recalling

the definition (5.2) of σh , we set σ̂
(T )
h : L2(0, T ; HG) → [0,+∞) as

σ̂
(T )
h (v):=‖σh(v(·))‖L2((0,T )) for all v ∈ L2(0, T ; HG).

Note that the quantity σ̂
(T )
h (v) = ‖ infw∈Xh δh(v(·), w)‖L2((0,T )) is not equivalent to

infw∈Wh δ
(T )
h (v,w). In particular, it does not include a term equivalent to sup[t∈[0,T ] ‖v(t) −

w(t)‖L .
We have the following lemma

Lemma 5.2 For any ϕ ∈ L2(0, T ; HG),

lim
n→∞ σ̂

(T )
hn

(ϕ) = 0. (5.9)

Proof By consistency (5.1), for a.e. t ∈ (0, T ) we have σhn (ϕ(t)) → 0 as n → ∞. Since

0 ∈ Xh and ‖ϕ(t)‖L ≤ CP‖Gϕ(t)‖L , we also have σ̂
(T )
hn

(ϕ(t)) ≤ (1 + CP )‖ϕ(t)‖HG . The
dominated convergence theorem then concludes the proof of (5.9). ��

The interpolator Ih : HG → Xh is the linear map defined by

∀u ∈ HG, Ihu = argmin{‖Phv − u‖2L + ‖Ghv − Gu‖2L : v ∈ Xh}.
Since Ihu is the solution of an unconstrained quadratic minimisation problem, we have

∀u ∈ HG, ∀v ∈ Xh,

〈PhIhu,Phv〉L + 〈GhIhu,Ghv〉L = 〈u,Phv〉L + 〈Gu,Ghv〉L .
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Selecting v = Ihu and using (2.1) and (5.5), we deduce the bound

‖GhIhu‖L ≤ (CP Ĉ + 1)‖Gu‖L . (5.10)

We also define an interpolator for space-time functions: if w ∈ C([0, T ]; HG), the ele-
ment Ih,kw ∈ Wh is defined by the relations (3.4) using the family (wm)m=0,...,N =
(Ihw(mk))m=0,...,N . We then have the following lemma.

Lemma 5.3 For all w ∈ H1(0, T ; HG) we have

σ̂
(T )
h (w) ≤ ‖δh(w(·), Ih,kw(·))‖L2((0,T )) ≤ σ̂

(T )
h (w) + C1k‖w′‖L2(HG).

Proof Recalling the definition (5.2) of δh and using triangle inequalities, we have

‖δh(w(·), Ih,kw(·))‖L2((0,T )) ≤ ‖δh(w(·), Ihw(·)))‖L2((0,T ))

+
(∫ T

0

( ∣∣PhIh,kw(t) − PhIhw(t)
∣∣2
L + ∣∣GhIh,kw(t) − GhIhw(t)

∣∣2
L

)
dt

)1/2

≤ σ̂
(T )
h (w) + (Ĉ + 1)1/2

(∫ T

0

∣∣GhIh,kw(t) − GhIhw(t)
∣∣2
L dt

)1/2

. (5.11)

For all m = 0, . . . , N − 1 and for a.e. t ∈ ((m − 1)k, mk), it holds∣∣GhIh,kw(t) − GhIhw(t)
∣∣
L = |GhIhw(mk) − GhIhw(t)|L

=
∣∣∣∣
∫ mk

t
GhIhw′(s)ds

∣∣∣∣
L

≤
∫ mk

t

∣∣GhIhw′(s)
∣∣
L ds. (5.12)

This yields, owing to the Cauchy–Schwarz inequality,

∣∣GhIh,kw(t) − GhIhw(t)
∣∣2
L ≤ k

∫ (m+1)k

mk

∣∣GhIhw′(s)
∣∣2
L ds,

and therefore∫ (m+1)k

mk

∣∣GhIh,kw(t) − GhIhw(t)
∣∣2
L dt ≤ k2

∫ (m+1)k

mk

∣∣GhIhw′(s)
∣∣2
L ds.

Invoking the projection inequality (5.10) we can write
∣∣GhIhw′(s)

∣∣
L ≤ (CP Ĉ +

1)
∣∣Gw′(s)

∣∣
L . Plugging this into the relation (5.11) concludes the proof of the lemma. ��

Lemma 5.4 For all u ∈ HG, recalling the definitions (2.10) and (4.1) of the continuous and
discrete Riesz operators, we have

‖Gh RhIhu − GRu‖L ≤ C2(ζh(GRu) + σh(Ru) + σh(u)).

Proof Let v1 ∈ Xh be such that

∀z ∈ Xh, 〈SGhv1,Ghz〉L = 〈u,Ph z〉L .

By definition (2.10) of Ru, we note that v1 is the solution of the gradient scheme for the linear
problem satisfied by Ru; hence, we have the following error estimate [13, Theorem 5.2]:

‖Ghv1 − GRu‖L ≤ C3(ζh(GRu) + σh(Ru)). (5.13)

Recall that RhIhu satisfies, by definition of Rh ,

∀z ∈ Xh, 〈SGh(RhIhu),Gh z〉L = 〈PhIhu,Ph z〉L .
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Subtracting the equations satisfied by v1 and RhIhu, taking z = v1 − RhIhu and using the
Cauchy–Schwarz inequality together with (5.5), we obtain

‖Gh(v1 − RhIhu)‖L ≤ C4‖u − PhIhu‖L ≤ C4σh(u).

Combined with (5.13), this concludes the proof. ��
Lemma 5.5 For all w ∈ H2(0, T ; HG), it holds

‖GRw′ − Gh Rh∂Ih,kw‖L2(L)

≤ k‖GRw′′‖L2(L) + C2

(
ζ

(T )
h (GRw′) + σ̂

(T )
h (Rw′) + σ̂

(T )
h (w′)

)
.

Proof Let w′
h be the function defined on (0, T ) by: for all m = 0, . . . , N and t ∈ ((m −

1)k, mk),

w′
h(t) = 1

k

∫ mk

(m−1)k
w′(s)ds = w(mk) − w((m − 1)k)

k
.

We have

‖GRw′ − Gh Rh∂Ih,kw‖L2(L)

≤ ‖GRw′ − GRw′
h‖L2(L) + ‖GRw′

h − Gh Rh∂Ih,kw‖L2(L). (5.14)

We have

‖GRw′ − GRw′
h‖2L2(L)

=
N−1∑
m=0

∫ (m+1)k

mk

∣∣∣∣GRw′(t) − 1

k

∫ mk

(m−1)k
GRw′(s)ds

∣∣∣∣
2

L
dt .

We have, using the Jensen inequality,

∫ (m+1)k

mk

∣∣∣∣1k
∫ mk

(m−1)k
(GRw′(t) − GRw′(s))ds

∣∣∣∣
2

L
dt

≤
∫ (m+1)k

mk

∫ mk

(m−1)k

1

k

∣∣GRw′(t) − GRw′(s)
∣∣2
L dsdt,

and

∣∣GRw′(t) − GRw′(s)
∣∣2
L ≤ k

∫ (m+1)k

mk

∣∣GRw′′(τ )
∣∣2
L dτ.

This yields

‖GRw′ − GRw′
h‖L2(L) ≤ k‖GRw′′‖L2(L). (5.15)

On the other hand, for a.e. t ∈ ((m − 1)k, mk) and writing

∂Ih,kw(t) = 1

k
(Ihw(mk) − Ihw((m − 1)k)) = 1

k

∫ mk

(m−1)k
Ihw′(s)ds,

we have

GRw′
h(t) − Gh Rh∂Ih,kw(t) = 1

k

∫ mk

(m−1)k

(
GRw′(s) − Gh RhIhw′(s)

)
ds.
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This yields

‖Gw′
h − Gh Rh∂Ih,kw‖L2(L) ≤ ‖GRw′ − Gh RhIhw′‖L2(L).

Applying Lemma 5.4 to u = w′(t), squaring and integrating over t ∈ (0, T ), we infer

‖Gw′
h − Gh Rh∂Ih,kw‖L2(L) ≤ C2(ζ

(T )
h (GRw′) + σ̂

(T )
h (Rw′) + σ̂

(T )
h (w′)).

The proof is concluded by combining this estimate, (5.14) and (5.15). ��
Lemma 5.6 For all w ∈ H2(0, T ; HG), we have

sup
t∈[0,T ]

‖PhIh,kw(t) − w(t)‖L

≤ C5

(
k

(‖w′‖L2(HG) + ‖w′′‖L2(HG)

) + σ̂
(T )
h (w) + σ̂

(T )
h (w′)

)
.

Proof Let us first establish a preliminary inequality. For s, t ∈ [0, T ],

w′(t) = w′(s) +
∫ t

s
w′′(τ )dτ,

which leads to

‖w′(t)‖HG ≤ ‖w′(s)‖HG +
∫ T

0
‖w′′(τ )‖HGdτ.

Integrating with respect to s and using the Cauchy–Schwarz inequality, we obtain

sup
t∈[0,T ]

‖w′(t)‖HG ≤ 1√
T

‖w′‖L2(HG) + √
T ‖w′′‖L2(HG). (5.16)

For all t ∈ [0, T ], we have
‖PhIh,kw(t) − w(t)‖L ≤ ‖PhIh,kw(t) − PhIhw(t)‖L + ‖PhIhw(t) − w(t)‖L

≤ Ĉ‖Gh(Ih,kw(t) − Ihw(t))‖L + ‖PhIhw(t) − w(t)‖L .

(5.17)

The first term in the right-hand side can be bounded using (5.12), (5.10) (with u = w′(t))
and (5.16) to write

‖Gh(Ih,kw(t) − Ihw(t))‖L
≤ (CP Ĉ + 1)k

(
1√
T

‖w′‖L2(HG) + √
T ‖w′′‖L2(HG)

)
. (5.18)

To estimate the second term in the right-hand side of (5.17), we write, for any s ∈ (0, T ),

PhIhw(t) − w(t) = PhIhw(s) − w(s) +
∫ t

s
(PhIhw′(τ ) − w′(τ ))dτ.

Integrating with respect to s and using the Cauchy–Schwarz inequality, this yields

‖PhIhw(t) − w(t)‖L ≤ C6

(
σ̂

(T )
h (w) + σ̂

(T )
h (w′)

)
.

Plugging this estimate together with (5.18) in (5.17) concludes the proof. ��
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Lemma 5.7 For all w ∈ H2(0, T ; HG), it holds

δ
(T )
h (w, Ih,kw) ≤ C7

(
k

(‖w′‖L2(HG) + ‖w′′‖L2(HG)

)

+ζ
(T )
h (GRw′) + σ̂

(T )
h (Rw′) + σ̂

(T )
h (w′) + σ̂

(T )
h (w)

)
. (5.19)

As a consequence,

lim
n→∞ inf

v∈Whn

δ
(T )
hn

(w, v) = 0. (5.20)

Proof Recalling the definition (4.3) of δ
(T )
h , the estimate (5.19) is a consequence of Lemmas

5.5, 5.3 and 5.6, once we notice that, for all u ∈ HG,

‖GRu‖L ≤ C8‖u‖L ≤ C8CP‖u‖HG ,

the first inequality being obtained by selecting ξ = v = u in (2.10), while the second follows
from (2.1).

The relation (5.20) follows from Lemmas 5.1 and (5.2). ��

6 Numerical illustration

6.1 Irregular initial data

One of the key features of the error estimate in Theorem 4.1 is that it does not require any
regularity on the solution beyond the one provided by the model itself. Let us apply our error
estimate to a case where the continuous solution of the problem is such that u′ /∈ L2(0, T ; L).
Let � = (0, 1), L = L = L2(�), Gu = ∂x u, HG = H1

0 (�), � = 0, � = Id, f = 0,
F = 0, ξ0(x) = 1, T = 1/10. Then the solution of Problem (2.9) is given, for t ∈ (0, T ]
and x ∈ [0, 1], by

u(t)(x) =
∑
p∈N

4

(2p + 1)π
exp

(−((2p + 1)π)2t
)
sin((2p + 1)πx).

We define (Xh,Ph,Gh), letting k = 0.9h2, from the Control Volume Finite Element gradient
discretisation [11, 8.4, p. 274]. It consists, for a given M ∈ N\{0}, in defining h = 1/(M +1),
Xh = R

M , and, for any w:=(wi )i=1,...,M , letting w0 = wM+1 = 0,

Phw(x) = wi if x ∈
((

i − 1

2

)
h,

(
i + 1

2

)
h

)
∩ (0, 1), i = 0, . . . , M + 1,

Ghw(x) = wi+1 − wi

h
if x ∈ (ih, (i + 1)h), i = 0, . . . , M .

Let ϕi : [0, 1] → [0, 1], for i = 1, . . . , M , be the P1 finite element basis function: ϕi ( jh) =
δi j for all j = 0, . . . , M + 1, and ϕi continuous and piecewise affine. Then, setting

v:=
M∑

i=1

wiϕi ∈ H1
0 (�),

we get

Ghw = Gv.
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Fig. 1 Exact solution at different times and approximate solution at the final time, irregular initial data

The advantage of this discretisation method is that is satisfies monotonicity properties, due to
the fact that the mass matrix is lumped, accounting for the definition of Ph . We show in Fig.
1 the exact solution at different times, and the approximate solution obtained by the scheme
at the final time. In this case, the continuous solution does not satisfy u′ ∈ L2(0, T ; L), nor
u ∈ L2(0, T ; H2(�)). Indeed, for any T > 0, we have

lim
ε→0

‖u′‖L2(ε,T ;L2(�)) = lim
ε→0

‖�u‖L2(ε,T ;L2(�)) = +∞.

This can be shown by noticing that

‖u′‖2L2(ε,T ;L2(�))
= 1

2

(‖Gu(ε)‖2L − ‖Gu(T )‖2L
)
.

If ‖u′‖L2(ε,T ;L2(�)) were bounded as ε → 0, so would be ‖Gu(ε)‖L . Since u(ε) → ξ0 in L ,
this would imply that ξ0 ∈ HG, which does not hold.

Computing the error terms involved in (4.3) in Theorem 4.1, we remark that, since the
right-hand-side vanishes,

‖GRu′ − Gh Rh∂w‖L2(L) = ‖Gu − Ghw‖L2(L).

It therefore suffices to evaluate

E1 = ‖Gu − Ghw‖L2(L), E2 = max
t∈[0,T ] ‖u(t) − Phw(t)‖L .

In order to compute an accurate value of E1, we remark that

∫ mk

(m−1)k
‖Gu(t) − Ghw(m)‖2Ldt = T (m)

1 − 2T (m)
2 + T (m)

3 ,
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Fig. 2 Errors E1 and E2 for different values of h, irregular initial data

with

T (m)
1 =

∫ mk

(m−1)k
‖Gu(t)‖2Ldt = 1

2

(‖u(mk)‖2L − ‖u((m − 1)k)‖2L
)
,

T (m)
2 =

∫ mk

(m−1)k
〈Gu(t),Gv(m)〉Ldt = 〈u(mk) − u((m − 1)k), v(m)〉L ,

and

T (m)
3 =

∫ mk

(m−1)k
‖Gv(m)‖2Ldt .

Hence

∫ T

0
‖Gu(t) − Ghvh(t)‖2Ldt = 1

2

(‖u(T )‖2L − ‖ξ0‖2L
) +

N∑
m=1

(
T (m)
2 + T (m)

3

)
.

It then suffices to compute the terms 〈u(mk)−u((m−1)k), v(m)〉L using quadrature formulas.
We observe in Fig. 2 that E1 and E2 behave as C

√
h. The behaviour of E2 is compatible

with the interpolation error of the solution. Indeed, definingwini ∈ Xh such thatwini
i = 1 for

any i = 1, . . . , M and wini
0 = wini

M+1 = 0, we have ‖ξ0 − Phwini‖L =
√
2(1 − 0)2 h

2 . Note

that the function v given by (4.5) is null in this case, which implies that ζ (T )
h (v) = 0.

6.2 Irregular right-hand-side

We consider again� = (0, 1), L = L = L2(�),Gu = ∂x u, HG = H1
0 (�),� = 0,� = Id,

T = 1/10, and ξ0, f , F such that the solution of Problem (2.9) is given, for t ∈ (0, T ] and
x ∈ [0, 1], by

u(t)(x) = t min(x, 1 − x).
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Fig. 3 Exact solution at different times and approximate solution at the final time, irregular right-hand-side

Fig. 4 Errors E1 and E2 for different values of h, irregular right-hand-side

Hence we let ξ0 = 0, f (t)(x) = min(x, 1 − x) and F(t)(x) = −∂x u(t)(x).
This problem is approximated on [0, T ] using the same discretisation method as in the

previous section with k = 0.9h2, and specifying odd values for M . Figure 3 shows the exact
solution at different times, and the approximate solution obtained by the scheme described
below at the final time.

We see in Fig. 4 that E1 behaves as h2 and E2 as h. These orders are in conformity with
the expected interpolation error of the function u(t)(x) = t min(x, 1 − x). Indeed, if we
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define the interpolate (wm)m=0,...,N ∈ X N+1
h such that wm

i = mk min(ih, 1 − ih) for any
i = 0, . . . , M + 1, the L2(�) interpolation error on the gradient behaves as (m + 1)k − t
for any mk < t < (m + 1)k. This yields an error E1 behaving as k ∼ h2 in the L2(L) norm.
The error E2 behaves as the L2(�) norm of the difference between an affine function and a
piecewise constant function with step h, which provides a behaviour in h.
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